Prove that in all triangles $A B C$ holds the inequality

$$
\begin{equation*}
\sum \frac{1}{(\sin A+\sin B)^{2}} \geqslant 1 \tag{1}
\end{equation*}
$$

Solution. We use the well-known inequality $a^{2}+b^{2}+c^{2} \leqslant 9 R^{2}$. Since $a b+b c+c a \leqslant$ $a^{2}+b^{2}+c^{2}$, the inequality

$$
\sum(a+b)^{2} \leqslant 36 R^{2}
$$

holds. By the law of sines the inequality (1) is equivalent to

$$
\sum \frac{1}{(a+b)^{2}} \geqslant \frac{1}{4 R^{2}}
$$

By Cauchy-Schwarz

$$
\sum \frac{1}{(a+b)^{2}} \geqslant \frac{9}{\sum(a+b)^{2}} \geqslant \frac{1}{4 R^{2}}
$$

and we are done.
Martin Lukarevski, Department of Mathematics and Statistics, University "Goce Delcev" - Stip, Macedonia

E-mail address: martin.lukarevski@ugd.edu.mk

