99.C (Abdilkadir Altintaş)

In the triangle $A B C$, the medians from A, B, C meet the sides $B C, A C$, $A B$ at A_{1}, B_{1}, C_{1}. Also, the internal angle bisectors of angles A, B, C meet the sides $B C, A C, A B$ at A_{2}, B_{2}, C_{2}. Show that the area of triangle $A_{2} B_{2} C_{2}$ is never greater than the area of triangle $A_{1} B_{1} C_{1}$.

Almost all solvers of this popular problem on geometrical inequalities argued as follows. If $\Delta=[A B C]$ denotes the area of triangle $A B C$, then $\left[A_{1} B_{1} C_{1}\right]=\frac{1}{4} \Delta$. In Figure 1, the angle bisector theorem shows that $A B_{2}=\frac{b c}{a+c}$ and $A C_{2}=\frac{b c}{a+b}$ so that $\Delta_{A}=\left[A B_{2} C_{2}\right]$ is given by $\Delta_{A}=\frac{1}{2} \frac{b^{2} c^{2} \sin A}{(a+c)(a+b)}=\frac{b c}{(a+c)(a+b)} \Delta$ with similar expressions for Δ_{B} and Δ_{C}.

FIGURE 1
Then $\quad\left[A_{2} B_{2} C_{2}\right]=\Delta-\Delta_{A}-\Delta_{B}-\Delta_{C}=\frac{2 a b c}{(a+b)(a+c)(b+c)} \Delta \quad$ on substituting for $\Delta_{A}, \Delta_{B}, \Delta_{C}$ and simplifying.

But $\frac{2 a b c}{(a+b)(a+c)(b+c)} \leqslant \frac{1}{4}$, either by using the AM-GM inequality, $a+b \geqslant 2 \sqrt{a b}$, etc. or by algebraic rearrangement:

$$
\frac{1}{4}-\frac{2 a b c}{(a+b)(a+c)(b+c)}=\frac{a(b-c)^{2}+b(a-c)^{2}+c(a-b)^{2}}{4(a+b)(a+c)(b+c)} \geqslant 0 .
$$

Thus $\left[A_{2} B_{2} C_{2}\right] \leqslant \frac{1}{4} \Delta=\left[A_{1} B_{1} C_{1}\right]$ with equality if, and only if, $a=b=c$.
Triangle $A_{2} B_{2} C_{2}$ corresponds to the incentre of triangle $A B C$ and the following proved the same result as 99.C for the orthocentre (Martin Lukarevski) and the Gergonne point (R. F. Tindall). But the definitive generalisation was given by the GCHQ Problem Solving Group and Peter Nüesch. Consider the triangle $A^{\prime} B^{\prime} C^{\prime}$ formed by the arbirtrary concurrent Cevians shown in Figure 2 with $B^{\prime} A: B^{\prime} C=\lambda: 1-\lambda$, $A^{\prime} C: A^{\prime} B=\mu: 1-\mu$ and $C^{\prime} B: C^{\prime} A=v: 1-v$.

FIGURE 2
Then

$$
\begin{aligned}
{\left[A^{\prime} B^{\prime} C^{\prime}\right] } & =[1-\mu(1-\lambda)-v(1-\mu)-\lambda(1-v)] \Delta \\
& =(1-\Sigma \lambda+\Sigma \lambda \mu) \Delta .
\end{aligned}
$$

But, by Ceva's theorem, $\quad \lambda \mu \nu=(1-\lambda)(1-\mu)(1-v)$ or $1-\Sigma \lambda+\Sigma \lambda \mu=2 \lambda \mu \nu$.

So

$$
\left[A^{\prime} B^{\prime} C^{\prime}\right]=2 \lambda \mu v \Delta=2 \sqrt{\lambda(1-\lambda) \mu(1-\mu) v(1-v)} \Delta \leqslant \frac{1}{4} \Delta,
$$

since $\lambda(1-\lambda) \leqslant \frac{1}{4}$, etc. There is equality if, and only if, $\lambda=\mu=\nu=\frac{1}{2}$ when $A^{\prime} B^{\prime} C^{\prime}$ coincides with $A_{1} B_{1} C_{1}$.
Correct solutions were received from: R. G. Bardelang, M. Bataille, M. V. Channakeshava, N. Curwen, S. Dolan, M. G. Elliott, GCHQ Problem Solving Group, A. P. Harrison, G. Howlett, M. Lukarevski, J. A. Mundie, Peter Nüesch, G. Strickland, K. B. Subramaniam, E. Swylan, A. Tee, I. Timmins, R. F. Tindall, G. B. Trustrum and the proposer A. Altintaş.

99.D (John D. Mahony)

The triangle $A B C$ (labelled anti-clockwise) has a right-angle at A and side-lengths $a(=B C), b(=C A)$ and $c(=A B)$ where $b<c<a$. Initially, three insects are at rest, one at each vertex of $A B C$. At the same instant, they start to chase each other in an anti-clockwise direction around the sides of the triangle, each moving the same relative distance $\alpha(<1)$ along their respective pursuit sides before pausing to review their situations. Thus the insect at C stops at point P on $C A$ where $C P=\alpha b$; points Q on $A B$ and R on $B C$ are similarly defined.
(a) If triangle $P Q R$ is right-angled at Q show that it is, in fact, similar to triangle $A B C$.
The insects then start moving again, this time in a clockwise direction along the sides of the right-angled triangle $P Q R$, each moving the same relative distance α along their respective pursuit sides before pausing. The chase continues forever in this manner, alternating between clockwise and anti-clockwise directions of pursuit.

