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Abstract. The further investigation of the image restoration method introduced in [19, 20] is presented
in this paper. Continuing investigations in that area, two additional applications of the method are inves-
tigated. More precisely, we consider the possibility to replace the available matrix in the method by the
restoration obtained applying the Tikhonov regularization method or the Truncated Singular Value decom-
position method. Additionally, statistical analysis of numerical results generated by applying the proposed
improvement of image restoration methods is presented. Previously performed numerical experiments as
well as new numerical results and the statistical analysis confirm that the least squares approach can be
used as a useful tool for improving restored images obtained by other image restoration methods.

1. Introduction

The motion blur is an outcome which appears in photographs of scenes where objects are moving. It is
most obvious when the exposure is long, or if objects in the scene are moving rapidly. The field of image
restoration refers to the estimation of the undamaged image from the blurred one.

Image restoration has caused a tremendous growth in interest over the last two decades. There are a lot
of comprehensive overview articles, journal papers, and textbooks on the subject of image restoration and
identification [1–3, 8, 9, 11–14]. The image restoration methods have been applied in different areas, such as
the medical imaging and diagnosis, the satellite and astronomical imaging, the military surveillance, and
remote sensing.

The image deblurring approach based on the usage of the Moore-Penrose inverse and least squares
solutions of specific Toeplitz matrices, that appears in the corresponding mathematical model, is followed
in the present paper. This approach was firstly used in [4, 5]. A simplified implementation of the partitioning
method on this class of Toeplitz matrices is described in [21]. The method based on the straightforward
construction of the Moore-Penrose inverse of the blurring matrix is presented in [15].
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The main purpose of this article is further investigation of the algorithm, introduced in [19, 20], that
allows us to remove a linear motion blur from images. The algorithm is based on the least squares solution
of a matrix equation which represents the mathematical model of the linear motion blur. The least squares
solution includes the Moore-Penrose inverse of the matrix which causes the linear motion blur as well as
an arbitrary matrix Y. Satisfactory results are obtained when the matrix Y is suitably defined. In this work
we will show that it is possible to use the Tikhonov (TIK) and Truncated Singular Value Decomposition
(TSVD) image restoration methods as two possible feasible approaches to generate the matrix Y.

The least squares method is a frequently used technique for solving various problems. An application
of least-squares, regularization and fourth-order partial differential equations to restore degraded image
is proposed in [22]. In addition, the least-squares method is used for the construction of an approximate
solution of a linear ill-posed boundary-value problem [6], as well as in computation of the weighted
Moore-Penrose inverse [17].

This paper is organized as follows. The motivation and description of the necessary methods are
presented in the second section. The Truncated Singular Value Decomposition (TSVD) and the Tikhonov
method (TIK) are restated from [9] in the third section. Furthermore, the experimental and numerical results
derived by applying the operator E on the restorations Y = TSVD and Y = TIK are described in the same
section. Finally, the statistical description of results in [19, 20] and also in Section 3 is presented in Section 4.

2. Mathematical Models

Our improvement of image restoration methods assumes that the characteristics of the degrading system
are known a priori. We start from the mathematical model (2.1) from [19], in which the linear motion is a local
phenomenon and no additional noise is included. This model relates an arbitrary ith row 1i =

[
1i,1, . . . , 1i,m

]
of the blurred image G ∈ Rp×m with corresponding ith row fi =

[
fi,1, . . . , fi,m

]
of the original image F0, by the

matrix equation

1T
i =

[
H−1 H0 H1

]  fi,−1

f T
i

fi,1.

 . (2.1)

The vectors fi,−1 and fi,−1 are defined by

fi,−1 =


wi,1
...

wi,u

 , fi,1 =


vi,1
...

vi,u

 ,
where wi,1, . . . ,wi,u and vi,1, . . . , vi,u are boundary pixels. The boundary pixels left of the horizontal line are
added above the initial vector f T

i ∈ R
m. The u boundary pixels right of the horizontal line are added below

the vector fi [9]. Further, the matrices

H−1 ∈ R
m×u, H1 ∈ R

m×u, H0 ∈ R
m×m

are determined implicitly in the block matrix

H =
[

H−1 H0 H1

]
,

which is defined as
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H =



hu · · · h1 h0 h−1 · · · h−u
. . .

... h1 h0
. . .

...
. . .

hu
... h1

. . . h−1 · · · h−u

hu · · ·
. . . h0

. . .
...

. . .

hu h!
. . . h−1 h−u

. . .
...

. . . h0
. . . h−u

hu h1
. . .

... h−u
. . .

...
. . . h0 h−1

...
. . .

hu · · · h1 h0 h−1 · · · h−u



.

The elements hi are real numbers and l − 1 = 2u, where the integer l indicates the length of linear motion
blur in pixels. The mathematical model (2.1) is reused mainly from [7, 9]. The matrix H is m × s real matrix
satisfying s = m + l − 1 = m + 2u, m� l.

The objective is to estimate the original image F0 ∈ Rp×m row per row (contained in the vector f T
i ), by

exploiting the given row of a blurred image (contained in the vector 1T
i ) and a priori knowledge of the

degradation phenomenon H. We will denote by F−1 (resp. by F1) the matrix whose columns are fi,−1 (resp.
fi,1). Then it is possible to consider the block matrix

F =
[

F−1 FT
0 F1

]
∈ Rp×s,

in which the blocks satisfy F−1 ∈ Rp×u, F1 ∈ Rp×u, F0 ∈ Rp×m.
Then the equation (2.1) can be written in condensed form as follows:

G =

[ H−1 H0 H1

]  F−1
FT

0
F1




T

=
[

FT
−1 F0 FT

1

]  HT
−1

HT
0

HT
1


= FHT, G ∈ Rp×m, H ∈ Rm×s, F ∈ Rp×s, s = m + n − 1.

(2.2)

We use the zero (Dirichlet), periodic and reflective boundary conditions (BCs) from [18]. Details can also
be found also in [19].

A new approach in the restoration of a blurred image, which exploits a set of least squares solutions
of the matrix equation (2.2), is proposed in the papers [19, 20]. The least squares solutions are generated
using the Moore–Penrose inverse. The Moore-Penrose inverse of a matrix A ∈ Cm×n is the unique matrix,
denoted by A†, satisfying the following four matrix equations:

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA.

A matrix X is called an {i, j, k}–inverse of A (with i, j, k ∈ {1, 2, 3, 4}) if X satisfies the ith, jth and kth Penrose
equations.

The general solution of the the matrix equation (2.2) is given by

E(Y) = F̃ = G(HT)† + Y
(
I −H†H

)
, (2.3)

where the matrix Y ∈ Rp×s is a disposable matrix which can be randomly chosen. Our original intention
was to use values for Y as close as possible to the original image F in order to produce better restoration of
the blurred image G. The results generated in the case Y = O produces the Moore-Penrose solution of (2.2):

F̂ = G(HT)†.
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This particular choice corresponds to the best approximate solution (i.e. the Moore-Penrose solution) of
the matrix equation (2.2), and it is investigated in [4, 5]. Furthermore, we have observed in [19, 20] that the
operator E(Y) frequently gives a better improvement of blurred image with respect to restoration contained
in Y. Therefore, the method proposed in [19, 20] is an improvement of image restoration methods. The
main purpose of this paper is to analyze statistically the improvement that which is obtained by using the
operator E(Y) with respect to the restoration Y.

There is no practical reason to consider the operator E(Y) as independent image restoration method. The
full meaning of the operator E(Y) is reflected in a symbiosis with the image restoration method Y. Therefore,
it has been tested against well known image restoration methods. If the image restoration method is denoted
by Y, then the improvement is denoted by E(Y). In what follows we compare the values of Improvement in
Signal-To-Noise Ratio (denoted by ISNR(Y)) as well as the values of Peak Signal-To-Noise Ratio (denoted by
PSNR(Y)). More precisely, we compare the values ISNR(Y) (resp. PSNR(Y)) against corresponding values
of ISNR(E(Y)) (rep. PSNR(E(Y))). The comparison of ISNR and PSNR values corresponding to E(Y) with
other image restoration methods is not of interest; it is only meaningful to compare values corresponding
to restorations Y with corresponding restorations E(Y). In general, any image restoration method may be
used to produce a restoration Y of a blurred image. Continuing the investigation from [19, 20], we propose
restorations produced by the Truncated Singular Value Decomposition and the Tikhonov reconstruction of
the blurred image as two possible generators of the matrix Y. For the sake of completeness, these methods
are briefly restated in the next section.

3. Improving Tikhonov and TSVD Methods

The Truncated Singular Value Decomposition (TSVD shortly) and the Tikhonov (shortly denoted by TIK)
image restoration methods from [9] are restated in this section. Further, the experimental and numerical
results derived applying restorations E(Y = TSVD) and E(Y = TIK) are considered.

3.1. Overview of Tikhonov and TSVD image restoration methods

The Singular Value Decomposition (SVD) is a matrix computation tool for analyzing the system of linear
equations Ax = b. The vectors x and b are long vectors obtained by stacking the columns from the images X
and B. The matrix X ∈ Rm×n is the desired sharp image, the matrix B ∈ Rm×n is the recorded blurred image
and the blurring matrix A ∈ RN×N has both dimensions N = m ∗ n. The following SVD of the matrix A is
used (see, for example [9]):

A = UΣVT, (3.1)

where U and V are orthogonal matrices which satisfy UTU = IN and VTV = IN. The matrix Σ is a diagonal
matrix whose entries are the singular values σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0 of A.

Both TSVD and TIK methods belong to the family of the spectral filtering methods, because they give
us control on the spectral content of the deblurred image with the filter factors φi [9]. In accordance with
this approach, approximate solution of the linear system Ax = b is equal to

x f ilt =

N∑
i=1

φi
uT

i b
σi

vi, (3.2)

where the columns ui of U are called the left singular vectors and the columns vi of V represent the right
singular vectors. From UTU = IN (resp. VTV = IN) it follows that uT

i u j = 0, i , j(resp. vT
i v j = 0, i , j).

Different spectral filtering algorithms are obtained by means of different selections of the filter factors. The
most popular between them are TSVD and TIK methods.

The filter factors in the TSVD method (also called pseudo-inverse filter) are defined to be one for large
singular value, and zero for the rest of them [9]. More precisely, the filter factors for TSVD method are
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given by

φi ≡

{
1 i = 1, . . . , k,
0 i = k + 1, . . . ,N, (3.3)

where k is the truncation parameter satisfying 1 ≤ k ≤ N, which determines the number of the SVD
components in the regularized solution (3.2).

The filter factors for the TIK method [9] are defined as

φi ≡
σ2

i

σ2
i + α2

, i = 1, . . . ,N, (3.4)

where the parameter α > 0 is the regularization parameter. Tikhonov solution is related to the minimization
problem

min
x

{
‖b − Ax‖22 + α2

‖x‖22
}
, (3.5)

which yields

x f ilt =

N∑
i=1

σ2
i

σ2
i + α2

uT
i b
σi

vi. (3.6)

The filter factors of the Tikhonov solution [9] satisfy

φi =


1 −

(
α
σi

)2
+ O

((
α
σi

)4)
, σi � α,(

σi
α

)2
+ O

((
σi
α

)4)
, σi � α.

(3.7)

The relation (3.7) comes from the Taylor expansion

(1 + ε)−1 = 1 − ε +
1
2
ε2 + O(ε3) (3.8)

in the following relation:

φi =


1

1+α2/σ2
i
, σi � α,

1
1+σ2

i /α
2 , σi � α.

(3.9)

3.2. Experimental results
In this section we will apply the operator E(Y), given by equation (2.3), on the image restoration process,

in order to demonstrate the usefulness of the proposed method. Our basic idea is to use the output (3.2) as
an appropriate choice of the matrix Y. The reconstruction defined by (3.2)–(3.3) is denoted by Y = TSVD
and the the reconstruction defined by (3.2)–(3.4) is denoted by Y = TIK. On the other hand, numerical
results corresponding to E(Y = TSVD) and E(Y = TIK) are presented and compared with the corresponding
results generated by Y = TSVD and Y = TIK. The experiments are performed using Matlab programming
language [10] on an Intel(R) Core(TM)i3 CPU M380 @ 2.53 GHz 64 bit system with 2 GB of RAM memory
running on the Windows 7 Enterprise.

The improvement in the quality of the original image F(n1,n2) over the recorded blurred one G(n1,n2)
in the image restoration is measured by the signal-to-noise ratio (SNR) improvement:

ISNR=SNRF̃ − SNRG =10 log10


∑

n1,n2(G(n1,n2) − F(n1,n2))2∑
n1,n2(F̃(n1,n2) − F(n1,n2))2

 . (3.10)
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Note that all of the above signal-to-noise measures can only be computed in case when the ideal image is
available, i.e., in an experimental setup or in a design phase of the restoration algorithm.

The peak signal-to-noise ratio (PSNR) is defined as the ratio between a signal’s maximum power and
the power of the signal’s noise. Reasonably, a greater rate on PSNR is better since it shows that the ratio of
SNR is higher. In this paper we use the following definition for PSNR:

PSNR = 20 log10


max {F(n1,n2)}√

(1/(n1 ∗ n2))
∑n1

i=0

∑n2
j=0

(
F(i, j) − F̃(i, j)

)2

 , (3.11)

where max{F(n1,n2)} is the largest possible value of the original image and the denominator is defined as the
root mean square difference between the original and the reconstructed images. The unit of both measures
ISNR and PSNR is given in dB. We consider the blurred image that has been degraded by a uniform linear
motion in the horizontal direction. A uniform linear motion blur is modeled by the matrix equation (2.2).
The length of the blurring process is denoted by l, which implies hi = 1/l, i = −u, . . . ,u.

Data corresponding to standard 8-bit grayscale test image ’Lena’ are displayed on figures 3.1 and 3.2.
The left (resp. right) graphic in Figure 3.1 displays data which are generated applying the Tikhonov (resp.
TSVD) image deblurring method based on the FFT (Fast Fourier Transforms) algorithm in the computation
of the spectral decomposition (3.1) of the matrix A.

The data obtained by TIK image deblurring method that uses the FFT algorithm and the TSVD image
deblurring that uses the FFT algorithm are denoted by TIKfft and TSVDfft, respectively. Figures 3.1 and 3.2
display data corresponding to zero boundary and reflexive boundary conditions, respectively.
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Figure 3.1. ISNR versus length l for Lena and zero boundary conditions
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Figure 3.2. ISNR versus length l for Lena and reflexive boundary conditions
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In addition, another standard image restoration example, the image ”Barbara” will be used for the exper-
iments presented in figures 3.3 and 3.4. The graphs placed in Figure 3.1 (resp. Figure 3.2) are similar to
corresponding graphs illustrated in Figure 3.3 (resp. Figure 3.4).
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Figure 3.3. ISNR versus length l for Barbara and zero boundary conditions
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Figure 3.4. ISNR versus length l for Barbara and reflexive boundary conditions

Figure 3.5 displays the PSNR values under the periodic boundary conditions in TIK and TSVD image
deblurring methods which are based on the usage of Kronecker decomposition [9]. The data generated in
this way are presented with the subscript SEP in Figure 3.5.
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Figure 3.5. PSNR versus length l of the uniform blurring process and periodic boundary conditions

Confirmation of the numerical experience that the image restorations E(TIK) and E(TSVD), obtained
by the operator E defined in (2.3), are better than the corresponding restoration produced by a direct
application of the TIK and TSVD methods could be observed from figures 3.6, 3.7 and 3.8.
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(a) Original image (b) Blurred image (c) TIK restore

(d) E(TIK) restore (e) TSVD restore (f) E(TSVD)
Figure 3.6. Removal of blur length l = 34 on a Lena image with zero boundary conditions.

(a) Original image (b) Blurred image (c) TIK restore

(d) E(TIK) restore (e) TSVD restore (f) E(TSVD)
Figure 3.7. Removal of blur length l = 64 on a Lena image with reflexive boundary conditions.

(a) Original image (b) Blurred image (c) TIK restore (d) E(TIK)
Figure 3.8. Removal of blur length l = 46 on a Lena image with periodic boundary conditions.
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4. Statistical Analysis of the Data Related with the Least Squares Restoration Method

In this section we perform statistical analysis of the values ISNR(Y) and ISNR(E(Y)) generated in this
paper as well as in the papers [19, 20].

4.1. Correlation and Regression
First of all, linear regression was used in order to explore a possible relationship between the independent

values x = ISNR(Y) and the dependent values y = ISNR(E(Y)). The results are arranged in Table 4.1. The
second column of Table 4.1 denotes the choices of restorations Y. The values in the third column denote the
correlation coefficients of the linear regression established between x and y. The expression of the linear
regression is included in the fourth column. The following image restoration methods were applied on
blurred images in order to obtain the restorations (given by the matrix Y) in Table 4.1:
(a) Haar195 is the Haar based reconstructed image for k = l = 195;
(b) Haar55 denotes the Haar based reconstructed image for k = l = 55;
(c) Fourier195 is the Fourier based reconstructed image for k = l = 195;
(d) Fourier55 denotes the Fourier based reconstructed image for k = l = 55;
(e) Constrained least-squares filter (CLS);
( f ) Wiener filter (WF);
(1) Lucy-Richardson algorithm (LR).
These results are obtained from Section 3 of the present paper as well as from the published papers [19, 20].

It easy to observe that all regression lines included in Table 4.1 are increasing functions, which implies
ISNR(Y(l1)) > ISNR(Y(l2)) =⇒ ISNR(E(Y(l1))) > ISNR(E(Y(l2))),
for two arbitrary blur lengths l1 and l2. Also, the values of correlation coefficients which are arranged in
the second column of Table 4.1, always confirm the positive relationship greater than 0.7 between x and y.

Additionally, we are looking for the interval L which ensures ISNR(E(Y)) > ISNR(Y), for each value
ISNR(Y) inside L. Those intervals are placed in the last column of Table 4.1 and they essentially mean
intervals in which the operator E may be used to improve ISNR(Y) values, for given Y. Any interval
presented in the last column of Table 4.1 is defined by solving the inequality y > x, where y = a ∗ x + b
denotes the corresponding regression line presented in the fourth column. For example, in the case
Y = Fourier55 it is necessary to solve the inequality y = 0.7369x + 6.835 > x, which implies x < 25.969.

Table 4.1. Correlation and linear regression between the ISNR values of Y and E(Y)

No Y Correlation coefficient Regression line L
1 Y = Fourier55 0.7094 y = 0.7369x + 6.835 (−∞, 25.969)
2 Y = TIK f f t 0.7485 y = 1.284x + 14.022 (−49.373,∞)
3 Y = Haar195 0.8602 y = 1.9423x − 7.723 (8.196,∞)
4 Y = Haar55 0.9192 y = 1.361x + 9.0685 (−25.120,∞)
5 Y = 0 0.9236 y = 0.3040x + 7.9086 (−∞, 11.363)
6 Y = Fourier195 0.9403 y = 0.4432x + 15.526 (−∞, 27.884)
7 Y = LR 0.9562 y = 5.334x − 3.992 (0.921,∞)
8 Y = TIKDCT 0.9586 y = 0.7494x + 40.553 (−∞, 161.824)
9 Y = CLS 0.9750 y = 2.267x − 5.855 (4.621,∞)
10 Y = WF 0.9756 y = 2.255x − 5.794 (4.616,∞)

4.2. Other statistical measurements

4.2.1. Correlation quality and Average absolute difference
Another numerical quantity that is presented in this section is the so-called correlation quality of an

image. The indices produced by this measurement quantify the amount of distortion presented in an image.
The original image Lena is tested against the blurred image and the images restored by applying different
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deblurring methods, as it is described in this work. The correlation quality (CQ) is defined by

CQ =
1

ms

∑m
x=1

∑s
y=1 I(x, y)Ĩ(x, y)∑m

x=1
∑s

y=1 I(x, y)
,

where I denote the original image and Ĩ is the reconstructed image. CQ retruns the correlation quality
between the images F and F̃. The CQ value is useful to quantitize the distortions on an image also in a
watermarking process [16]. The size of the images is indicated by m and s. The results corresponding to
CQ are presented in the third column of Table 4.2.

Finally, the values of the average absolute difference between the pixels of the original image and those
produced by different image restoration methods is calculated. The average absolute difference between
the pixels of the images I and Ĩ is another useful mesurement that quantitize the distortions on an image.
It declares another numerical measurement that quantifies the amount of distortion presented in an image
[16]. The average absolute difference (AAV) is defined as the following double sum:

AAV =
1

ms

m∑
x=1

s∑
y=1

[I(x, y) − Ĩ(x, y)].

The results corresponding to AAV are presented in the last column of Table 4.2. The values CQ(Y) and
CQ(E(Y)) as well as AAV(Y) and AAV(E(Y)) are grouped in pairs.

It is clear that the reconstructed image is closer to the original one when the correlation quality is
higher. We can observe from the values presented in Table 4.2 that all the restorations E(Y) have better CQ
results than the corresponding methods Y. More precisely, the inequality CQ(E(Y)) > CQ(Y) holds for all
considered image restorations Y.
It is also clear that smaller values of the Average Absolute difference between the pixels indicate that the
reconstructed images are closer to their originals. We can see, from the values presented, that all restorations
based on the usage of the operator E(Y) have once more better values with respect to corresponding values
of the restorations Y. More precisely, the inequality AAV(E(Y)) < AAV(Y) holds for all considered image
restorations Y.

Table 4.2. Values for Correlation Quality and Average Absolute Difference

No Y CQ(Y) AAV(Y)
1 Y = Blurred image for n = 34 4.9028e-004 10.8133
2 Y = LR 4.9392e-004 9.9836
3 Y = E(LR) 4.9818e-004 4.8959
4 Y = Tik f f t 4.9450e-004 14.1211
5 Y = E(Tik f f t) 4.9869e-004 3.1300
6 Y = TSVD f f t 4.9507e-004 18.7549
7 Y = E(TSVD f f t) 4.9869e-004 3.1313
8 Y = CLS 4.9766e-004 4.6814
9 Y = E(CLS) 4.9847e-004 3.3576
10 Y = WF 4.9766e-004 4.6812
11 Y = E(WF) 4.9847e-004 3.3576
12 Y = O 4.9789e-004 5.6655
13 Y = Haar55 4.9872e-004 2.9984
14 Y = E(Haar55) 4.9877e-004 2.9321
15 Y = Fourier55 4.9873e-004 2.9535
16 Y = E(Fourier55) 4.9878e-004 2.9246



P. Stanimirović et al. / Filomat 30:14 (2016), 3855–3866 3865

No Y CQ(Y) AAV(Y)
17 Y = Fourier195 4.9874e-004 2.9499
18 Y = E(Fourier195) 4.9881e-004 2.8867
19 Y = Haar195 4.9875e-004 2.9838
20 Y = E(Haar195) 4.9878e-004 2.9246

Overall, the best results are obtained for the Fourier and Haar moment based reconstructed images.
Although to a small extent, the Haar case is slightly better than the Fourier case. Obviously, increasing the
number of coefficients, i.e. the number of moments, we succeed to have a recovered image that is closely
related to the original image at a small time computational cost. In some cases, there would be no need to
exceed a certain number of the coefficients. A small number of moments can retain important features of
an image.

4.2.2. Goodness of fit tests
In this subsection we will examine whether the independent random datasets of values ISNR(Y) and

ISNR(E(Y)), for all different choices of the matrix Y, are drawn from the same underlying continuous
population. In order to check this hypothesis on a 5% significance level, we performed a Kolmogorov-
Smirnov (K-S) test. We performed numerical experiments for all cases of the matrix Y and the corresponding
values of E(Y).

Based on this test we find that Y = 0 and E(Y = 0) are the only restorations where the ISNR values come
from the same distribution.

In addition, we also find that the Wiener filter and the CLS are two restoration methods when both
the ISNR and the PSNR values come from the same distribution. This conclusion can be verified from the
values in Table 4.2, where the values for the images reconstructed by using these two methods are almost
identical.

5. Conclusions

In this paper we finalize investigations from [19, 20]. Specifically, we give further study about the
possibilities of the application of the least squares solution E(Y) in reconstructing blurred images. We firstly
consider the possibility of improving the Tickhonov and TSVD image restoration methods. The main
advantage of the proposed approach was found in the improvements of ISNR and PSNR. In this study, we
present the results by comparing our method with the Tickhonov and TSVD method.

The second aim of our work is to perform a statistical analysis of the results obtained by applying the
operator E, defined by equation (2.3), on previously generated restorations.

The final objective of this paper was the recovery of an image from degraded observations caused by
linear motion. This approach can be applied in several scientific areas including medical imaging and
diagnosis, military surveillance, satellite and astronomical imaging, and remote sensing.
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P. Stanimirović et al. / Filomat 30:14 (2016), 3855–3866 3866

[9] P. C. Hansen, J. G. Nagy, D. P. O’Leary, Deblurring images: matrices, spectra, and filtering, SIAM, Philadelphia, 2006.
[10] Image Processing Toolbox User’s Guide, The Math Works, Inc., Natick, MA, 2009.
[11] A. K. Katsaggelos, editor, Digital Image Restoration, Springer Verlag, New York, 1991.
[12] A. K. Katsaggelos, Iterative Image Restoration Algorithms, Digital Signal Processing Handbook, Ed. Vijay K. Madisetti and Douglas

B. Williams Boca Raton: CRC Press LLC, 1999.
[13] D. Kundur, D. Hatzinakos, Blind image deconvolution: an algorithmic approach to practical image restoration, IEEE Signal Process.

Mag. 13(3) (1996), 43–64.
[14] R. L. Lagendijk, J. Biemond, Iterative Identification and Restoration of Images, Kluwer Academic Publishers, Boston, MA, 1991.
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