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Abstract. In the past few years, the classical results about the theory of 

fixed point are transmitted in 2-Banach spaces, defined by A. White 

(see [3] and [8]). Several generalizations of Kannan, Chatterjea and 

Koparde-Waghmode theorems are given in [1], [4], [5] and [7]. In this 

paper, several generalizations of already known theorems about 

common fixed points of mappings in 2-Banach spaces, are proven, by 

using the sequentially convergent mappings.  

 

 

1. INTRODUCTION 

 

In 1968 White ([3]) introduces 2-Banach spaces. 2-Banach spaces are being 

studied by several authors, and certain results can be seen in [8]. Further, 

analogously as in normed space P. K. Hatikrishnan and K. T. Ravindran in [6] 

are introducing the term contraction mapping to 2-normed space as follows.  

 

Definition 1 ([6]). Let ( ,|| , ||)L    be a real vector 2-normed space. The mapping 

:S L L  is contraction if there is [0,1)  such that  

|| , || || , ||Sx Sy z x y z   , for all , ,x y z L . 

 

Regarding contraction mapping Hatikrishnan and Ravindran in [6] proved 

that contraction mapping has a unique fixed point in closed and restricted subset 

of 2-Banach space. Further, in [1], [4], [5] and [7] are proven more results 

related to fixed points of contraction mapping of 2-Banach spaces, and in [7] are 

proven several results for common fixed points of contraction mapping defined 

on the same 2-Banach space. 
______________________________________________________ 
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In our further considerations, we will give some generalizations of the above 

results for common fixed points of mapping defined on the same 2-Banach 

space. Thus, the mentioned generalizations we will do with the help of so-called 

sequentially convergent mappings which are defined as follows.  

 

Definition 2. Let ( ,|| , ||)L    be a 2-normed space. A mapping :T L L  is said 

to be sequentially convergent if, for every sequence { }ny , if { }nTy  is 

convergent then { }ny  also is convergent.  

 

2. COMMON FIXED POINTS OF MAPPING OF 

 THE KANNAN TYPE 

 

Theorem 1. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0  , 0   

are such that 2 1    and  

1 2 1 2|| , || (|| , || || , ||) || , ||TS x TS y z Tx TS x z Ty TS y z Tx Ty z        ,  (1) 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point z L .  

Proof. Let 0x  be an arbitrary point of L  and let the sequence { }nx  be defined 

with 2 1 1 2 2 2 2 2 1, ,n n n nx S x x S x     for 0,1,2,...n  . If there is 0n   such 

that 1 2n n nx x x   , then it is easy to prove that nu x  is a common fixed 

point for 1S  and 2S . Therefore, let's assume that there do not exist three 

different consecutive equal members of the sequence{ }nx . So, using 

inequalities (1), it is easy to prove that for each 1n   and for each z L  the 

following holds true  

2 1 2 2 1 2 2 2 1 2 2 1|| , || (|| , || || , ||) || , ||n n n n n n n nTx Tx z Tx Tx z Tx Tx z Tx Tx z            

and 

2 1 2 2 2 2 1 2 1 2

2 2 2 1

|| , || (|| , || || , ||)

|| , ||,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx z

Tx Tx z





   

 

    

 
 

from which it follows that 

1 1|| , || || , ||n n n nTx Tx z Tx Tx z    ,         (2) 

for each 0,1,2,...n  , where 
1

1
 







  . Now from inequality (2) it follows 

that  

1 1 0|| , || || , ||n
n nTx Tx z Tx Tx z    ,         (3) 



SEQUENTIALLY CONVERGENT MAPPINGS AND COMMON …15 

 

   

for each z L  and for each 0,1,2,...n  . But, then from inequality (3) follows 

that for each , ,m n n m N  and for each z L  the following holds true  

1 01
|| , || || , ||

m

n mTx Tx z Tx Tx z


   , 

which means that the sequence { }nTx  is Cauchy and because space L  is 2- 

Banach we get that the sequence { }nTx  is convergent. Further, the mapping 

:T L L  is sequentially convergent and because the sequence { }nTx  is 

convergent, from definition 2 follows that the sequence { }nx  is convergent, i.e. 

exists u L  such that lim n
n

x u


 . Now from the continuity of T  follows that 

lim n
n

Tx Tu


 . Then, for each z L  the following holds true  

1 2 2 2 2 1

2 2 2 2 1 1

|| , || || , || || , ||

|| , || || , ||

n n

n n

Tu TS u z Tu Tx z Tx TS u z

Tu Tx z TS x TS u z

 

 

    

   
 

2 2 1 2 1 2 2 1

2 1

2 2 1 2 1 2 2

2 1

|| , || (|| , || || , ||)

|| , ||

|| , || (|| , || || , ||)

|| , || .

n n n

n

n n n

n

Tu Tx z Tu TS u z Tx TS x z

Tu Tx z

Tu Tx z Tu TS u z Tx Tx z

Tu Tx z









  



  



     

 

     

 

 

If in the last inequality we take that n , for each z L  the following holds 

true  

1 1|| , || || , ||Tu TS u z Tu TS u z   , 

and since 1  , we conclude that 1|| , || 0TS u Tu z  , for each z L , i.e. 

1TS u Tu . But, T  is injection, so 1S u u , i.e. u  is fixed point on 1S . 

Analogously can be proved that u  is fixed point of 2S . Let v L  is another 

fixed point of 2S , i.e. 2S v v . Then, for each z L  the following holds true  

1 2

2 1

|| , || || , ||

(|| , || || , ||) || , ||

(2 ) || , ||,

Tu Tv z TS u TS v z

Tu TS v z Tv TS u z Tu Tv z

Tu Tv z

 

 

  

     

  

 

and as 2 1    we get that for each z L  the following holds true

|| , || 0Tu Tv z  , from which follows Tu Tv . But, T  is injection, sou v . ■  

 

Corollary 1. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0  , 0   

are such that 2 1    and  
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2 2
1 2

1 2

|| , || || , ||
1 2 || , || || , ||

|| , || || , ||
Tx TS x z Ty TS y z

Tx TS x z Ty TS y z
TS x TS y z Tx Ty z 

  

  
    , 

for each , ,x y z L , 0z  , then 1S  and 2S  have a unique common fixed point 

z L .  

Proof. From inequality of condition follows inequality (1). Now the assertion 

follows from Theorem 1. ■ 

 

Corollary 2. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0 1   and  

3
1 2 1 2|| , || || , || || , || || , ||TS x TS y z Tx TS x z Ty TS y z Tx Ty z        , 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point z L .  

Proof. From the inequality between the arithmetic and geometric mean follows 

that  

1 2 1 23
( , ) ( ( , ) ( , ) ( , ))d TS x TS y d Tx TS x d Ty TS y d Tx Ty    . 

Now the assertion follows from Theorem 1 for 
3
   . ■  

 

Corollary 3. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :
p q

S S L L , ,p qN  and 

mapping :T L L  is continuous, injection and sequentially convergent. If 

0, 0    are such that 2 1    and  

1 2 1 2|| , || (|| , || || , ||) || , ||
p q p q

TS x TS y z Tx TS x z Ty TS y z Tx Ty z        , 

for each , ,x y z L . Then 1S  and 2S  have a unique common fixed point u L .  

Proof. From Theorem 1 follows that mappings 1
p

S  and 2
q

S  have a unique 

common fixed point u L . That means 1
p

S u u , so 1 1 11 1( ) ( )
p p

S u S S u S S u  , 

and 1S u  is fixed point of 1
p

S . Analogously, we can prove that 2S u  is fixed 

point of 2
q

S . But, from the proof of Theorem 1 follows that mappings 2
q

S  and 

1
p

S  have unique fixed point, so 2u S u  and 1u S u . According to that, u L  

is a unique common fixed point of 1S  and 2S . Clearly, if v L  is another 

unique common fixed point of 1S  and 2S , then it is a common fixed point of 1
p

S  

and 2
q

S . But, 1
p

S  and 2
q

S  have a unique common fixed point, so v u . ■  
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Remark 1. Mapping :T L L  defined by ,Tx x x L   is sequentially 

convergent. Therefore, if in theorem 1 and the corollaries 1, 2 and 3 we take that 

Tx x  follows Theorem 4 and corollaries 6, 7 and 8, [7]. 

 

3. COMMON FIXED POINTS OF MAPPINGS OF CHATTERJEA TYPE  

 

Theorem 2. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0  , 0,   

are such that 2 1    and  

1 2 2 1|| , || (|| , || || , ||) || , ||TS x TS y z Tx TS y z Ty TS x z Tx Ty z        ,  (4) 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point u L .  

Proof. Let 0x  is arbitrary point from L  and the sequence { }nx  is defined with 

2 1 1 2 2 2 2 2 1, ,n n n nx S x x S x     for 0,1,2,...n  . If there is 0n   such that

1 2n n nx x x   , then nu x  is common fixed point of 1S  and 2S . Therefore, 

let's assume that there are three different consecutive equal members of the 

sequence{ }nx . Then, from nequality (4) follows that for every z L  and for 

every 1n   the following holds true  

2 1 2 2 1 2 2 2 1

2 2 1

|| , || (|| , || || , ||)

|| , ||,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx z

Tx Tx z





  



    

 
 

and 

2 1 2 2 2 2 1 2 1 2

2 2 2 1

|| , || (|| , || || , ||)

|| , ||,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx z

Tx Tx z





   

 

    

 
 

so for each z L  and for each 0,1,2,...n   the following holds true 

1 1|| , || || , ||n n n nTx Tx z Tx Tx z    , 

where 
1

1
 







  . Then, for each z L  and for each 0,1,2,...n   the 

following holds true  

1 1 0|| , || || , ||n
n nTx Tx z Tx Tx z    .       (5) 

Furthermore, using the inequality (5), in the same way as in the proof of 

Theorem 1 can be proved that the sequence { }nTx is convergent, from where it 

follows that the sequence { }nx  is convergent, i.e. there is u L  such that 

lim n
n

x u


  and lim n
n

Tx Tu


 . We will prove that u  is a fixed point of 1S . 

For each z L  we have  
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1 2 2 2 2 1

2 2 2 2 1 1

2 2 2 1 1 2 2 1

2 1

2 2 2 1 1 2

|| , || || , || || , ||

|| , || || , ||

|| , || (|| , || || , ||)

|| , ||

|| , || (|| , || ||

n n

n n

n n n

n

n n

Tu TS u z Tu Tx z Tx TS u z

Tu Tx z TS x TS u z

Tu Tx z Tx TS u z Tu TS x z

Tu Tx z

Tu Tx z Tx TS u z Tu Tx







 

 

  



 

    

   

     

 

      2

2 1

, ||)

|| , ||,

n

n

z

Tu Tx z



 

 

and if in the last inequality we take n  we get that for each z L  the 

following holds true 1 1|| , || || , ||Tu TS u z Tu TS u z   , and how 1  , from the 

last inequality follows 1|| , || 0TS u Tu z  , for each z L . Now, as in the proof 

of Theorem 1 we can conclude that u  is fixed point of 1S . Analogously can be 

proved that u  is fixed point of 2S . Let v L  is another fixed point of 2S , i.e. 

2S v v . For each z L  the following holds true  

1 2

2 1

|| , || || , ||

(|| , || || , ||) || , ||

(2 ) || , || .

Tu Tv z TS u TS v z

Tu TS v z Tv TS u z Tu Tv z

Tu Tv z

 

 

  

     

  

 

Since 2 1    from the last inequality it follows that for every z L  the 

following holds true || , || 0Tu Tv z  , from which follows that Tu Tv . But, T  

is injection, so u v . ■  

 

Corollary 4. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :S S L L  and the 

mapping :T L L  is continuous, injection and sequentially convergent. If 

0  , 0   are such that 2 1    and 

2 2
2 1

2 1

|| , || || , ||
1 2 || , || || , ||

|| , || || , ||
Tx TS y z Ty TS x z

Tx TS y z Ty TS x z
TS x TS y z Tx Ty z 

  

  
    , 

for each , ,x y z L , 0z  , then 1S  and 2S  have a unique common fixed point 

u L .  

Proof. From inequality of condition follows inequality (4). Now the assertion 

follows from Theorem 2.■ 

 

Corollary 5. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0 1   and  

3
1 2 2 1|| , || || , || || , || || , ||TS x TS y z Tx TS y z Ty TS x z Tx Ty z        , 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point z L .  



SEQUENTIALLY CONVERGENT MAPPINGS AND COMMON …19 

 

   

Proof. From the inequality between the arithmetic and geometric mean follows 

that 

1 2 2 13
( , ) ( ( , ) ( , ) ( , ))d TS x TS y d Tx TS y d Ty TS x d Tx Ty   . 

Now the assertion follows from Theorem 2 for 
3
   . ■  

 

Corollary 6. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :
p q

S S L L , ,p qN  and 

mapping :T L L  is continuous, injection and sequentially convergent. If 

0, 0    are such that 2 1    and  

1 2 2 1|| , || (|| , || || , ||) || , ||
p q q p

TS x TS y z Tx TS y z Ty TS x z Tx Ty z        , 

for each , ,x y z L . Then 1S  and 2S  have a unique common fixed point u L .  

Proof. The proof is identical to the proof of the corollary 5. ■ 

 

Remark 2. The mapping :T L L  determined by ,Tx x x L   is sequentially 

convergent. Therefore, if in Theorem 2 and corollaries 4, 5 and 6 we take 

Tx x , follows the correctness of Theorem 5 and corollaries 9, 10 и 11, [7].  

 

4. COMMON FIXED POINTS OF MAPPINGS OF KOPARDE-WAGHMODE TYPE  

 

Theorem 3. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0  , 0,   

2 1    and  

2 2 2 2
1 2 1 2|| , || (|| , || || , || ) || , ||TS x TS y z Tx TS x z Ty TS y z Tx Ty z        , (6) 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point u L .  

Proof. Let 0x  be an arbitrary point of L  and let the sequence { }nx  is defined 

with 2 1 1 2 2 2 2 2 1, ,n n n nx S x x S x     for 0,1,2,...n  . If there is an 0n   such 

that 1 2n n nx x x   , then nu x  is a common fixed point for 1S  and 2S . 

Therefore, let's assume that there do not exist three consecutive equal members 

of the sequence { }nx . Then, from inequality (6) follows that for each 1n   and 

for each z L  the following holds true  

2 2 2
2 1 2 2 2 1 2 1 2

2
2 2 1

|| , || (|| , || || , || )

|| , || ,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx z

Tx Tx z





  



    

 
 

and 
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2 2 2
2 1 2 2 2 2 1 2 1 2

2
2 2 2 1

|| , || (|| , || || || )

|| , || ,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx

Tx Tx z





   

 

    

 
 

from which it follows that for each 0,1,2,...n   and for each z L  the 

following holds true  

1 1|| , || || , ||n n n nTx Tx z Tx Tx z    ,        (7) 

where 
1

1
 







  . Now from inequality (7) follows  

1 1 0|| , || || , ||n
n nTx Tx z Tx Tx z    ,         (8) 

for each 0,1,2,...n   and for each z L . Furthermore, from inequality (8), in 

the same way as in the proof of Theorem 1 it follows that the sequence { }nTx  is 

convergent, and therefore the sequence { }nx  is convergent also, i.e. exists 

u X  such that lim n
n

x u


  and lim n
n

Tx Tu


 . We will prove that u  is fixed 

point of 1S . We have  

1 2 2 2 2 1

2 2 1 2 2 1

2 2 2
2 2 1 2 1 2 2 1 2 1

2
2 2 1 2 1

|| , || || , || || , ||

|| , || || , ||

|| , || (|| , || || , || ) || , ||

|| , || (|| , || ||

n n

n n

n n n n

n n

Tu TS u z Tu Tx z Tx TS u z

Tu Tx z TS u TS x z

Tu Tx z Tu TS u z Tx TS x z Tu Tx z

Tu Tx z Tu TS u z Tx

 



 

 

   

 

    

   

       

     2 2
2 2 2 1, || || , ||n nTx z Tu Tx z   

 

for each nN  and for each z L . If in the last inequality we take n  we 

get that  

1 1|| , || || , ||Tu TS u z d Tu TS u z   ,  

for each z L  and how 1  , it follows that 1|| , || 0Tu TS u z  . Now, again 

as in the proof of Theorem 1 we conclude that u  is fixed point of 1S . 

Analogously it can be proved that u  is fixed point of 2S . Let v L  be another 

fixed point of 2S , i.e. 2S v v . Then, for each z L  the following holds true 

2 2
1 2

2 2 2
1 2

2

|| , || || , ||

(|| , || || , || ) || , ||

|| , || ,

Tu Tv z TS u TS v z

Tu TS u z Tv TS v z Tu Tv z

Tu Tv z

 



  

     

 

 

and how 0 1   we get that || , || 0Tu Tv z  , from where it follows that 

Tu Tv . But, T  is injection, so u v . ■  
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Corollary 7. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :
p q

S S L L , ,p qN  and 

mapping :T L L  is continuous, injection and sequentially convergent. If 

0, 0    are such that 2 1    and 

2 2 2 2
1 2 1 2|| , || (|| , || || , || ) || , ||
p q p q

TS x TS y z Tx TS x z Ty TS y z Tx Ty z        , 

for each , ,x y z L . Then 1S  and 2S  have a unique common fixed point u L .  

Proof. The proof is identical to the proof of the corollary 6. ■ 

 

Remark 3. The mapping :T L L  determined by ,Tx x x L   is sequentially 

convergent. Therefore, if in Theorem 3 and corollary 7 we take Tx x , it 

follows the correctness of Theorem 6 and corollary 12, [7].  
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