END OF LIFE TRETMENT OF POLYMER COMPOSITE MATERIALS

V. Srebrenkoska, D. Dimeski

Faculty of Technology, Goce Delčev University, "Krste Misirkov" b.b. P. O. Box 201, 2000 Štip, Republic of Macedonia

Abstract

Because of increasing environmental demands, especially on dealing with products end of life phase, product manufacturers and designers must consider the future disposal of their products. For conventional materials like steel and aluminium well-functioning recycling methods exists. This is not the case for structures of polymer composites, which are used more extensively, especially for structures like vehicles and vessels. Several techniques do exist but they are not yet commercially available. The current disposal methods of polymer composites are landfill and incineration.

Polymer composites are materials, which consist of several materials like fibre, matrix, and additives. This circumstance complicates the waste treatment of composite materials. Therefore, it is necessary to develop adequate waste treatment techniques for polymer composites including sandwich structures. Recommendations for waste treatment have been formed for a number of polymer composites. These recommendations are based on the analysis of costs and environmental effects and they compare different scenarios for mechanical material recycling and energy recovery by waste incineration. Recycling of the polymer materials largely depends from on the type of used polymer matrix. Incineration is one of the methods for waste treatment of polymer composite materials, because it can be used for energy recovery. However, waste incineration will always result in a additional cost for the waste producer.

Many investigations have pointed out recycling of polymer composite materials as the best alternative considering environmental effects. Since recycling of polymer composites is a complicated process, especially recycling thermoset composite it is important to acquire comprehensive information about the constituents of these materials.

	Flexural properties of neat and recycled PP and PLA matrices							
	Stress at peak,	Standard	Modulus,	Standard				
Sample	MPa	deviation	GPa	deviation				
PP neat	51,5	5,5	1,08	0,120				
PP x1	52,8	2,1	1,31	0,064				
PP x2	49,5	2,9	1,34	0,101				
PLA neat	32,0	3,8	2,42	0,204				
PLA x1	32,0	6,1	2,43	0,193				

Thermogravimetric curves of PLA, rice hulls and PLA/RH biocomposites: weight loss (%) versus temperature

Flexural properties	of composites produced with neat and				
recycled matrices					

	Stress at peak,	Modulus,
	MPa	
Sample		GPa
PP / RH	42,6 ± 3,4	$1,9 \pm 0,08$
PPx1 / RH	$42,2 \pm 1,2$	$1,8 \pm 0,04$
PPx2 / RH	39,6 ± 4,6	$1,8 \pm 0,06$
PP / K	$51,3 \pm 4,8$	$2,1 \pm 0,07$
PPx1 / K	$51,1 \pm 4,0$	$2,3 \pm 0,20$
PLA / RH	$28,8\pm6,6$	$3,0 \pm 0,18$

PLAx1 / RH $14,8 \pm 1,3$ $2,3 \pm 0,46$

SEM micrographs of cryogenically fractured surfaces of PP/kenaf composite samples: a) PP/K; b) PP/K (x1); c) PP/K (x2)

	Td90	Td50	Td_{10}	-	T <i>d</i> 90	T <i>d</i> 50	$\mathbf{T}d_{10}$
Sample	(°C)	(°C)	(°C)	Sample	(°C)	(°C)	(°C)
~~~ <b>r</b> ~~	( -)	( •)	( )	– PP/RH	344,43	411,21	452,17
<b>PP</b> neat	377,60	429,32	449,79		,	, 	
				_   PPx1/RH	309,09	385,22	458,82
PP x1	357,49	414,67	438,64				
	,	,	,	_ PPx2/RH	343,53	405,97	475,27
$PP x^2$	354 87	403 64	427 15				
11 72	557,07	405,04	727,13	PLAx1/RH	299,42	341,70	529,70
PI A neat	332.22	362 52	380.07	-			
I LA IIcat	JJ <i>L</i> , <i>L</i> L	502,52	500,07	PP/K	356,81	408,94	441,96

SEM micrographs of cryogenically fractured surfaces of PLA/RH composite samples: a) PLA (x1)/RH; b) PLA/RH (x1); c) PLA/RH (x2)





