An overview of time integrated measurements of indoor radon and thoron concentrations in Republic of Macedonia

Zdenka Stojanovska¹

¹Faculty of medical sciences, UGD Stip, Republic of Macedonia; <u>zdenka.stojanovska@ugd.edu.mk</u>

Introduction

- Radon, thoron and their decay products contribute more than half to the effective dose which the general population receives from natural sources.
- Both gasses are subject on large temporal and spatial variability;

Indoor radon

- The main source of indoor radon is ²²⁶Ra contained in building materials as well soil;
- Transport pathways are the porous environment of the soil and the building materials, as well as cracks, faults, etc.
- The radon transport mechanisms: diffusion and advection cased by the concentration and pressure gradients , respectively.

Indoor radon

- The factors affecting the indoor radon concentration can be assigned into three groups:
- 1. Radon potential –characterize the building sub-surface (in terms of radon generation in soil and condition for transport until its exaltation of the surface
- 2. Building characteristics
- 3. Building user life stile and habits
- Additionally, all three factors are affected by the meteorological conditions, resulting with high temporal variability

Introduction

- The main source of indoor thoron concentration (Tn) is ²³²Th contained in building material.
- As a consequence of Tn short half life (55.6 seconds):
- Tn cannot migrate over long distances,
- Indoor spatial concentration gradient

Rn and Tn surveys in Republic of Macedonia

• During the last decade, considerable attention has been payed to the indoor radon and thoron surveys in the Republic of Macedonia

Annual radon concentration	Period of exposure (months)	No of observation	Radon survey
Arithmetic mean of all			
seasons	3 x 4 seasons	437	2008/2009
Seasonally corrected	3 x winter season	73	2012
measured	12	76	2013/2014
seasonally corrected	3 x winter season	43	2013

Thoron survey			
performed (year):	No of observation	Period of exposure (months)	Annual thoron concentration
			Arithmetic mean of all
2008/2009	300	3 x 4 seasons	seasons/seasonally corrected
2012	30	3 x winter season	seasonally corrected

Rn and Tn surveys in Republic of Macedonia

- All measurements were done using the nuclear track detectors.
- The detectors were set in the rooms with the highest occupancy time at a distance greater than 0.5 m from each wall and at a minimum of 20 cm from any other object.

- Republic of Macedonia is situated on Balkan Peninsula and covered 25 713 km²; Population: 2 022 547
- Great diversity though mountains occupy nearly 80% and basins 20% of the country;

Geotectonical Zones in Republic of Macedonia

• According to the geotectonic, the territory is divided in four zones and an area:

Descriptive statistic of 40K, 226Ra and 232Th specific activities, measured in 213 soil samples by gamma spectrometry

A(Bq/kg)	No.	Min.	Max.	Med	AM	SD	CV(%)	GM	GSD
40K KZA	8	378	783	665	652	122	18%	639	1.25
40K PE	36	193	959	645	644	159	24%	622	1.34
40K SMM	25	348	1390	684	664	239	35%	627	1.41
40K VZ	90	80	1089	485	496	170	34%	463	1.51
40K WMM	54	186	974	644	648	174	27%	621	1.37
226Ra KZA	8	36	101	60	61	19	30%	58	1.36
226Ra PE	36	36	123	52	57	20	34%	55	1.35
226Ra SMM	25	23	99	41	42	17	40%	40	1.43
226Ra VZ	90	9	87	30	31	12	39%	29	1.47
226Ra WMM	54	18	86	39	41	13	32%	39	1.38
232Th KZA	8	40	67	54	53	9	16%	52	1.18
232Th PE	36	35	145	50	59	24	39%	56	1.40
232Th SMM	25	23	83	40	43	18	41%	40	1.47
232Th VZ	90	7	79	31	32	12	37%	30	1.52
232Th WMM	54	17	69	41	42	12	29%	40	1.36

Variations of indoor radon concentrations in Republic of Macedonia

- Indoor radon seasonal variations
- Annual indoor radon data characterization
- Factor affecting spatial variations
- Spatial variability of building factors (6 building factors considered in analysis)

Rn seasonal variation

Descriptive statistic of indoor radon measurements in different season (2008/2009)

Sample	N	Minimum	Maximum	Median	AM	SD	CV(%)	GM	GSD
CRn(winter)(Bq/m3)	437	17	1276	106	150	136	91%	115	2.02
CRn(Spring)(Bq/m3)	437	9	478	70	91	73	80%	72	1.97
CRn(summer)(Bq/m3)	437	9	323	44	59	48	82%	46	1.95
CRn(autumn)(Bq/m3)	437	7	935	93	119	104	87%	92	2.02

GM of indoor radon concentration in different season

Seasonal Rn variation model

Linear regression model (y=Ax+B) parameters:

У	Х	А	В
In CRn (annual)	InCRn, winter	0.84±0.01	0.46±0.06
In CRn (annual)	InCRn, spring	0.81±0.02	0.96±0.09
In CRn (annual)	llnCRn, summer	0.71±0.03	1.71±0.11
In CRn (annual)	InCRn, autumn	0.80±0.02	0.83±0.08

Indoor radon data characterization

Statistic	Rn(Bq/m3)
No. of observations	629
Minimum	18
Maximum	869
Median	88
Mean	118
Standard deviation	99
Variation coefficient	84%
Geometric mean	92
Geometric standard deviation	1.95

Rn data 0.009 0.008 0.007 0.006 **Deusity** 0.005 0.004 0.003 0.002 0.001 0 400 600 200 0 CRn(Bq/m3)

– CRn(Bq/m3)

800

Log-normal(4.5260,0.6662)

In(Rn) data

1. Geotectonical Zone

- Non-homogenies (Bartlett test, p=0.012)
- Significant variation between Zones (Kruskal-Wallis test, p< 0.0001)

				Groups Mann-Whitney test		
Zone	Frequency	GM	GSD	(p<0.05)		
WMM	114	77	1.89	А		
SMM	59	85	1.78	А	В	
VZ	353	91	1.87		В	
PE	49	95	1.81		В	
KZA	54	158	2.36			С

2. Indoor

- Homogenies (Bartlett test, p=0.71)
- Significant variation between different indoor (Kruskal-Wallis test, p< 0.0001)

				Groups	
				Mann-Whitney	
Indoor	Frequency	GM	GSD	test (p<0.05)	
kindergarten	14	87	1.89	А	
dwelling	540	68	2.04	А	
school	75	146	1.96		В

1000

+ Mean • Minimum/Maximum

4. Presence of basement

- Homogenies (Bartlett test, p=0.09)
- Significant variation (Kruskal-Wallis test, p< 0.0001)

				Gro	ups
Presence in				Mann-Whitney	
basement	Frequency	GM	GSD	test (p	o<0.05)
yes	306	70	1.75	А	
no	323	119	1.92		В

3. Floor

- Non-homogenies (Bartlett test, p=0.0097)
- Significant Rn variation between different floors (Kruskal-Wallis test, p< 0.0001)

				Groups	
				Mann-Whitney	
Floor	Frequency	GM	GSD	test (p<0.05)	
second	15	57	1.60	А	
first	149	64	1.67	А	
ground	465	106	1.94		В

5. Type of room

- Homogenous data (Bartlett test, p=0.39)
- Significant Rn variation between group (Kruskal-Wallis test, p< 0.0001)

				Groups Mann-Whitney	
Floor	Frequency	GM	GSD	test (p<0.05)	
bedroom	44	79	1.76	А	
living room	508	87	1.91	А	
classroom	77	146	1.98		В

6. Type of windows

- homogenous (Bartlett test, p=0.16)
- Significant variation (Kruskal-Wallis test, p< 0.0001)

				Groups	
				Mann-Whitney	
Type of windows	Frequency	GM	GSD	test (p<0.05)	
Old	498	86	1.89	А	
New	131	121	2.05		В

+ Mean • Minimum/Maximum

7. Building materials

Homogenous data (Bartlett test, p=0.36)

Significant variation between groups (Kruskal-Wallis test, p< 0.0001)

+ Mean • Minimum/Maximum

Western Zone

Western Zone

InRn concentrations were normally distributed

Univariable linear models results:

	Western Zone	р	R^2	RMSE
1	indoor			
2	floor	0.0046	0.1163	0.5652
3	basement	0.0016	0.0851	0.6115
4	room	0.9856		
5	building material	0.0490	0.0634	0.6243
6	windous	0.1133		

Multivariable linear model (R^2=0.21; RMSE=0.58)

Equation of the multiple regression model:

InCRn(Bq/m3) = 4.39197+0.04551*floor-first+0.41828*floor-ground+0.22329*basement-no-0.55592*Building Materials-brick-0.35870*Building Materials-bricks/stone-0.37402*Building Materials-concrete

> InCRn(Bq/m3) / Standardized coefficients/Western Zone (95% conf. interval)

Vardar Zone

InRn concentrations were normally distributed

Univariable linear models results:

	Vardar zone	р	R^2	RMSE
1	indoor	< 0.0001	0.11	0.59
2	floor	< 0.0001	0.11	0.59
3	basement	< 0.0001	0.12	0.59
4	room	< 0.0001	0.08	0.60
5	building material	0.0009	0.08	0.62
6	windows	0.0065	0.02	0.62

Multivariable linear model (R^2=0.32; RMSE=0.54)

Equation of the multiple regression model:

InCRn(Bq/m3) = 3.33447+0.58409*indoor-dwelling-0.39647*indoor-kindergarden-0.10662*floor-first+0.36619*floor-ground+0.38119*basement-no+0.10066*roombedroom+0.12733*Building Materials-brick-0.19183*Building Materials-bricks/stone-0.08971*Building Materials-concrete+0.05245*Building Materialsconcrete/bricks+0.40046*Building Materials-concrete/stone+0.62988*Building Materialsstone+0.20736*type of windows-new

Pelagonija

Pelagonija

------ InCRn(Bq/m3) ------ Normal(4.5534,0.5949)

InRn concentrations were normally distributed

Univariable linear models results:

	Pelagonija	р	R^2	RMSE
1 indoor				
2floor		0.0165	0.1163	0.5652
3 baseme	nt	0.0300	0.0952	0.5719
4room				
5 building	material	0.0050	0.2508	0.5318
6windous	j	0.4151		

Multivariable linear model (R^2=0.49; RMSE=0.45)

Equation of the model:

InCRn(Bq/m3) = 5.58556-0.44397*floor-first+0.27989*basement-no-1.22853*Building Materials-brick-0.04550*Building Materialsbricks/stone-0.90219*Building Materials-concrete

InCRn(Bq/m3) / Standardized coefficients/Pelagonija (95% conf. interval)

Serbo-Macedonian Massif

Serbo Macedonian Masiff

InRn concentrations were normally distributed

Univariable linear models results:

	Serbo Macedonian Massif	р	R^2	RMSE
1	indoor			
2	floor	0.0001	0.2344	0.5087
3	basement	< 0.0001	0.5392	0.3947
4	room	0.6051		
5	building material	0.2300		
6	windows	0.0021	0.2344	0.5087

Multivariable linear model (R^2=0.56; RMSE=0.40)

Equation of the model:

InCRn(Bq/m3) = 4.05379+0.01685*floor-first+0.79762*basement-no+0.25412*type of windows-new

InCRn(Bq/m3) / Standardized coefficients/SMM (95% conf. interval)

Kratovsko-Zletovska Area

Kratovsko-Zletovska area

InRn concentrations were normally distributed

Univariable linear models results:

	Kratovsko-Zletovska area	р	R^2	RMSE
1	indoor	0.9400		
2	floor	0.1800		
3	basement	< 0.0001	0.2821	0.7335
4	room	0.7295		
5	building material	0.6530		
6	windows	0.0017	0.1748	0.7864

Multivariable linear model (R^2=0.38; RMSE=0.69)

Equation of the model:

InCRn(Bq/m3) = 4.35603+0.81964*basement-no+0.58634*type of windows-new

Variations of indoor thoron concentrations in Republic of Macedonia

- Indoor thoron seasonal variation
- Data characterization
- Factors affecting Tn variation

Tn seasonal variability

• Difference in Tn between the four seasons was observed in the results.

	No. of							
	observati	Maximu						
Sample	ons	m	Median	Mean	SD	CV	GM	GSD
Tn (Bq/m3)-winter	53	525	33	90	137	151%	39.4911	3.43
Tn(Bq/m3)-spring	57	495	28	56	77	138%	32.3659	2.77
Tn (Bq/m3)-summer	122	245	19	30	38	125%	17.9315	2.78
Tn(Bq/m3)-autmun	300	395	34	52	64	122%	30.6038	2.93

• The Tn concentrations in all season were fitted with log normal distribution:

Geometric means of Tn measured in different season.

Tn seasonal variability

• Difference in Tn between the four seasons was observed in the results.

	No. of							
	observati	Maximu						
Sample	ons	m	Median	Mean	SD	CV	GM	GSD
Tn (Bq/m3)-winter	53	525	33	90	137	151%	39.4911	3.43
Tn(Bq/m3)-spring	57	495	28	56	77	138%	32.3659	2.77
Tn (Bq/m3)-summer	122	245	19	30	38	125%	17.9315	2.78
Tn(Bq/m3)-autmun	300	395	34	52	64	122%	30.6038	2.93

• The Tn concentrations in all season were fitted with log normal distribution:

Geometric means of Tn measured in different season.

Tn seasonal correction

- The parametric linear regression analysis was applied to determined relationships between the log transformed Tn measured in autumn to Tn in winter, spring, as well as Tn measured in autumn to measured in summer for the houses with and without basement separately.
- Regression model: y=Ax+B.

У	Х	А	В	R ²
logTn, winter	logTn, autumn	0.648±0.109	0.542±0.186	0.410
logTn, spring	logTn, autumn	0.590±0.074	0.626±0.118	0.534
log Tn, summer; house with basement	logTn, autumn	0.472±0.093	0.640±0.137	0.269
log Tn summer; house without basement	logTn, autumn	0.468±0.121	0.504±0.185	0.488

Indoor annual Tn data characterization

Statistic	CTn (Bq/m3)
No. of observations	300
Maximum	272
Median	27
Mean	37
Standard deviation	36
Variation coefficient	96%
Geometric mean	28
Geometric standard deviation	2.12

0.005

0 -

50

- CTn (Bq/m3)

100

ln(Tn) data

Cumulative distributions

150

CTn (Bq/m3)

200

- Log-normal(3.3231,0.7512)

250

- 1. Geotectonical Zone
- Homogenies (p=0.75)
- Significant variation between Zones (ANOVA, p< 0.0013); R^2=0,06

				Groups	
Geotectonical Zone	No.	GM	GSD	(Fishe	r test)
KZA	5	75	1.72	А	
PE	29	40	2.30	А	
SMM	43	27	2.06		В
VZ	142	27	2.03		В
WMM	81	25	2.12		В

2. Building materials

- Homogenies (p=0.10)
- Significant variation between building materials (ANOVA, p< 0.0001), R^2=0.09

Building				Groups	
materials	No	GM	GSD	(Fisher test)	
bricks	202	24	1.97	В	
concrete	63	35	2.33		А
stone	32	43	2.11		А
wood	3	18	1.36		

Tn (Bq/m3)

• Significant variation between Zones (ANOVA, p< 0.0001), R^2=0.12

Equation of the multiple regression model:

In(CTn)(Bq/m3) = 3.63279+1.01791*Zone-KZA+0.34330*Zone-PE+0.06404*Zone-SMM+0.14380*Zone-VZ-0.56001*Building mat.-bricks-0.24482*Building mat.-concrete

Summary

- Seasonal variability of Rn (highest concentrations in the winter and lowest in summer) is confirmed;
- The models for assessing of annual Rn from 3 months measurement are developed. The model with the best performance refers to the linear relationship between the Rn measurements in winter and annual Rn (R^2=90%).
- Differences in the Rn in various geotectonic zones of the country is significant;

Summary

- In general, building factors: floor, basement, type of windows, the indoor type, type of room, building material significantly affect Rn variation. On the other hand, their impact is associated with geotectonic zones.
- Practically no all factors as well each factor separately has equal contribution to Rn variations in individual geotectonic units. Our results showed that Rn variations which originating by the building characteristics are in the range: from 21% in Western zone to 56% in the Serbo-Macedonian Massif.

Summary

- Just like a radon, the Tn seasonal and spatial variations is significant.
- Tn seasonal variation models are with lower coefficients of determination compared to Rn models. For Tn the best model is, with: R^2 = 0.53;
- Grouping Tn according to geotectectonic zones and building materials, we assumed that the used local materials for the buildings construction are the main source of Th variations. But these two factors explain only 12% of the Tn variability.