Geochemical Determination of the pp-Neutrino Flux with ²⁰⁵Tl-LOREX: A Progress Report <u>M. K. Pavićević</u>, and LOREX Collaboration

LOREX, the acronym for LORandite EXperiment, attempts to determine the solar neutrino flux by measuring the ²⁰⁵Pb content in the thallium-bearing mineral lorandite TlAsS₂, from the mine of Allchar, FYR Macedonia, which is there formed via the neutrino-capture reaction ²⁰⁵Tl + $v_e \rightarrow {}^{205}Pb + e^-$. This geochemical detector offers **the lowest threshold** among all the detectors of only **52 keV** (GALLEX 233 keV, LENS 144 keV) for solar pp-neutrinos and the ensuing quantitative determination of the ratio of ²⁰⁵Pb / ²⁰⁵Tl atoms would provide the product of solar neutrino flux, integrated over the age of lorandite of **4.31** · 10⁶ yr.

Recent advances in research on LOREX project allowed us to obtain the quantity of the order of 1 kg of 98% pure lorándite and to determine erosion rate, i.e. the content of ²⁰⁵Pb in lorandite as a result of solar neutrinos capture by ²⁰⁵Tl and cosmic radiation contribution (Table 1).

Key issues for further research 1. Neutrino capture probability into the 2.3 keV state of ²⁰⁵Pb. The ratio ²⁰⁵Pb/²⁰⁵Tl provides only the product of solar neutrino flux and neutrino capture probability into the different nuclear states of ²⁰⁵Pb. However, the capture of neutrinos should populate predominantly the first excited state at $E^* = 2.3$ keV. Hence, to get the neutrino flux itself, one has to determine the capture probability into this low-lying state of ²⁰⁵Pb. (Figure 1) 2. Extraction and detection of ²⁰⁵Pb trace concentration. How can the expected ultra-low abundance of ²⁰⁵Pb be reliably measured?

Table 1. Cosmic ray contribution N (205Pb)_{fast muons} and N (205Pb)_{total}

Depth of	Erosion	N (²⁰⁵ Pb) _{fast}	Ν	N(²⁰⁵ Pb	N
location	rate	muons x10 ³	$(^{205}\text{Pb})_{\text{total}}$),	(Pb ²⁰⁵)
m	m/Ma	(at 1 kg of	$x10^{3}$ (at 1	%	fast muons
		lorandite)	kg of		%
			lorandite)		
28	75*	8.1	10.3	21	79
28	387**	1.7	3.9	56	44

*) Min erosion rate (³He i ²¹Ne) **) Max erosion rate (²⁶Al i ³⁶Cl)

$\begin{array}{c} \sum_{\substack{205 \text{ T}^{110} \\ 112^6 \text{ gs.} \\ \text{Qp}_{\text{p}_{\text{0}}}(\text{K}) = 31.1 \text{ keV} \\ \text{T}_{12}(\text{B}_{\text{0}}) \approx 120 \text{ d} (2) \\ \sum_{\substack{205 \text{ P}_{\text{0}}^6 \\ \text{gs.} \\ \text{gs.} \\ \text{gs.} \\ \text{EC} \\ \text{Qsc} \\ \text{gs.} \\ \text{gs.} \\ \text{T}_{12}(\text{EC}) = 17.3(4) \cdot 10^6 \text{ a} \\ \text{Qsc} \\ \text{gs.} \\ \text{gs.} \\ \text{Fig.1. Decay scheme of neutral } ^{205}\text{Pb atoms (black) and of bare } ^{205}\text{T}1^{81+} \text{ ions (red).} \\ \end{array}$

Identification of the ²⁰⁵Pb nuclei in the lead sample extracted from the lorandite mineral requires 10^{-10} to 10^{-11} overall detection sensitivity for ²⁰⁵Pb/Pb and comparable suppression of the ²⁰⁵Tl isobar. This is proposed by full stripping of ²⁰⁵Pb at high energy (345MeV/u) at the **RIKEN-RIBF ion-beam facility**. ²⁰⁵Tl isobar separation is in principle already largely achieved by chemical Pb-Tl separation by the overall sample preparation. Samples with a higher concentration (²⁰⁵Tl/natPb = 1%) are necessary for a guide-beam and initial accelerator tuning. A sample with a considerably lower level of about 10^{-8} is needed for control of the beam analysis system with ²⁰⁵Tl ions, in the presence ultimately of a lighter guide beam, to limit the in-beam production of ²⁰⁵Pb by the (p,n) reaction on ²⁰⁵Tl in the energy-loss and ion-stripping steps in the accelerator and the subsequent BigRIPS/Mass-Ring experimental apparatus. The relative cross sections between full stripping of ²⁰⁵Pb and (p,n) on ²⁰⁵Tl is estimated as 10^5 . Test experiments to verify the various aspects of the proposed approach at the RIBF are under preparation.

LOREX Collaboration Pavićević K. Miodrag, University of Salzburg; Henning F. Walter, Argonne NL, Chicago; Kubo Toshiyuki, RIKEN Nishina Center for ABS; Bosch Fritz, GSI Darmstadt; Uesaka Tomohiro, RIKEN Nishina Center for ABS; Litvinov Yuri, GSI Darmstadt; Amthauer Georg, University of Salzburg; Pejović Vladan, University of Belgrade; Boev Blažo, University of Belgrade; Boev Blažo, University of Belgrade.

XXVII INTERNATIONAL Conference on Neutrino Physics and Astrophysics 4–9 July 2016

NEUTRINO 2016 SOUTH KENSINGTON, LONDON

Poster session 3: Wednesday 6 July