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Simulation of Screening Current Reduction Effect in 
REBCO Coils by External AC Magnetic Field 

 
So Noguchi and Vlatko Cingoski 

 
 
 

Abstract—Second-generation high-temperature 
superconducting (HTS) tapes have been examined for 
applications, such as NMR, MRI, and accelerators. Each of these 
applications requires a precise magnetic field profile. However, 
screening currents induced while charging an HTS magnet 
degrade its magnetic field quality. Techniques to reduce the 
screening current effect have been proposed in the literature. 
One of the means to reduce screening currents is to apply an AC 
magnetic field using a “shaking magnet.” The shaking effect 
enhances the quality of magnetic field by reallocating the 
screening currents inside HTS tapes. Although some experiments 
to study the shaking field effect were reported, the current 
distribution inside HTS tapes has not yet been clarified by 
simulation. 

This paper presents the simulation results for an AC magnetic 
field applied to a REBCO tape to reduce the influence of 
screening currents. In addition, we investigated the influence of 
the angle of applied AC magnetic field at the magnet center. The 
area of negative current density is also shown. From the 
simulation results, we conclude that a shaking field applied at an 
angle between 10 and 30 deg. is effective to reduce the screening 
current effect. 
 

Index Terms—Field homogeneity, REBCO tape, screening 
current, shaking magnet .  
 

I. INTRODUCTION 

ECOND-generation high-temperature superconducting 
(HTS) tapes are used to develop ultra-high-field NMR and 

MRI magnets, e.g., 1.3-GHz NMR [1] and 9.4-T MRI [2]. 
These HTS applications have two critical problems. The first 
one is a quench protection, and the other is the field 
inhomogeneity caused by screening currents. For the former, 
the No-Insulation winding technique is a promising solution 
[3], [4]. For the latter, a few techniques to reduce the influence 
of screening current on the field homogeneity were proposed 
[5], [6], however, these reports are insufficiently conclusive.  

The screening currents deteriorate the field homogeneity in 
the neighborhood of magnet center [7]. In a REBCO tape, a 
large screening current is induced by the transverse field due 
to the tape’s flat shape. Recently, the screening current effect 
on the field homogeneity was clarified by simulation [8]. A 
 

This work was supported in part by the JSPS KAKENHI (Grant Number 
15KK0192). Corresponding author: So Noguchi. 

S. Noguchi is with the Francis Bitter Magnet Laboratory, Plasma Fusion 
and Science Center, Massachusetts Institute of Technology, Cambridge, MA 
02139, USA as a visiting scientist and with the Graduate School of 
Information Science and Technology, Sapporo 060-0814, Japan (e-mail: 
noguchi@ssi.ist.hokudai.ac.jp).  

V. Cingoski is with the Faculty of Electrical Engineering, University 
“Goce Delcev” – Stip, Skopje, 1000, Macedonia. 

promising screening-field reduction solution is to apply a 
small AC magnetic field to REBCO tapes using a so-called 
“shaking magnet” [6], [9].  

The screening current phenomena in REBCO tapes were 
investigated in a number of works [8], [10]–[13], in which the 
simulation models and results were presented. Also, there 
exist works where the AC field shaking effect on HTS coated 
conductors was viewed [14], [15]. However, the current 
distribution caused by the shaking field inside a REBCO tape 
has not been simulated so far.  

In this paper, we employ a 2D finite element method (FEM) 
just to model the current distribution inside a REBCO tape 
affected by an external AC magnetic field applied at different 
angles to the tape wide surface that, in the end, enabled me to 
find the most effective angle. 

II. SIMULATION METHOD AND MODEL 

A. Simulation Method 

The governing equation is given by 
  S0 JJA    (1) 

where , A, J0, and JS are the magnetic reluctivity, the vector 
potential, the transport current density, and the screening 
current density, respectively. Here, the transport and screening 
current densities are defined as follows: 

t



A

J 0  (2) 







 



 
t

A
JS  (3) 

where AAA   and  is the scalar potential. Then, J0+JS is 
represented by 

  0S0 dd I
tSS







 



  S
A

SJJ   (4) 

where , t, I0, and S are the electrical conductivity, the time, 
the transport current, and the cross-sectional area of all the 
conductors, respectively. In the simulation, we assumed that 
the current passes only in the z-direction, and that the gradient 
of  and the electrical conductivity  are constant within a 
given finite element. From (4), the following equation is 
derived [16]: 

 
















SS

SIS
t
A

z
dd 0 

 (5) 

Substituting (4) and (5) into (1), we obtain the governing 
equation to be solved using the 2D FEM: 
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Here, the equivalent conductivity of the REBCO layer S is 
assumed to be derived from the E-J power law: 

 S 
J

EC

JC

J











n

 (7) 

where JC, EC, n, and J are the critical current, the electric field 
at the critical current, the index of the power law, and J0+JS, 
respectively. The Newton-Raphson method was used to solve 
the non-linear equations (6), subject to condition (7). 

We have developed the 2D FEM program by ourselves. An 
AC external field is given as a boundary condition. A 
triangular mesh is employed, and the number of nodes and 
elements are approximately 2.3 million and 4.7 million, 
respectively (including 1.6 million nodes and 3.2 million 
elements for the REBCO layer). 

B. Simulation Model 

Fig. 1 shows a schematic drawing of the simulation model, 
ignoring buffer layers in the tape. Table I lists the REBCO 
tape dimensions and the simulation conditions. The magnetic 
field components of 6 T and 3 T are applied in the radial and 
axial directions. Such a combination of the field components 
is evidenced, for instance, at the end turns of a high-field MRI 
magnet [2]. 

In the simulation, a sinusoidal magnetic field, Bsh, with an 
amplitude of 30 mT is applied to the REBCO tape by the 
shaking magnet (Fig. 2), after the main magnet is fully 
charged. The shaking field frequency is 50 Hz, and the 
number of cycles is 3. The shaking field direction relative to 
the tape (by the field angle) is varied from = 0 to 360 deg. 
during the simulations. The assumed operating temperature 
and the transport current were 10 K and 200 A, respectively. 

Fig. 3(a) shows the current density distribution in the 
REBCO layer after the transport current reaches 200 A, where 
the scale of r axis is enlarged a thousand-fold. The current 
density nearby the bottom of the REBCO layer is negative due 
to the screening current effect. The current density distribution 
shown in Fig. 3(a) represents the initial condition for the 
shaking field effect simulation.  

III. SIMULATION RESULTS 

A. Shaking Magnetic Field Parallel to Tape Surface 

The simulation was done first with the shaking field applied 
parallel to the REBCO tape surface,  = 0 deg. The current 
density distribution for all conductors: copper stabilizer, 
Hastelloy substrate, silver overlayer, and REBCO layer, at t = 
60 ms is shown in Fig. 4. As seen, current flows only in the 
REBCO layer. Since the current in the REBCO layer cannot 
be seen in Fig. 4, Fig. 3(b)–(i) show the enlarged current 
density distributions/maps in the REBCO layer at t = 5, 10, 15, 
20, 30, 40, 50, and 60 ms, respectively. At the start of the 

simulation, the negative current density is observed within a 
large area, however, the shape of the current-carrying region 
varies with time. Finally, at 60 ms, large negative currents 
flow only near the outer surface of the REBCO, while small 
negative currents flow near the bottom middle of the layer. 
The shapes of both negative current regions are like thin 
needles. Such shapes weaken the influence of the screening 
current on the magnetic field near the magnet center, 
compared to the initial condition as shown in Fig. 3(a). 

B. Various Angled Shaking Magnetic Field 

Fig. 5 shows the current density distributions within the 
REBCO layer at t = 60 ms, when applying the shaking field at 
the following angles:  = -30 to 30, and 150 to 210 deg.  

As seen from Fig. 5, the negative current in the REBCO 
layer exists far from the coil axis in the cases of  = -30 to 30 

Fig. 1.  Schematic drawing of the simulation model (not to scale).  
 

TABLE I 
PARAMETERS OF REBCO TAPE AND SHAKING MAGNETIC FIELD CONDITION 

REBCO tape 
REBCO tape width 4.04 mm 
REBCO tape thickness 0.95 mm 
REBCO layer width 4.00 mm 
REBCO layer thickness 1 µm 
Copper stabilizer thickness  20 µm each side 
Silver overlayer thickness 2µm 
N-value 20 

Magnet condition 
Transport current 200 A 
Temperature 10 K 

Shaking magnetic field 
Magnitude of shaking field  30 mT (peak) 
Shaking field frequency 50 Hz 
Number of shaking field cycle 3 
Field direction -30 – 30, 150 – 210 deg. 

 
 

Fig. 2.  External AC magnetic field of 30 mT-peak with angle  (50 Hz, 
3 cycles). 
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deg. On the other hand, the negative current is closer to the 
coil axis when  = 150 to 210 deg. Evidently, the cases of  = 
-30 to 30 deg. are superior to  = 150 to 210 deg. 

IV. EVALUATION OF SHAKING FIELD 

It is difficult to quantify the superiority of the shaking field 
angle on the field homogeneity. In this work, the shaking field 
is evaluated from the viewpoint of the contribution from a 
given conductor to the center field and the area of the negative 

current inside the conductor. 

A. Contribution to Center Field 

The effect of the current distribution due to the shaking 
field on the center field is investigated first. In the calculations, 
the simulated REBCO tape is placed in an arbitrary position. 
The axial magnetic field generated by a single-turn coil is 
shown in Fig. 6. The superposition of magnet fields generated 
by the individual finite elements at the magnet center is given 
by 





n

i i

iii
z l

rSJ
B

1
3

2
0

2



 (8) 
where 0, Ji, Si, ri, li, and n are the permeability of free space, 
the current density, the area, the radius, and the distance from 
the origin for ith element, and the total number of finite 
elements, respectively.  

Fig. 7 shows the field contribution at the magnet center for 
every shaking angle, where the values are normalized to the 
contribution for an ideal, homogeneous current distribution. 
The simulated REBCO tape is placed at R = 50 cm and Z = 70 
cm. In Fig. 7, the “initial” value means the current distribution 
just after energizing the single-turn coil. The magnetic field of 
the initial condition is small, and it approaches 1 after 
applying a shaking field at any angle to the tape.  

Next, Fig. 8 shows the ratio of the field contributions from 
the negative and positive current Bz- / Bz+, where Bz-, Bz+ are 
center field components generated by the negative and 
positive current, respectively. Since it takes a very long time 
to decay, it is desirable that the ratio Bz- / Bz+ is close to zero to 
minimize the screening current effect.  

From Fig. 8, the initial condition is the worst among them, 
i.e., the negative current density appears over a large region 
close to the magnet center inside the REBCO layer. It would 

 

 
Fig. 3.  Current density distribution of REBCO layer. (a) initial condition,
and (b)–(i) the simulation results of Bsh = 30 mT and  = 0 deg. The r axis is
enlarged 1000 times. The numbers in parentheses indicate the phase angle of
the magnetic field sweep shown in Fig. 2. 

 

 
Fig. 4.  Current density distribution of REBCO tape. Current does not flow in
the copper stabilizer, Hastelloy substrate, or silver overlayers (not to scale).

 

 
Fig. 6.  Schematic drawing of a single-turn coil for evaluation of shaking
field effects.  
 

Fig. 7.  Normalized contribution of a single-turn coil to the magnet center. 
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deteriorate the field homogeneity if the REBCO layer on 
consideration was in a real magnet winding. From Fig. 8, the 
angle of 5 deg. minimizes the negative current contribution.  

B. Area of Negative Current 

Fig. 9 shows the area of the high negative current density (< 
-60 kA/mm2) inside the REBCO layer. The area is obviously 
small at 0–10 and 180 deg.  

Considering the above results, the best shaking field angle 
is between 0 and 10 deg. 

V. CONCLUSION 

Simulation results of the current distribution inside a 
REBCO tape in the shaking field applied at different angles 
are presented. From the obtained simulation results, the center 
magnetic field generated by a aingle-turn coil with the current 
distributions is also investigated. The shaking field applied at 
almost any angle effectively reduces the negative effect of the 

screening current on the magnet central field. The best shaking 
field angle value is -30 deg., albeit only from the standpoint of 
the screening current effect reduction. 

Since the negative currents decay for a long time, a minimal 
amount of negative current is desirable. From the results, we 
concluded that an AC magnetic field with angle between 0 and 
10 deg. produces the greatest shaking effect.  

In this paper, only one REBCO tape is considered in the 
shaking field simulation. However, since there are many turns 
of a REBCO tape in a magnet, the electromagnetic interaction 
between the turns should be included appropriately. Also, the 
authors plan to investigate the effect of the shaking field 
strength on the screening current reduction.  
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