The Eighth International Conference on Business Information Security @BI S EG

(BISEC-2016), 15" October 2016, Belgrade, Serbia
BUSINESS INFORMATION SECURITY
CONFERENCE

DETECTING MALICIOUS ANOMALIES IN IOT: ENSEMBLE LEARNERS
AND INCOMPLETE DATASETS

IGOR FRANC
Belgrade Metropolitan University, Faculty of Information Technologies and SECIT Security Consulting,
igor.franc@metropolitan.ac.rs

NEMANJA MACEK
School of Electrical and Computer Engineering of Applied Studies, Belgrade and SECIT Security Consulting,
nmacek@viser.edu.rs

MITKO BOGDANOSKI
Military Academy General Mihailo Apostolski, Skoplje, Macedonia, mitko.bogdanoski@ugd.edu.mk

ALEKSANDAR MIRKOVIC
eSigurnost Association, Belgrade and SECIT Security Consulting, amirkovic@secitsecurity.com

DRAGAN DOKIC
Belgrade Metropolitan University, Faculty of Information Technologies, dragan.djokic@metropolitan.ac.rs

Abstract: Anomalies in loT typically occur as a result of malicious activity. As an example, a point anomaly may occur
once network intrusion is attempted, while collective anomaly may result from device being hacked. Due to the nature of
the attacks, some anomalies are represented by incomplete captured instances or imbalanced captured datasets. For
example, features may have some values missing from the row or may contain both categorical and numerical values.
Once pre-processed, these datasets become suitable training sets for any machine learning classifier that detects
anomalies. However, there are situations where pre-processing takes large amount of time in the operating phase or
simply is not executable due to the nature of the data. For example, a feature that contains unknown number of categorical
values, such as strings, cannot be converted into finite number of binary features before the training. In this scenarios,
basic machine learning methods, such as Support Vector Machines or Decision Trees either fail to operate or provide
poor classification performance. Unlike basic, ensemble learners manage these data instances efficiently and provide
good anomaly detection rates. This paper analyses the performance of ensemble learners on incomplete IoT intrusion
datasets, represented by point anomalies.
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the input data, the amount of labeled instances in the
1. INTRODUCTION training set and the type of anomaly.
Anomalies are patterns in data that do not conform to a
well-defined notion of normal behavior. As an example,
anomalies in a simple two-dimensional dataset are points
that are sufficiently far away from normal regions, i.e.
regions that most points belong to. “Anomaly detection
refers to the problem of finding patterns in data that does
not conform to expected behavior” [1]. That being said,
anomalies are detected by defining a region that represents
normal behavior and declaring any pattern in the data that
does not belong to this normal region as an anomaly.
Although anomaly detection seems to be straightforward,
several factors make this apparently simple task very
challenging: defining a normal region that encompasses
every possible normal behavior is difficult; normal
behavior may evolve with time and current notion might
not be representative in the future; the boundary between
normal behavior and anomalies is often not precise and the
lack of labeled instances for training may cause a problem.
Consequently, the algorithm suitable for anomaly detection
in all domains does not exist. The choice of technique
suitable for the specific problem is based on the nature of

The nature of the input data refers to the types of features
that describe instances in the training set. Features can be
binary, categorical (they can take one from the finite
number of values) or continuous. Multivariate instances
may contain features of same type or a mixture of different
data types [2]. According to the amount of labelled
instances in the training set, one of the following
techniques is used: supervised detection (all instances are
labelled), semi-supervised techniques (either the instances
belonging to normal or anomalous behaviour are labelled)
and unsupervised techniques, that requires no training data,
as they are based on assumption that normal instances are
far more frequent than anomalies in the test data.
Anomalies can be classified as point, contextual and
collective anomalies [1]: point anomalies are individual
data instances that are anomalous, contextual anomalies
are data instances that are anomalous in a specific context,
and collective anomalies are collections of related data
instances that are anomalous with respect to the entire data
set.
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In the Internet of Things, anomalies in the network traffic
may indicate an ongoing malicious activity, such as
network intrusion, eavesdropping, or a Thing in IoT being
hacked or compromised in another way. While on the
typical network various anomaly based intrusion detection
systems use pre-processors to convert feature values into
numerical values, IoT scenario may be a little bit different.
Attacks in IoT differ due to vast variety of devices, which
further causes some anomalies to be represented by
incomplete feature vectors or imbalanced datasets.
Features may have some values missing or may contain
categorical and numerical values. Although pre-processors
are typically used to resolve these issues, sometimes they
cannot be implemented due to the nature of data: one
cannot employ conversion from categorical to numerical
features if number of categorical values is prior unknown.
In these case basic machine learning methods fail to
operate Support Vector Machines operate with
standardized numerical datasets, while Decision Trees
cannot perform with sufficient precision as some nodes
cannot be traversed down to the leafs due to lack of values.
However, ensemble learners operate with sufficient
precision and provide high anomaly detection accuracy.
Having that said, within this paper, the efficiency of
supervised ensemble machine learning methods on
incomplete synthetic [oT intrusion datasets, represented by
point anomalies and healthy traffic.

2. MACHINE LEARNING ALGORITHMS

Tom Mitchell’s widely quoted formal definition of
machine learning [3] can be rephrased to the supervised
anomaly detection context: “a learner learns to classify
events (task 7) into normal events and anomalies;
performance measure P of this task is the classification
accuracy, and the experience £ is the training set of rules".
Supervised learning algorithms build a model from a
training set (given in the form of feature vectors) with class
label assigned to each instance. Once trained, supervised
algorithms assign class labels to previously unseen
examples of the same task [4]. Within the context of
anomaly detection, typically a two-class problem is being
solved and having that said, class labels given to the
instances indicate normal or anomalous data.

In theory, every machine learning method has its own
advantages and disadvantages, which can be perceived on
the basis of how these methods operate. Decision trees
recursively create a classification tree with decision nodes
based on a subset of values of a corresponding feature and
classifications on its leaves. Support vectors map learning
examples from an input space to a new high dimensional
(potentially infinite) feature space in which examples are
linearly separable (see Image 1). Naive Bayes apply Bayes'
rule using assumption about mutual independence of
features, and k-Nearest Neighbours assign class labels
according to a classification of k closest training examples
in feature space. However, there is no machine learning
method that is the best for every problem (the
Generalization Conservation Law [5] or the No Free Lunch
Theorem [6]).

Machine learning methods used for classification can be
divided into [7]: basic methods (artificial neural networks
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[8], Support Vector Machines [9, 10], decision trees [11,
12], Naive Bayes [13, 14]), hybrid methods (for example,
a hybrid of decision trees and Naive Bayes — a regular
univariate decision tree, where leaves contain a naive
Bayes classifier built from the examples that fall at that leaf
[15]), incremental methods (Naive Bayes updatable),
hybrid incremental methods (Hoeffding Tree [16]), basic
ensembles (random forest [17]), hybrid ensembles
(stacking) and hybrid incremental ensembles (Ada
Hoeffding option tree).

Image 1: SVM’s RBF kernel maps data from input space
to high dimensional feature space

3. ENSEMBLES

Ensemble machine learning methods use multiple learning
algorithms to obtain better predictive performance than
could be obtained from any of the constituent learning
algorithms alone [18, 19], as shown on Image 2.
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Image 2: Ensemble machine learning

Most common types of ensembles used in experiments
reported in the literature are built by boosting, bagging and
stacking. Boosting incrementally builds an ensemble: each
new model instance is trained in order to emphasize the
training instances that previous models have misclassified.
Each model in the bagging ensemble votes with equal
weight, and in order to promote model variance, bagging
trains each model in the ensemble using a randomly drawn
subset of the training set. For example, the random forest
[17] combines random decision trees with bagging to
achieve very high classification accuracy [20]. In some
cases, boosting has been reported to provide better
accuracy than bagging, but is less prone to over-fitting.



Stacking builds a hybrid ensemble by training a learning
algorithm (combiner) to combine the predictions of several
other learning algorithms. All of the other algorithms are
trained using the available data and a combiner is further
trained to make a final prediction using all the predictions
of the other algorithms as additional inputs. In practice, a
single-layer logistic regression model is often used as the
combiner.

4. GENERATING IOT DATASET

The IoT dataset used in this research is built from traffic
captured on the simulated network of Things, consisting
mostly of mobile devices. All devices had their traffic
rerouted through a single gateway where it has been
captured using PCAP library on Linux operating system.
Synthetic dataset consists of normal, healthy traffic
recorded during one day period and variety of simulated
attacks, ranging from vulnerability analysis to penetration
attempts and successful exploitations, executed with
variety of open source and commercial software products.
Both healthy and malicious traffic have been recorded
separately and cleansed from other protocol and service
leftovers (partial noisy data removal), thus leaving clean
normal and anomalous PCAP files, which reassembles a
scenario for supervised anomaly detection. QoSilent Argus
software was used to extract features values from PCAPs
and create data instances which were labelled and shuffled
into a separate training and test sets. Features used in this
research do not include source and destination IP
addresses. However, they include flags, connection states,
protocols, port numbers and lots of statistical data. Once
the feature extraction was done, a sneak peek into the
generated CSV revealed the following facts that point up
to incompleteness of the dataset.

1. Feature flags is categorical, but have fields with no
values (blanks). Although somewhat convertible to
numerical values, a change in the Argus software may
result in need to change in the pre-processor.

2. Source and destination ports have decimal, hexadecimal
and textual values. Examples of the values include:
“51305”, “0xb6”, “netbios-dgm”, see Table 1 for more
examples. As number of textual values is not documented
in the software documentation, unknown number of textual
values cannot be converted into finite number of numerical
values during the training phase unless the model will be
retrained on frequent basis.

Table 1: Example values of port features

Sport value | Sport type | Dport value | Dport type
33100 Decimal https String
0x0008 Hex 0x0100 Hex
35360 Decimal domain String
37159 Decimal https String
15039 Decimal http String
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3. Source and destination TOS, TTL, TCP window
advertisements and several other numerical features have
blanks, which makes them virtually inconvertible into a
numeric values, if a range of numerical values they make
take is unknown or undocumented.

4. Source and destination diff service have both numerical
and categorical values. Categorical values are not
documented as well as the range of numerical values, thus
making this field inconvertible to numerical values.

Although one might try to implement conversion to
numerical values in the data pre-processor (for example,
filling blanks with -1 or splitting features with mixed
values into two or three features), aforementioned
statements indicate that in this scenario it is not possible
due to unknown or undocumented ranges. This leaves a
learner to be trained and evaluated with incomplete
datasets — sets from which aforementioned features are
removed.

5. EXPERIMENTS

Performance of the basic and ensemble machine learning
algorithms solution is experimentally evaluated using
MATLAB R2016a with Statistical and Machine Learning
Toolbox, version 10.2. Within this research the following
machine learning algorithms available in aforementioned
toolbox have been used to train and test IoT datasets: basic
methods (decision tree and Support Vector Machines),
bagging and boosting ensembles (Adaboost [21],
RUSBoost [22], LogitBoost [23] and GentleBoost [24], all
using C4.5 decision tree as a base learner). A training
dataset consisting of one thousand lines with 41 features
and a class label was imported into MATLAB. When
imported into the Classification Learner, 11 features were
discarded due to the feature values inconsistencies
(inability of being pre-processed, as stated in Section 4 of
this paper) and several additional categorical for SVMs.
Five-fold cross validation was applied and the testing
results for each classifier are listed below.

1. Complex tree.

- C4.5 decision tree using Gini’s diversity index as split
criterion, with 100 splits and no surrogate decision splits.

- Overall accuracy of the classifier is 73.7%.
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Image 3: Complex Tree ROC Curve



2. Fine Gaussian SVM.

- Standardized data, Gaussian kernel function,

kernel scale mode 1.4.

- Overall accuracy of the classifier is 71.6%.
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Image 4: Fine Gaussian SVM ROC Curve

3. Bagged trees.

- Decision tree as a learner, 20 splits, 30 learners, 0.1
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learning rate, subspace dimension 1.

- Overall accuracy of the classifier is 89.0%.
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Image 5: Bagged Trees ROC Curve

Boosted trees are further examined with 20 splits,
learners, 0.1 learning rate and subspace dimension 1.

4. AdaBoost.

False positive rate

- Overall accuracy of the classifier is 94.8%.
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Image 6: AdaBoost ROC Curve

5. RUSBoost.

- Overall accuracy of the classifier is 73.7%.
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Image 7: RUSBoost ROC Curve

6. LogitBoost.

- Overall accuracy of the classifier is 91.9%.
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7. GentleBoost.

- Overall accuracy of the classifier is 98.6%.
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Image 9: GentleBoost ROC Curve
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Results are further summarized in Table 2.

Table 2: Experimental evaluation summary

Classifier Accuracy AUC
Complex Tree 73.7% 0.95

Fine Gaussian SVM 71.6% 0.75

Bagged Trees 89.0% 0.99

AdaBoost 94.8% 0.98

RUSBoost 73.7% 0.96

LogitBoost 91.9% 0.95

GentleBoost 98.6% ~1

Although we have already stated and explained why basic
machine learning methods are not expected to operate with
high classification accuracy, and ensembles were expected
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to, another question arises: why did the GentleBoost
provide such level of accuracy on the dataset and have
outperformed other ensembles?

Unlike the commonly used AdaBoost algorithm, the weak
classifier in the GentleBoost algorithm is a soft-decision
classifier with continuous output. This enables the strong
classifier’s score to be smoother and favourable for
computing derivatives [25]. More formally, while other
boosting algorithms minimize the overall test error as much
as possible at each step, GentleBoost features a bounded
step size. Let w;; denote update weights, y; desired outputs,
h(x) weak learners, x the samples and a, the minimizer.
Variable f; is chosen to minimize:

IZWM (yi -1 (x,-))z s

and no further coefficient is applied. GentleBoost will
choose:

Ji(x)=ah,(x) @)

exactly equal to y, while steepest descent algorithms will
try to set a/=c0. According to empirical observations, this
causes good performance of GentleBoost, even with
incomplete datasets, as large values of « can lead to poor
generalization performance [26, 27]. Second, the
GentleBoost algorithm outperforms other boosting
methods in that it is more robust to noisy data and more
resistant to outliers.

(M

6. CONCLUSION

The Internet of Things involves the increasing prevalence
of objects and entities (Things) provided with unique
identifiers and the ability to automatically transfer data
over a network. Much of the increase in IoT
communication comes from computing devices and
embedded sensor systems used in industrial
communication, home and building automation, vehicle to
vehicle communication and wearable computing devices.
IoT security is the area of endeavour concerned with
safeguarding connected devices and networks in the ToT.
As we have stated before, anomalies in the IoT traffic may
occur as a result of malicious activities, such as attempt to
hack or otherwise compromise a mobile device. These
anomalies can be represented by a finite number of
numerical or categorical features. In most scenarios pre-
processors are able to convert all this data to numeric
values and most of the machine learning algorithms are
able to perform supervised anomaly detection after.
However, due to a large number of different devices and
variety of attacks, data may be incomplete and unsuitable
to train basic learners such as decision trees or Support
Vector Machines, or, even if trained, they will provide poor
classification performance. Ensemble learners manage to
build models and classify these data instances, which has
been experimentally proven in this paper. Another issue
that has arisen from the experimental evaluation presented
in this paper is superiority of GentleBoost algorithm over
other boosted ensembles on incomplete datasets resulting



from soft-decision classification with continuous output
and robustness to noisy data.

REFERENCES

[1] V. Chandola, A. Banerjee, V., “Anomaly detection: A
survey”, Technical Report, TR 07-017, Department of
Computer Science and Engineering, University of
Minnesota, August 15, 2007. ACM Computing Surveys
(CSUR), 41(3), 15.

[2] P. N. Tan, M. Steinbach, V Kumar, “Introduction to
data mining”. Addison-Wesley, 2006.

[3] T. Mitchell, “Machine Learning”, McGraw-Hill
Science/Engineering/Math, 1997.

[4] I. Hendrickx, “Local Classification and Global
Estimation: Explorations of the k-nearest neighbor
algorithm”, PhD Thesis, Tilburg University, The
Netherlands, 2005.

[5] C. Schaffer, “A Conservation Law for Generalization
Performance”, in Proceedings of the Twelfth International
Conference on Machine Learning, pp. 259-265, New
Brunswick, NJ: Morgan Kaufmann, 1994.

[6] D. H. Wolpert, “The lack of a prior distinctions between
learning algorithms and the existence of a priori
distinctions between learning algorithms", Neural
Computation, 8, 1341-1390, 1391-1421, 1996.

[7] V. Miskovic, M. Milosavljevi¢, S. Adamovi¢, A.
Jevremovié, “Application of Hybrid Incremental Machine
Learning Methods to Anomaly Based Intrusion Detection”,
Proceedings of 1st International Conference on Electrical,
Electronic and Computing Engineering ICETRAN 2014,
Vrnjacka Banja, Serbia, June 2-5, 2014, pp. VII2.3.1-6.

[8] S. Haykin, “Neural Networks: A Comprehensive
Foundation, 2nd ed.”, Prentice Hall, 1998.

[9] V. Shawe-Taylor, N. Cristianini, “Kernel Methods for
Pattern Analysis”, Cambridge University Press, 2004.

[10] V. Vapnik, “Statistical Learning Theory”, John Wiley
& Sons, 1998.

[11] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone,
“Classification and Regresssion Trees”, Wadsworth,
Belmont, 1984.

[12] R. Quinlan “C4.5: Programs for machine learning”,
Morgan Kaufmann Publishers, Inc., 1993.

[13] V. Cherkassky, F. M. Mulier, “Learning from Data:
Concepts, Theory and Methods. 2nd ed.”, John Wiley -
IEEE Press, 2007.

49

[14] I. H. Witten, E. Frank, M. A. Hall, “Data Mining:
Practical machine Learning Tools and Techniques, 3rdEd”,
Elsevier Inc., 2011.

[15] R. Kohavi “Scaling Up the Accuracy of Naive-Bayes
Classifiers: A Decision-Tree Hybrid”, in KDD (pp. 202-
207), 1996.

[16] P. Domingos, G. Hulten, “Mining high-speed data
streams” In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pp. 71-80, 2000, ACM.

[17] L. Breiman, “Random Forests”, Machine learning,
45(1), pp. 5-32, 2001.

[18] R. Polikar, “Ensemble based systems in decision
making”, IEEE Circuits and Systems Magazine, 6 (3), pp.
21-45, 2006.

[19] L. Rokach, “Ensemble-based classifiers”, Artificial
Intelligence Review, 33 (1-2): 1-39, 2010.

[20] L. Breiman, “Bagging Predictors”, Machine Learning,
24(2), pp.123-140, 1996.

[21] B. Kégl, “The return of AdaBoost.MH: multi-class
Hamming trees”, arXiv: 1312.6086, Dec. 20. Last time
visited: Aug 15, 2016.

[22] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, A.
Napolitano, “RUSBoost: A hybrid approach to alleviating
class imbalance”, IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, 40(1),
pp-185-197, 2010.

[23] S.B. Kotsiantis, “Logitboost of simple bayesian
classifier”, Informatica, 29(1), 2005.

[24] J. Friedman, T. Hastie, R. Tibshirani, “Additive
logistic regression: A statistical view of boosting”, The
Annals of Statistics, 38(2):337-374, 2000.

[25] X. Liu, T. Yu, “Gradient feature selection for online
boosting”, in 2007 IEEE 11th International Conference on
Computer Vision, pp. 1-8. IEEE, 2007.

[26] R. E. Schapire, Y. Singer, “Improved boosting
algorithms using confidence-rated predictions”, Machine
learning, 37(3), pp.297-336, 1999.

[27] Y. Freund, R. Schapire, N. Abe, “A short introduction
to boosting”, Journal-Japanese Society For Artificial
Intelligence 14(771-780), p.1612, 1999.



