
Held at Hotel Molika, Bitola, Macedonia
11-13th April, 2014

Editors:
Vangel V. Ajanovski

Gjorgji Madjarov

Proceedings of the 11th International
Conference for Informatics and

Information Technology

ISBN 978-608-4699-04-0

One Unwanted Feature of Many Web Vulnerability

Scanners

Nataša Šuteva, Dragan Anastasov, Aleksandra Mileva

Faculty of Computer Science, UGD

Štip, Macedonia

{natasa.suteva, dragan.anastasov, aleksandra.mileva}@ugd.edu.mk

Abstract - Security experts, web developers, hackers

sometimes use Web Vulnerability Scanners (WVSs) for

identifying vulnerabilities in web applications. There are

commercial and free/open source WVSs, and nowadays, many

companies offer WVSs as services. In this paper, we test and

evaluate 3 free/open source WVSs and 4 free, trial or regular

editions of commercial WVSs using two versions of our one

created trading web application. One version has SQL Injection

and XSS vulnerabilities as critical, and the other version is free

from these vulnerabilities. Results are showing that most of the

scanners pollute the backend database with many garbage

records using user input fields for obtaining user’s opinion,
comments, rating, etc., independently of the presence or absence

of given critical vulnerabilities. In our experiment, garbage

records were injected as comments for ads, and the magnitude of

pollution goes more than 50 times the number of ads in the

database in the worst case. Also, some scanners manage to find

the implemented vulnerabilities without producing garbage

records.

Keywords—Web Vulnerability Scanners, backend database,

garbage records

I. INTRODUCTION

Web Application Security Scanners (WASSs) or Web

Vulnerability Scanners (WVSs) are a type of security

software, most commonly used by website owners, security

experts and hackers, to perform identification of potential

vulnerabilities in the web applications, independent of the

particular technology used for their implementation. They

access the web applications in the same manner as user does,

through the web front-end. Usually they are black-box testers,

because they do not have access to the source code.

Vulnerability detection mechanisms and scans differ in

different WVSs, from looking at registry entries in MS

Windows operating systems to see if a specific patch or update

has been implemented, modifying URLs to check for

sanitization issues or discover known vulnerabilities, to

actually performing attacks on detecting vulnerabilities. The

OWASP (Open Web Application Security Project) Top Ten

2013 vulnerability list [14] is often used as a minimum

standard for website vulnerability assessment and PCI

compliance according to the Payment Card Industry Data

Security Standard (PCI DSS) [9], so performing web

vulnerability scans is a necessity for PCI compliance.

Additionally, the usefulness of WVSs comes from automatically

and cost-effective conduction of security checks and production

of the final report, which often includes a remedy for found

vulnerability.
On the other side, WVSs are not a silver bullet, capable of

detecting all of the possible vulnerabilities and attack vectors

that exist. There are several reports showing that today WVSs

fail to detect a significant number of vulnerabilities in test

applications [2, 4, 5, 7, 8, 10, 11, 12, 13, 15].

Another big issue about WVSs is can they harm in any

way tested web sites? Black box scanners have tendency to

perform invasive scans, which sometimes can cause email

floods, as well as publishing of garbage blog posts, garbage

comments, ratings, etc [1]. Grossman [6] shares their

experiences from ten years of scanning tens of thousands of

real-live websites of all shapes and sizes. He gives the

following 7 ways how some WVSs can harm scanned web

site:

 Following “Sensitive” Hyperlinks – some web sites have

hyperlinks (GET requests) that, when clicked, execute

backend functionality that deletes data, cancel orders,

remits payment, removes user accounts, disables

functionality, and etc.

 Automatically Testing “Sensitive” Web Forms –
sometimes submission of a Web form (POST request)

may generate emails to customer support, execute

computationally expensive backend processes, direct

submitted data that will be visible to other users, and so

on. This can result in spamming inboxes with thousands

of emails, taking down the website due to resource load,

negatively impacting the user experience of the entire

user-base by showing them unexpected data, and costing

the company large sums of money

 Poorly Designed Vulnerability Tests – during

dynamically testing, various meta-character strings are

put into input fields, URLs, POST bodies, headers,

etc. Website can be harmed when it mistakes meta-

characters for executable code.

 Connection Denial of Service (DoS) – sometimes

scanning requires sending hundreds of requests

simultaneously to the website, so this can easily exhaust a

website’s available connection pool and render the system
unable to serve legitimate visitors.

Proceedings of the 11th International Conference on Informatics and Information Technologies
CIIT 2014 – Hotel Molika, Bitola, Macedonia – April 11-13, 2014

©2015 Faculty of Computer Science and Engineering, Skopje 279

 Session Exhaustion DoS – complete testing a website

requires that vulnerability scans are run in an

authenticated state. When WVS logs in hundreds of times

during testing, it may consume all the website’s session

credential resources, and no additional legitimate users

can log-in, until the session credential garbage collection

is conducted.

 CPU DoS – some websites have computationally

expensive hyperlinks, which during the scans may be

clicked a large number of times, contrary to what was

expected, and consume all of a websites available CPU

resources.

 Verbose Logging and Run-Time Error – scanning can

involve a large number of abnormal requests, which could

raise various backend application exceptions and verbose

run-time error logging. Because of this, the disk size of

the logs generated and stored could be substantial.

Consequently, the vulnerability scans need to be

performed with precautions, and, ideally, a replica of the live

environment should be created in a test lab, so if something

goes wrong, only the replica is affected. At least, before

starting scans, latest backups are needed. Some automated

scanners include settings for launching a non-invasive scans,

but these kind of scans will only launch some very basic

“security" checks against the target, such as text searches, file
checks, version checks and some other basic tests, which

typically do not lead to a malicious defacement of the site or

web application. So, invasive scans are necessary, because if

an automated WVS can break down tested website, a

malicious user can do even worse.

In this paper, we try to measure the amount of generated

garbage records per scan, by testing 3 free/open source WVSs

and 4 free, trial or regular editions of commercial WVSs, with

consideration of scanner’s capability to detect several basic
critical/important vulnerabilities. We want to see is it possible

to detect these vulnerabilities, with performing non-invasive

scans, in the sense that scanners do not leave any garbage

records. Also, it was interesting to see if the pollution of

database obtained by scanning, depends on the presence or

absence of these vulnerabilities in the web application. After

Introduction, Section II gives the basic architecture of the

black box WVSs. In Section III we give a brief explanation of

two versions of used testbed web application and seven WVSs

with their general characteristics and input vector support,

followed by used methodology, obtained results on the

measured number of garbage records, and discussion. At the

end, we give short concluding remarks.

II. BLACK BOX WEB VULNERABILITY SCANNERS

Generally, the core of the WVSs is made up from three

main components: a crawling component, an attacker

component and an analysis component.

First, the user enters at least one URL, with or without

user credentials for the given web application, and then the

crawling component identifies all the reachable pages in the

application, and all the input points to the application. After

the user sets the scanning profile, the scanner can proceed

automatically or by user interaction. We used only automated

mode for our experiments.

Once the crawling component finishes its job, the next

components perform analysis of the discovered data, and for

each web form, for each input and for each vulnerability type

for which the WVS has test vectors, the component generates

values that are likely to trigger a vulnerability. Then, the form

content is sent to the web server as an HTTP request, and after

processing the request, the server sends back a response via

HTTP.

The attacker component analyzes discovered data and for

each web form, for each input and for each vulnerability type

for which the WVS has test vectors, the attacker module

generates values that are likely to trigger a vulnerability. Then,

the form content is sent to the web server using either a GET

or POST request, and appropriate response is obtained from

the server via HTTP.

Finally, the analysis component performs parsing and

interpreting the server response. Decision if a given attack was

successful is made by calculation of confidence value, by

implementing attack-specific response criteria and keywords.

III. EXPERIMENTS AND RESULTS

A. Testbed Web Application

We created a simple trading web application, where

unregistered users can list ads, see information and description

about individual ad, comment on the ad and so on. Registered

users can add ads and manage ads. We created two versions of

the application, a vulnerable and a safe one. The vulnerable

version is affected by SQL injection (in 3 scripts), reflected

and stored XSS vulnerabilities.

The web server hosting our web applications run on 64-bit

Windows 8.1 Enterprise operating system. The following

technologies are used: Apache server version 2.4.4, PHP

version 5.4.12 and MySQL version 5.6.12.

B. Tested Web Vulnerabilities Scanners

The scanners were run on a machine with an Intel (R) Core

(TM) i7-3632QM 2 x 2.20GHz CPU, 6 GB of RAM, and 64-

bit Windows 8.

Table 1 lists the seven WVSs used in our study and their

general characteristics. All have a graphical user interface and

support for proxy mode (manual crawling). Three of them,

NetSparker Community Edition, N-Stalker X Free Edition and

Acunetix WVS run only on Windows, and other four can be

installed on Linux and OS X also. Only N-Stalker X Free

Edition, OWASP ZAP and IBM Rational AppScan can

produce a report. Their input vector support is given in Table

2. Many different characteristic comparisons with older

versions of these WVSs can be found on Chen’s web site
SecToolMarket [3].

SESSION 9. THEORETICAL FOUNDATIONS OF INFORMATICS, SECURITY AND CRYPTOGRAPHY

280 CIIT 2014

Free NetSparker Community Edition has many features

disabled, compared to its commercial version, but still you can

scan and exploit SQL injection and XSS vulnerabilities

without any false-positives.

TABLE 1: GENERAL CHARACTERISTICS OF THE EVALUATED SCANNERS

NetSparker

Community

Edition

N-Stalker

X Free Edition

OWASP

ZAP
IronWASP Vega

Acunetix

WVS

IBM Rational

AppScan

Company/

Creator
Mavituna Security N-Stalker OWASP L. Kuppan Sub-graph Acunetix IBM

Version 3.1 X-build 2.2.2
2013

beta
1.0 9 7.8

Released Sep. 2013

Licence/

Technology

Freeware

.Net 3.5

Freeware

Unknown

ASF2

Java 1.6.x

GNU

.Net 2.0

EPL1

Java 1.6.x

Trial

AcuSensor

Comm.

Unknown

Operating System Windows Windows

Windows

Linux

OS X

Windows

Linux

OS X

Windows

Linux

OS X

Windows

Windows

Linux

OS X

Report No Yes Yes No No No Yes

Scan Log Yes No Yes Yes Yes Yes Yes

N-Stalker X Free Edition provides a restricted set of

features, compared to its commercial version, and will inspect

up to 100 pages within the target application. It offers a

restricted version of the N - Stealth Database, web server

security check, reduced analysis of web signature attacks, etc.

TABLE 2: SUPPORTING INPUT VECTORS BY THE EVALUATED SCANNERS

NetSparker

Community

Edition

N-Stalker

X Free Edition

OWASP

ZAP
IronWASP Vega

Acunetix

WVS

IBM

Rational

AppScan

HTTP Query String Parameters Yes Yes Yes Yes Yes Yes Yes

HTTP Body Parameters Yes Yes Yes Yes Yes Yes Yes

HTTP Cookie Parameters Yes Yes Yes Yes Yes

HTTP Headers Yes Yes Yes Yes Yes Yes Yes

HTTP Parameter Names Yes Yes

XML Element Content Yes Yes Yes Yes Yes

XML Attributes Yes Yes Yes Yes Yes

XML Tags

JSON Parameters Yes Yes Yes Yes Yes

Flash Action Message Format Yes

Custom Input Vector Yes Yes

SUMMARY 7 4 6 9 3 7 10

OWASP Zed Attack Proxy (ZAP) is a free and open

source, easy to use, integrated scanning and penetration testing

tool, and it is designed to be used by people with a wide range

of security experience. ZAP includes intercepting proxy,

active and passive scanners, traditional and Ajax spiders,

WebSocket support, fuzzing, forced browsing, port scanner,

script console, etc.

IronWASP (Iron Web application Advanced Security

testing Platform) is a free and open source tool, created by

Lavakumar Kuppan. It offers full and semi-automated scans,

JavaScript static analysis, scripting shell for Python and Ruby

giving full access to the IronWASP framework, and this can

be used by the pen testers to write their own fuzzers, create

custom crafted request, analysis of logs, etc. Another its

strength is the possibility of using different external libraries

like IronPython, IronRuby, FiddleCore, etc.

Vega is a free and open source automated scanner for

quick tests and an intercepting proxy for tactical inspection.

For this test we are using fully functional 14-day trial

version of Acunetix WVS. This scanner uses AcuSensor

Technology, and besides scanning, it offers advanced

penetration testing tools.

IBM Rational AppScan, now known as IBM Security

AppScan, is a family of web security testing and monitoring

tools from the IBM. For our tests, we used older version of

IBM Rational AppScan.

C. Methodology

In our experiments, scanners were run without logging,

and only the default values for configuration parameters were

used. Only N-Stalker X Free Edition was run with OWASP

policy.

Backend database consists of 3 tables, with initially 3

users, 7 ads, and no comments. After every scanning we

summed the number of garbage comments in the database

generated by the scanner and the number of affected ads, and

Proceedings of the 11th International Conference on Informatics and Information Technologies
CIIT 2014 – Hotel Molika, Bitola, Macedonia – April 11-13, 2014

©2015 Faculty of Computer Science and Engineering, Skopje 281

by deleting the comments, we prepare the database for the

next scan. For every scanner we made 3 scans on the web

applications.

D. Results and discussion

Table 3 shows the capabilities of tested WVSs for finding

critical/important vulnerabilities. We need this to see how

leaving garbage comments is connected with this capability.

Only N-Stalker X Free Edition cannot find SQL vulnerability,

and OWASP ZAP cannot find reflected XSS. (2/3) means that

the scanner had identified only two of three vulnerable scripts.

TABLE 3: FOUNDED CRITICAL/IMPORTANT VULNERABILITIES

 SQLI
Reflected

XSS

Stored

XSS

NetSparker

Community

Edition

Yes (3/3) Yes Yes

N-Stalker X

Free Edition
 Yes Yes

OWASP

ZAP
Yes (2/3) Yes

IronWASP Yes (2/3) Yes Yes

Vega Yes (3/3) Yes Yes

Acunetix

WVS
Yes (2/3) Yes Yes

IBM

Rational

AppScan

Yes (2/3) Yes Yes

Table 4 and Table 5 give the number of garbage

comments produced by the tested scanners in 3 independent

scans on the safe and the vulnerable test application,

respectfully.

TABLE 4: NUMBER OF GARBAGE COMMENTS FOR THE SAFE TESTBED WEB

APPLICATION FOR 3 SCANS

 Number of garbage comments
Ads

 Scan 1 Scan2 Scan 3

NetSparker

Community

Edition

156 160 156 All

N-Stalker X

Free Edition
26 26 26 All

OWASP

ZAP
61 61 61 All

IronWASP 0 0 0 -

Vega 0 0 0 -

Acunetix

WVS
367 367 367 All

IBM

Rational

AppScan

52 52 51 All

One can see, that these numbers, ranges from 0 to 367 for

the safe web application and from 0 to 180 for the vulnerable

web application, and that for all scanners that produce garbage

comments, all ads are affected. This means that if our database

have thousands or more adds, which is the situation in reality,

one scan with these scanners will produce at least the same

number of the garbage comments. Two scanners, IronWASP

and Vega, do not leave any garbage comments, but are

capable of finding given vulnerabilities (IronWASP find 2 of 3

vulnerable scripts for SQLI). These results mean that some

WVS can find tested critical/important vulnerability, without

necessity to use invasive techniques. Nothing can be

concluded about finding other vulnerabilities without invasive

scans.

TABLE 5: NUMBER OF GARBAGE COMMENTS FOR THE VULNERABLE TESTBED

WEB APPLICATION FOR 3 SCANS

 Number of garbage comments
Ads

 Scan 1 Scan 2 Scan 3

NetSparker

Community

Edition

156 150 156 All

N-Stalker X

Free Edition
10 10 10 All

OWASP

ZAP
210 210 210 All

Iron

WASP
0 0 0 -

Vega 0 0 0 -

Acunetix

WVS
144 144 144 All

IBM

Rational

AppScan

178 178 180 All

Acunetix WVS leaves most garbage comments for the

safe web application, with a magnitude of more than 50 times

larger than the number of ads in the tested database. OWASP

ZAP leaves most garbage comments for the vulnerable web

application - 30 times larger than the number of ads in the

tested database.

The experiments also show that WVSs that create garbage

records, do that even when web application is free from

critical/important vulnerabilities. Some WVSs, like N-Stalker

X Free Edition, OWASP ZAP and Acunetix WVS produce

more garbage comments for the safe web application, while

IBM Rational AppScan produces more garbage comments for

the vulnerable web application. First behavior is easier to

understand, and can be explained that WVS stop testing the

script on giving vulnerability, after it found it.

Also, some scanners, like NetSparker Community Edition

and IBM Rational AppScan produce different numbers of

garbage comments, but with small deviation, for scanning the

same web application.

IV. CONCLUSIONS

Our experiments show that different scanners produce
different numbers of garbage records in the backend database,
and because of that, when we use them for scanning, web
administrators need to make a backup of their database. This
can protect them from spending additional time after scanning,
for cleaning the database. Also, our experiments show that
some scanners have capabilities of finding tested
critical/important vulnerabilities, without using invasive
techniques that produce garbage records. WVSs that produce
garbage records, do that regardless of presence of a given
vulnerability in the web application.

SESSION 9. THEORETICAL FOUNDATIONS OF INFORMATICS, SECURITY AND CRYPTOGRAPHY

282 CIIT 2014

REFERENCES

[1] R. Abela, “A complete guide to securing a website”, Acunetix [Online].

Available: http://www.acunetix.com/websitesecurity/website-auditing-
wp/

[2] J. Bau, E. Bursztein, D. Gupta and J. Mitchell, “State of the art:
automated black-box web application vulnerability testing”, In
Proceedings of the IEEE Symposium on Security and Privacy, May
2010.

[3] S. Chen, SecToolMarket, [Online]. Available: http://sectoolmarket.com/

[4] A. Doupe, M. Cova and G. Vigna, “Why Johnny can’t pentest: an
analysis of black-box web vulnerability scanners”. In C. Kreibich, M.
Jahne (Eds.) Proceedings of the 7th International conference on
Detection of Intrusions and Malware, and Vulnerability Assessment -
DIMVA’10, pp. 111-131, Springer Berlin Heidelberg 2010.

[5] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing web
vulnerability scanning tools for sql injection and xss attacks”, In
Proceedings of the 13th IEEE Pacific Rim International Symposium.
Dependable Computing (PRDC 2007), vol. 0, 2007, pp. 365–372.

[6] J. Grossman, “7 ways vulnerability scanners may harm website(s) and
what to do about it”, WhiteHat Security 2012, [Online]. Available:
http://blog.whitehatsec.com/7-ways-vulnerability-scanners-may-harm-
websites-and-what-to-do-about-it/

[7] N. Khoury, P. Zavarsky, D. Lindskog and R. Ruhl, “Testing and
assessing web vulnerability scanners for persistent SQL injection
attacks”, First International Workshop on Security and Privacy
Preserving in e-Societies (SeceS '11), New York, NY, USA, 2011.

[8] N. Khoury, P. Zavarsky, D. Lindskog and R. Ruhl, “An analysis of
black-box web application security scanners against stored SQL
Injection”, In Proceedings of the IEEE Third International Conference
on Privacy, Security, Risk and Trust (PASSAT 2011) and 2011 IEEE
Third International Conference on Social Computing (SOCIALCOM
2011), Boston, USA, October 2011.

[9] Payment Card Industry Security Standards Council.
(PCI) Data Security Standard: Requirements and Security Assessment
Procedures. October 2010. [Online]. Available: https://
www.pcisecuritystandards.org/documents/pci_dss_v2.pdf.

[10] H. Peine, “ Security test tools for web applications”. Technical Report
048.06, Fraunhofer IESE (January 2006)

[11] L. Suto, “Analyzing the effectiveness and coverage of web application
security scanners”, [Online]. October 2007. Available:
http://www.stratdat.com/webscan.pdf.

[12] L. Suto, “Analyzing the accuracy and time costs of web application
security scanners”, [Online]. Feb 2010. Available:
http://ha.ckers.org/files/Accuracy and Time Costs of Web App
Scanners.pdf

[13] N. Šuteva, D. Zlatkovski, A. Mileva, “Evaluation and testing of several
free/open source web vulnerability scanners”, In Proceedings of the 10th
International conference on Informatics and Information Technology
(CIIT 2013), 2013, pp. 221-224.

[14] Open Web Application Security Project, “OWASP Top Ten Project”
[Online]. Available: http://www.owasp.org/index.php/Category:
OWASP Top Ten Project.

[15] A. Wiegenstein, F. Weidemann, M. Schumacher, S. Schinzel, “Web
Application Vulnerability Scanners—a Benchmark”. Technical Report,
Virtual Forge GmbH (October 2006)

Proceedings of the 11th International Conference on Informatics and Information Technologies
CIIT 2014 – Hotel Molika, Bitola, Macedonia – April 11-13, 2014

©2015 Faculty of Computer Science and Engineering, Skopje 283

