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Abstract 

Methods to solve variational problems, the tasks for the study for maximum and minimum of 

functionals are very similar methods to study the maximum and minimum functions. 

Therefore, appropriate to outline briefly the theory of maximum and minimum functions and 

in parallel we will introduce similar concepts and prove similar theorems for functional. 

The variation of functional is primary and linear with respect to a part of the increase of 

functional. In the study of functional, variation plays the same role played by the differential 

in the study of functions. 

We will show that if there is a variation in the basic sense of the linear increase of functional, 

then there is a variation in the derivative sense of the parameter with initial value, and that 

both definitions are equivalent and we will give another definition of functional variation. 

The above we will show in several examples and we will prove a theorem which is a link 

between the extremes of a functional and its variation. 
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We will appropriate to outline briefly the theory of maximum and minimum of functions and 

in parallel we will introduce similar concepts and prove similar theorem for  functional.  

Definition 1 Variable y  is called a function of a variable x  which is indicated as follows: 

( )y f x  , where each value x   in a particular area changes correspond to y  i.e the number 

x  corresponds to the number y .  

Definition 2 Image       is called functional.  

We will consider functional  v  defined on a multitude of functions and use the designation 

[ ( )]v y x .  

Definition 3 Functional of n variables call an image of each ordered n variables 

1 1 2 2, , , n nx X x X x X    where 1 2( )nX X X X    , collate single value 

               . 

  

We will consider a special case of functional three variables, when                
     

       and ( , , ')F F x y y . 

Consider space             
          

 
equipped with metrics 

1 1 1 1 2 1 2 1 2( , , ') max ( ) ( ) max '( ) '( )
x x

x y y x x y x y x y x y x       . 

Definition 4 The increase     of the argument x  of the function ( )f x  at the point 0x
 
is 

called the difference between the two figures on this variable        . 

If x  is the independent variable, then the differential of x   match with the increase, i.e 

     .  

Definition 5 Increase or variation y  of the argument ( )y x  of the functional [ ( )]v y x  in the 

point 0( )y x is called the difference between the two functions 0( ) ( )y y x y x   .  

The function ( )y x  varies randomly in a certain class of functions (e.g  the class of continuous 

functions [ , ]a bC  or classes of functions with continuous first derivative 
(1)
[ , ]a bC ). 

Let's look at the function ( )( , , ', , )kF F x y y y  and functional           
   

   
 
equal to 

1
( )

0

[ ( )] ( , , ', '', , )

x
k

x

v y x F x y y y y dx  . 

 In this connection must be established following definitions for the distance between the 

curves ( )y y x  and 1( )y y x : 



- the curves ( )y y x  and 1( )y y x  are the zero order if the distance between them 

1max ( ) ( )
x

y x y x , if small.   

- the curves ( )y y x  and 1( )y y x  are the first order if the distance between them 

1 1max ( ) ( ) max '( ) '( )
x x

y x y x y x y x   , if small. 

- the curves ( )y y x  and 1( )y y x are the  k-th order if the distance between them 

1

1

1

( ) ( )
1

max ( ) ( )

max '( ) '( )

max ''( ) ''( )

max ( ) ( )

x

x

x

k k

x

y x y x

y x y x

y x y x

y x y x



 

 

 

 

is small. 

 

 From these definitions, it follows that if the curves are close in terms of distance from the k-

th order, they are even close in terms of distance from each-mean order.  Now it can clarify 

the concept of functional continuity.  

 

Definition 6. The functional [ ( )]v y x  is continuous at 0( )y y x
 
in terms of the distance from 

the k-th order,  if for any positive integer   exists integer 0   such that 

0[ ( )] [ ( )]v y x v y x  
 
at 

0 0

0 0

0 0

( ) ( ) ( ) ( )
0 0

( , ) max ( ) ( ) ,

( ', ') max '( ) '( ) ,

( '', '') max ''( ) ''( ) ,

( , ) max ( ) ( ) .

x

x

x

k k k k

x

y y y x y x

y y y x y x

y y y x y x

y y y x y x

 

 

 

 









  

  

  

  

 

This implies that the function ( )y x  is taken from class of functions,  for which the functional 

[ ( )]v y x  is defined.  

Definition 7. A linear functional is called a functional [ ( )]L y x  satisfying the following 

condition:  



[ ( )] [ ( )]L cy x cL y x  , where c  is an arbitrary constant, and 

1 2 1 2[ ( ) ( )] [ ( )] [ ( )]L y x y x L y x L y x   . 

 An example of a linear functional is 
1

0

[ ( )] ( ( ) ( ) ( ) '( ))

x

x

L y x p x y x q x y x dx  . 

 Example 1. Let us consider the functional 

               
 

 
           

   
  

 

 
  and                       

 

 
           

   
  

 

 
. 

 The functional 

1 1

0 0

( ) ( )sin '( )sin
2 2

x x t t dt x t t dt
 


   

    
   

   is  linear and continuous. 

Really ( ) ( ) ( )v x y v x v y   , ( ) ( )v x v x  . 

1 1 1

0 0

0 0 0

1 1

0 0
[0,1] 00

0

( )sin ( )sin sin ( ) ( )
2 2 2

2
max ( ) ( ) sin ( , ) cos

2 2

2
( , )( cos cos0) ( , )

2

t

y t t dt y t t dt t dt y t y t dt

y t y t t dt y y t

y y x y

  

 





 






 

     
        

     

 
    

 

   

  

  

Let 
2


  . 

 Therefore, when 0y
 
is fixed, for x  we receive 

0 0
2

( ) ( )
2 2

y y f x f y
 

   


       , and therefore   is a continuous functional 

on 0 [0,1]x  .  

Similarly we can check that   is continuous functional. 

 Example 2. The functional 

1
2

0

[ ( )] ( )sin
2

v y x y t t dt
 

  
 

 , is not linear, but is continuous.  



 
1

2 2
0 0

0

1 1

0 0 0 0

0 0

1

0 0

0

( ) ( ) [ ( )] sin
2

( )( )sin max ( )sin
2 2

max max sin
2

x

x x

v y v y v y x y y t dt

y y y y t dt y y y y t dt

y y y y t dt



 



 
     

 

   
         

   

 
    

 



 



 

 Let 0max ( )
x

M y x  and 0max ( ) ( ) 3
x

y t y t M    for 1 0
2

( )
M

y B y  . 

Indeed, from the inequality 0( ) ( ) ,y t y t за t      , where 
1

2
M  , and 

1 3
( ) ,

2 2
M y t M за t    should 0 0( ) ( ) ( ) ( ) 3y t y t y t y t M   

 

Then,  for 0

6

( )

M

y B y


 

 

we 

obtain 

1

0 0 0

0

2
( ) ( ) max max sin 3 .

2 6x x
v y v y y y y y t dt M

M

 
 


 
      

 
   

If the increase of the function                 can be represented in the form 

                     where ( )A x  is independent of   , and            at 

    , then the function is called differentiable, and the linear part with respect to the 

increase   ,        is called a differential of the function and means df . Dividing to    

and make a border transition at     , we obtain that 

0 0
lim ( ) lim ( , ) ( ) '( )
x x

f
A x x x A x f x

x


   


    

  
and therefore           . 

 If the increase of the functional                        can be written as    

                             where max y  is the maximum value of y , and 

( ( ), ) 0y x y   at max 0y  ,it is linear with respect to the increase of functional y , 

i.e. [ ( ), ]L y x y   is called variation of functional and means v . 

 So, the variation of the functional is primary and  linear with respect to y ,a part of 

the increase of the functional.  

In the study of functional, variation plays the same role  played by the differential in the study 

of functions.  



Example 3. We will look the functional 

1

0

[ ( )] ( )sin , [ , ]
2

v y x y t t dt x a b
 

  
 

 . 

The increase of this functional can be expressed in the form ( ) ( )v v y y v y     where 

0( ) ( )y y t y t   . As applicable, in this functional, we have  

 

 

1 1

0 0 0

0 0

1 1

0

0 0

[ ( )] ( ) ( ) ( ) sin ( )sin
2 2

( ) ( ) sin sin
2 2

v y x y t y t y t t dt y t t dt

y t y t t dt y t dt

 

 


   
        

   

   
     

   

 

 
 

21 1 2

( ) ( )

( ) ( ) ( ) ( )

v y y v y v

v y y y v y v y v y

 

   

   

     
 

 Therefore, the variation of functional [ ( )]v y x  is linear in terms of the increase y  

and 

1

0

[ ( )] sin
2

v y x y t dt



 

   
 

 .  

 

Example 4. We will look the functional 

1
2

0

[ ( )] ( )sin
2

v y x y t t dt
 

  
 

 .  



 

    

1 1
2 2

0 0 0

0 0

1 1
2 2

0 0 0

0 0

1 1

0

0 0

0

( ) ( ) ( ) sin ( )sin
2 2

( ) ( ) sin ( ) ( ) ( ) ( ) sin
2 2

( ) sin ( ) sin
2 2

( ) sin
2

v y t y t y t t dt y t t dt

y t y t t dt y t y t y t y t t dt

y t y t dt y t y t dt

y t y t
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 

 
 


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   
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   

   
        

   

   
     

   

 
 

 

 

 

 

1 1

0 0

1 1

0 0

0 0

1 1 1

0 0

0 0 0

1

0

0

( ) sin
2

( ) sin ( )sin
2 2

( ) sin ( ) sin sin
2 2 2

2 ( ) sin sin
2 2

dt y t y t dt

y t y t dt y y y t dt

y t y t dt y y t y t dt y y t dt

y t y t dt y t




 
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  
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 
 

 
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 

   
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     

   
    

   

 

 

  


1

0

dt y

 

Therefore, the variation of functional [ ( )]v y x  is linear in terms of the increase y  and 

 
1

0

0

( ), ( ) sin
2

L y x y y t y t dt


 
 

  
 

 .  

 Now, we can give another, almost equivalent definition of the differential function 

and functional variation. Consider the value of the function          at fixed x  and     
and variable parameter value  . When 1   we get an increase         in the value  of 

the function when 0  and receiving initial value of the function ( )f x . It is easy to verify 

that the derivative of           of   at 0  is equal to the differential of the function at 

the point x .  

Indeed, from  the rule for differentiating a complex function we have  

  

  
         

   
            

   
               



 

i.e the differential function of ( )f x is equal to  
 

  
         

   
  .  

For functionals of the type [ ( )]v y x , the variable can be defined as a functional derivative of 

[ ( ) ]v y x y  of   at 0  .  

Indeed, if there is a functional variation in terms of basic linear part of the increase, then its 

increase is [ ( ) ] [ ( )] ( , ) ( , ) maxv v y x y v y x L y y y y y            

The derivative [ ( ) ]v y x y  of   at 0  is equal to  

   
    

  

 
    

   

  

 

    
   

                              

 

    
   

        

 
    

   

                     

 
         

 

because there is the linearity ( , ) ( , )L y y L y y     and  

0 0

[ ( ), ] max
lim lim [ ( ), ]max 0

y x y y
y x y y

 

   
  

 
  because [ ( ), ] 0y x y    at 

0  .  

Example 5. We will look functional 

1
2

0

[ ( )] ( )sin
2

v y x y t t dt
 

  
 

 . 

 We find the derivative of this functional at 0  .  

'
1 1

2

0 00 0

1

0
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2 2

2 sin
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 
  
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 
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Therefore, the linear part with respect to the increase  is 

1

0

2 sin
2

y y t dt



 
 
 

 . 



 

 Therefore, if there is a variation in the basic sense of linear increase of the functional, 

then there is variation in the derivative sense of a parameter at  initial value of the parameter, 

both definitions are equivalent. Thus, we can give another definition of functional variation.  

Definition 8.  Variation of functional [ ( )]v y x  is equal to 0[ ( ) ] |v y x y 








. 

 Definition 9. The functional [ ( )]v y x  reaches a maximum of the curve 0( )y y x , if for the 

values of each functional [ ( )]v y x near k, the curve 0( )y y x  is fewer than 0[ ( )]v y x  i.e 

                     .  

If       , the equality       is fulfilled at 0( ) ( )y x y x , indicating that the curve 

0( )y y x  is reached strict maximum. 

Analogously we can determined that the curve 0( )y y x reaches a minimum. In this case, for 

all  curves      in the vicinity of the curve 0( )y y x .  

Prior to formulate the following theorem for functional, we will remember the following: 

 If differentiable function ( )f x  reaches a maximum or minimum in an internal point 0x x  

in the domain of the function,  at this point the diferential of the function is equal to zero, i.e 

0df  .  

 

Theorem 1. If the functional [ ( )]v y x , which has a variation reaches a maximum or minimum 

at 0( )y y x , where ( )y x are internal points of the domain of functional, its variation is zero 

at 0( )y y x , i.e 0v  .  

 

Proof of Theorem 1 

 In fixed 0 ( )y x
 
and y , 0[ ( ) ] ( )v y x y   

 
is a function of   , that at 0  , 

supposedly reaches maximum or minimum, hence its derivative at 0   is zero, i.e 

0 0'(0) 0 [ ( ) ] | 0или v y x y  





  


.  

Therefore, the curve reaches an extreme of the functional, then its variance is equal to zero. (

  can adopt values around the point 0  , both positive and negative values, as  extreme 

concept of 0 ( )y x  are internal points of the domain of functional.)   

 



The concept of extreme functional needs clarification. Multiband compression has been noted 

above, the closeness of the curves may be interpreted differently, so that, when the maximum 

or minimum is necessary to specify the order in terms of distance. If the functional reaches a 

maximum or minimum of the curve, with respect to all curves, which is small, i.e. with 

respect to the curves in near-proximity sense the zero line, then the maximum or minimum is 

called strong. If the same functional [ ( )]v y x  reaches a maximum or minimum of the curve 

0( )y y x , only in respect of the curve close to the point in the proximity of the first order, 

i.e with respect to curves closer to not only the Y axis but also in the direction of the tangent, 

the maximum or minimum It called weak. Obviously, if the curve is reached strong 

maximum (or minimum), it is like reaching weak, as if the curve is near, meaning the 

proximity of the first order, it is close to and sense the proximity of zero order. Also, it is 

possible to curve reaches weak maximum (or minimum) and at the same time not reached a 

strong maximum (or minimum), ie between curves near as ordinate and the direction of the 

tangent may not exist, which (in the case when miminuma) and between curves close 

ordinate, but not in the direction of the tangent, you can find those for which (in the case 

when the minimum). 

 

 

 

 

Conclusion 

Methods to solve variational problems are very similar methods to study the maximum and 

minimum functions, so the theory of maximum and minimum functions is close to the 

concepts and theorems for functionals. 

The variation of functional is primary and linear with respect to a part of the increase of 

functional and in the study of functional, variation plays the same role played by the 

differential in the study of functions. 

If there is a variation in the basic sense of the linear increase of functional, then there is a 

variation in the derivative sense of the parameter with initial value, and that both definitions 

are equivalent which permit to give another definition of functional variation and a theorem,  

link between the extremes of a functional and its variation. 
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