
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tbeq20

Download by: [Goce Delcev - University in Stip] Date: 12 April 2016, At: 01:52

Biotechnology & Biotechnological Equipment

ISSN: 1310-2818 (Print) 1314-3530 (Online) Journal homepage: http://www.tandfonline.com/loi/tbeq20

TMO: time and memory optimized algorithm
applicable for more accurate alignment of
trinucleotide repeat disorders associated genes

Done Stojanov, Ana Madevska Bogdanova & Tomasz Marcin Orzechowski

To cite this article: Done Stojanov, Ana Madevska Bogdanova & Tomasz Marcin Orzechowski
(2016) TMO: time and memory optimized algorithm applicable for more accurate alignment of
trinucleotide repeat disorders associated genes, Biotechnology & Biotechnological Equipment,
30:2, 388-403, DOI: 10.1080/13102818.2015.1114428

To link to this article: http://dx.doi.org/10.1080/13102818.2015.1114428

© 2016 The Author(s). Published by Taylor &
Francis.

Published online: 08 Feb 2016.

Submit your article to this journal

Article views: 167

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tbeq20
http://www.tandfonline.com/loi/tbeq20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13102818.2015.1114428
http://dx.doi.org/10.1080/13102818.2015.1114428
http://www.tandfonline.com/action/authorSubmission?journalCode=tbeq20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tbeq20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/13102818.2015.1114428
http://www.tandfonline.com/doi/mlt/10.1080/13102818.2015.1114428
http://crossmark.crossref.org/dialog/?doi=10.1080/13102818.2015.1114428&domain=pdf&date_stamp=2016-02-08
http://crossmark.crossref.org/dialog/?doi=10.1080/13102818.2015.1114428&domain=pdf&date_stamp=2016-02-08

ARTICLE; BIOINFORMATICS

TMO: time and memory optimized algorithm applicable for more accurate
alignment of trinucleotide repeat disorders associated genes

Done Stojanova, Ana Madevska Bogdanovab and Tomasz Marcin Orzechowskic

aFaculty of Computer Science, Department of Computer Technologies and Intelligent Systems, University “Goce Delcev”, �Stip, Republic of
Macedonia; bFaculty of Computer Sciences and Engineering, Department of Intelligent Systems, University “Sts Cyril and Methodius”, Skopje,
Republic of Macedonia; cFaculty of Computer Science, Electronics and Telecommunications, Department of Telecommunications, AGH
University of Science and Technology, Krakow, Poland

ARTICLE HISTORY
Received 29 June 2015
Accepted 27 October 2015

ABSTRACT
In this study, time and memory optimized (TMO) algorithm is presented. Compared with
Smith�Waterman’s algorithm, TMO is applicable for a more accurate detection of continuous
insertion/deletions (indels) in genes’ fragments, associated with disorders caused by over-
repetition of a certain codon. The improvement comes from the tendency to pinpoint indels in the
least preserved nucleotide pairs. All nucleotide pairs that occur less frequently are classified as less
preserved and they are considered as mutated codons whose mid-nucleotides were deleted. Other
benefit of the proposed algorithm is its general tendency to maximize the number of matching
nucleotides included per alignment, regardless of any specific alignment metrics. Since the
structure of the solution, when applying Smith�Waterman, depends on the adjustment of the
alignment parameters and, therefore, an incomplete (shortened) solution may be derived, our
algorithm does not reject any of the consistent matching nucleotides that can be included in the
final solution. In terms of computational aspects, our algorithm runs faster than Smith�Waterman
for very similar DNA and requires less memory than the most memory efficient dynamic
programming algorithms. The speed up comes from the reduced number of nucleotide
comparisons that have to be performed, without having to imperil the completeness of the
solution. Due to the fact that four integers (16 Bytes) are required for tracking matching fragment,
regardless its length, our algorithm requires less memory than Huang’s algorithm.

KEYWORDS
Huntington’s disease; genes;
computational; improved;
algorithm

Introduction

In order to detect mutual similarities (differences)
between two or more biological sequences (DNA, RNA
or protein), the sequences have to be aligned. By align-
ing two or more biological sequences, a model that
reveals not only the elements’ matching and mismatch-
ing positions, but also the positions of elements’ dele-
tions (insertions) is generated. From an applicational
viewpoint, the alignment is used for phylogenetic analy-
sis, identification of functional motifs, profiling genetic
diseases, prediction of proteins’ tertiary structure upon
similarities in proteins’ primary structures, etc. As a com-
puter process, each alignment requires time and mem-
ory. In general, the time and memory requirements for
performing an alignment depend of the number and
length of the sequences that are aligned. In some cases,
when aligning many and long sequences, such as
eukaryotic chromosomes or eukaryotic complete
genomes, the time and memory complexity of an

algorithm may be decisive factor whether the alignment
of the sequences can be performed or not on a specific
computer with limited processor speed and memory.
Therefore, improvements of time and memory complex-
ity are always welcomed, but not at the cost of generat-
ing partial solutions that do not completely depict the
structural, functional or evolutionary relationship
between the aligned sequences.

Depending of the number of sequences that are
being aligned, there are algorithms for pairwise and mul-
tiple sequence alignment. Pairwise alignment algorithms
align two sequences, whereas multiple alignment algo-
rithms align more than two sequences. In terms of the
scope of the generated solution, sequence alignment
algorithms can be classified as local or global. Local
alignment algorithms search for the most conserved
(similar) DNA fragments between two or more sequen-
ces, whereas global alignment algorithms produce solu-
tions that incorporate each element. In terms of the
conceptual framework, if we look back in history, since

CONTACT Done Stojanov done.stojanov@ugd.edu.mk

© 2016 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2016
VOL. 30, NO. 2, 388�403
http://dx.doi.org/10.1080/13102818.2015.1114428

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

mailto:done.stojanov@ugd.edu.mk
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1080/13102818.2015.1114428
http://www.tandfonline.com

the pioneering work of Needleman and Wunsch [1] in
1970, all algorithms for DNA pairwise alignment can be
classified either as a dynamic programming based or
they use some type of heuristic in order to obtain the
solution (heuristic algorithms). Both groups of algorithms
have their own pros and cons. Dynamic programming-
based algorithms always produce a solution that maxi-
mizes the alignment score or minimizes the distance
(dissimilarity) for specific metrics. This solution is referred
to as an optimal one and it requires O n£mð Þ time and
memory, where n and m are lengths of the sequences
that are being aligned. The unfavourable quadratic time
and memory complexity sometimes may limit the appli-
cation of these algorithms, especially if long sequences
are aligned on a standard PC configuration. In contrast
to dynamic programming-based algorithms, heuristic
algorithms are faster and they can be applied to long
sequences, such as complete chromosomes or complete
genomes. They gain on the speed of execution due to
the significant reduction of the problem domain, by
applying some type of filtering or prior indexing. As a
result, sometimes partial or incomplete solution may be
produced that does not fully represent the real struc-
tural, functional or evolutionary relationship between
the sequences. A compromise between the opposite
groups of algorithms is always welcomed.

The oldest, but commonly used DNA pairwise align-
ment algorithms, are Needleman�Wunsch [1] and
Smith�Waterman.[2] They are dynamic-programming
based implementations that maximize the score of
an alignment for a specific metrics. Needleman�Wunsch
[1] generates global alignment, whereas Smith�
Waterman [2] generates local alignment in quadratic
O n£mð Þ time and memory. Instead of maximizing the
alignment’s score, Sellers [3,4] minimizes the distance
(dissimilarity) between two sequences. Ulam [5] gave
the formal definition for distance (dissimilarity) between
two sequences, as the minimal number of edit opera-
tions (element deletion, element substitution or element
insertion) that have to be performed in order to trans-
form one of the sequences into the other. Smith et al. [6]
proved that no matter whether the alignment’s score is
maximized [1,2] or the distance (dissimilarity) between
two sequences is minimized,[3,4] these two procedures
are equivalent in terms of the structure of the generated
solution under certain conditions. Rather than searching
for one optimal solution, done in previous studies,[1�4]
algorithms of Goad and Kanehisa [7] and Waterman and
Eggert [8] generate a list of significant local alignments.
For instance, Waterman and Eggert [8] identified a set of
k best local alignments between two sequences. This is
done by searching a dynamic programming matrix k
times for k highest-scoring alignments. It is worth to

mention that Fitch and Smith,[9] as well as Gotoh,[10,11]
made a distinction between the penalty that is assigned
for gap opening and the penalty that is assigned for
extending an already opened gap.

The first tries for linearization of the memory com-
plexity of dynamic programming algorithms were appli-
cations of divide and conquer approach. The idea is to
find in each step an interception point ðu; vÞ such as the
alignment of the sequences: a : a1 . . . an and b : b1 . . .bm

is generated by joining the optimal alignments of
the subsequences: (a1 . . . au;b1 . . .bvÞ and (auC 1 . . . an;
bvC 1 . . .bmÞ. This is repeated until base is aligned to
base or gap. Since the path of the optimal alignment
cannot pass through the north-east and south-west
quadrant in dynamic programming matrix, these
quadrants can be rejected in each step of the procedure.
This idea was theoretically discussed by Hirschberg [12]
and it served as a basis for the memory linear implemen-
tations that were proposed afterwards by Mayers and
Miller,[13] Huang et al. [14] and Huang and Miller.[15]

Apart from the efforts for memory linearization, there
were also attempts to improve the time complexity. The
first approach is known as alignment within specific
diagonal band or diagonal alignment. The idea is to cal-
culate only those cells in the dynamic programming
matrix that are located near by the main diagonal, since
the path of the optimal alignment converges to it. If the
length of the diagonal band equals k; k<m then the
time complexity can be improved up to O k£nð Þ. This
approach was discussed by Sankoff and Kruskal,[16]
whereas solutions of the problem were proposed by
Ficket,[17] Ukkonen [18] and Chao et al.[19] However,
drawback is its application that is limited only to very
similar sequences.

Heuristic algorithms were introduced to meet the
necessity for significant improvement of the time com-
plexity of DNA alignment process. They can speed up
the process up to hundred times, but there is no guaran-
tee for optimality of the generated solution. The
increased speed of execution makes these algorithms
suitable for comparing query sequence to database,
rather than comparing only two sequences.

For instance, FASTA, the DNA and protein sequence
alignment software package,[20] looks for common hits
between two sequences which are afterwards extended.
Only 10 most significant extensions are included in the
solution. Basic local alignment search tool (BLAST) [21]
compiles an extended list of words that resemble the
words extracted from one of the sequences. These
words are searched in the other sequence in order to
find the perfect hits. Each hit is extended in both direc-
tions until the score drops below certain threshold.
Unlike BLAST, BLAST-like alignment tool (BLAT) [22] is

BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT 389

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

less sensitive approach that looks for perfect or
near-perfect hits, due to what can be applied only for
comparison of evolutionary closely related sequences.
PatternHunter [23] improves the BLAST sensitivity, due
to the fact that PatternHunter looks for common hits
that include at least k common nucleotides. Alike BLAST,
these hits are afterwards extended in both directions.
Fast length adjustment of short reads (FLASH) [24] is also
seed-based approach that looks for common words
between two sequences. After calculating the differen-
ces between the starting positions of common hits, the
longest list of equal differences determines the most
similar fragments between the sequences. Yet Another
Similarity Searcher (YASS), a pairwise sequence align-
ment software,[25] looks for groups of close hits. The
maximum distance between the hits in the groups
should not exceed d where d is calculated in context to
the frequencies of base substitutions and base insertions
(deletions).

The most efficient approach to identify common hits
between two sequences is to employ suffix tree. This
data structure uses maximum unique matches-mer
(MUMmer) [26] and AVID, a global alignment method.
[27] MUMmer looks for maximum unique matches
(MUMs) upon which an alignment is derived. Maximum
unique match is defined as a common hit with maxi-
mum length that is not part of any other hit. By rejecting
hits, whose length is less than half of the length of the
longest common hit, AVID looks for a subset of non-
crossing and parallel hits, which are identified by travers-
ing suffix tree that is constructed for a sequence which is
obtained by joining together the sequences being
aligned. Unlike MUMmer and AVID, LAGAN, tool for
large-scale multiple alignment of genomic DNA,[28]
detects ungapped local alignments between two
sequences, where, except of nucleotide hits, mismatches
are also allowed. Local ungapped alignments are identi-
fied by CHAOS algorithm, a fast database search tool
that creates a list of local sequence similarities,[29] which
can detect short and partial hits between two sequen-
ces. LAGAN selects subset of consecutive ungapped
alignments with maximum alignment score, which are
afterwards connected. Super pairwise alignment (SPA)
[30] exploits methods based on probability and combi-
natorics to find the positions where gaps should be
inserted. SPA calculates the percentage of local similarity
within shifting window of fixed size. The shifting window
includes fragments of both sequences for which the per-
centage of similarity is calculated as a rate between the
number of matching elements and the length of the
shifting window. Gaps are inserted if minimum shift of
nucleotides drastically increases the percentage of local
similarity.

In terms of computational aspects (time and memory
complexity) and comprehensiveness of the generated
solution, a compromise between dynamic program-
ming-based algorithms and heuristic algorithms is pre-
sented. The proposed algorithm has several distinctions
from the existing ones. First, the proposed algorithm
does not reject any of the hits that can be included in
the solution. By applying dynamic programming algo-
rithms, some of the hits may be rejected due to the
decrease of the overall alignment score for a specific
metrics, in spite of the fact that these hits can be
included in the alignment. The same also happens if
heuristic algorithms are applied, due to the filtering in
the preprocessing phase when usually shorter hits are
rejected on what these algorithms gain on the speed of
execution. By generating a solution that always includes
the maximum possible numbers of base-to-base hits, the
proposed algorithm is applicable for comprehensive
structural, functional and evolutionary analysis and it
can be applied for distant homology detection. Even for
dissimilar sequences, the proposed algorithm is superior
to dynamic programming and heuristic algorithms in
terms of accurate and comprehensive detection of
matching elements between two DNA samples. Second,
rather than inserting gaps randomly, they are always
inserted in base pairs XY with minimal frequency of
occurrence, or in other words, we take into consideration
the preservation of base pairs when determining the
position where an indel is localized. Most importantly,
we found that this model allows a more accurate detec-
tion of continuous indels in polyglutamine tracts of
spliced mRNA of huntingtin gene than the dynamic
programming. Third, unlike dynamic programming algo-
rithms, which require Oðn£mÞ base comparisons in
order to identify the set of common hits, the proposed
algorithm performs less than n£m comparisons for the
same purpose. This can be interpreted as a gain in the
speed of execution, but unlike heuristic algorithms, there
is no loss of data. Furthermore, if similar sequences are
aligned, the time complexity of the proposed algorithm
approximates to Oðn£k£log2mÞ, where k is the number
of common hits (k<m), m is the length of the shorter
sequence and n is the length of the longer sequence.
When dissimilar sequences are being compared, the
time performance of our algorithm equals Smith�Water-
man or Oðn£mÞ time is required. Fourth, due to the
memory efficient representation of each hit with data
tuple that tracks the hit’s starting and final positions, the
memory requirement of the proposed algorithm is
linear. In all tests that we performed, our algorithm
required less memory than the length of the shorter
sequence, regardless the identity of the sequences
that were compared. This makes our algorithm one

390 D. STOJANOV ET AL.

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

of the most memory efficient approaches proposed
so far.

Materials and methods

The time and memory optimized (TMO) algorithm runs
in two phases. In the first phase, we perform a search for
‘common’ and ‘consistent’ hits of two DNA sequences,
upon which an alignment in the second phase is
constructed.

Phase 1: searching and representing common hits

A ‘common’ hit for two DNA sequences is a character or
word found in both sequences. Each hit that does not
form crossing diagonal with any other hit can be consid-
ered as ‘consistent’. To introduce the concept of consis-
tent and inconsistent common hits, the following
samples are considered: aDACACAATGGGGGCTCTACA
and bDACACTGTTTGGGGGACA. If the first occurrence
of ACA in a bð Þ is paired with the last occurrence of ACA
in b að Þ, two inconsistent hits are obtained, due to the
crossing diagonal that they form (Figure 1(a)). Consistent
hits are formed by pairing first-to-first and last-to-last
occurrence of ACA in a and b (Figure 1(b)).

To optimize the memory requirement, a data tuple of
four integers: ðpa;s; pa;f ; pb;s; pb;f Þ per identified consis-
tent hit is tracked in the memory, where pa;s is the strat-
ing position of the hit in sequence a, pa;f is the final
position of the hit in sequence a, pb;s is the strating posi-
tion of the hit in sequence b and pb;f is the final position
of the hit in sequence b. Under this approach, tuple
ð1; 4; 1; 4Þ represents the first consistent hit ACAC in the
samples a and b and tuples: ð7; 12; 9; 14Þ and
ð17; 19; 15; 17Þ represent the second (TGGGGG) and the
third (ACA) consistent hit, respectively (Figure 2).

The set of consistent hits: fACAC : 1; 4; 1; 4ð Þ;
TGGGGG : 7; 12; 9; 14ð Þ; ACA : 17; 19; 15; 17ð Þg is not the
only one which can be derived for the samples that we
consider. There are many other sets of consistent hits
that mutually differ in the number of hits and in the
number of matching nucleotides per hit, but the algo-
rithm always tries to find the set of consistent hits which
includes maximum possible number of matching ele-
ments, i.e. the set: fACAC : 1; 4; 1; 4ð Þ; TGGGGG :

7; 12; 9; 14ð Þ; ACA : 17; 19; 15; 17ð Þg is reported, because
there is no other set that can be defined for the samples
a and b that includes more matching nucleotides than
the one being detected.

During the search for consistent hits, our algorithm
exploits an idea which is based on partial comparison of
mismatching DNA words, instead to comparing them
entirely, or nucleotides at same positions in DNA words
that mismatch are mutually compared, while the first
pair of mismatching nucleotides is not detected. By
employing this approach, only one base comparison is
required to detect the mismatch of two DNA words in
the best case, whereas in the worst case, all nucleotides
have to be compared.

For instance, to detect the mismatch of the words:
AGCT and GCTA, only the starting nucleotides have to
be compared (A to G). The remaining nucleotides are
not compared, since regardless if they match or not,
the words AGCT and GCTA cannot perfectly match. The
worst case scenario is when all nucleotides have to
be compared, in order to detect the mismatch. That is
the case when all nucleotides match, except the last
ones. To detect the mismatch of the words: GCTA and
GCTG, four comparisons have to be performed (the num-
ber of base comparisons in this case equals the words’
length), since the last nucleotides (A and G) in these
words constitute the first found pair of mismatching
nucleotides. However, the number of base comparisons
may be greater than one and less than the length of the
words, depending of the position where the first pair of
mismatching nucleotides is identified. For instance,
when comparing the words TCTG and TACT, two base
comparisons have to be performed in order to confirm
the mismatch, since the first pair of mismatching nucleo-
tides is found at position 2 (C to A).

Our algorithm looks for consistent hits in ‘consistent
domains’. ‘Consistent domain’ is defined as a pair of
sequences or subsequences in a and b which are located
out of identifed hits and they do not form crossing diag-
onal to any of the hits, Figure 3.

At the beginning, there is only one consistent domain
which is made of the sequences being compared
(Figure 3(a)). The search there results in one consistent
hit, which derives two new consistent domains where
two new hits may be identified (Figure 3(b)). These two

Figure 1. Examples of inconsistent (a) and consistent (b) com-
mon hits.

Figure 2. Set of common and consistent hits.

BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT 391

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

hits together with the first identified match derive
four new consistent domains, where we can also search
for consistent hits (Figure 3(c)) and so on until the length
of at least one consistent fragment equals 0 or all
nucleotides in the consistent domains are compared
(Figure 3(d)).

In each consistent domain, the algorithm detects the
‘longest’ and the ‘leftmost’ common hit by performing
partial comparisons on mismatching DNA words of the
shorter sequence/subsequence to the longer sequence/
subsequence until the hit is identified.

We will discuss this approach on the short samples a :
AGCTAG and b : TGCTG (Figure 4(a)). At the beginning,
there is only one consistent domain which is made of
the samples a and b and this is the space where the
algorithm tries to find the first consistent hit. Table 1
shows the order in which the algorithm compares mis-
matching DNA words and which nucleotides of them
(highlighted) are mutually compared.

Words of 5, 4 and 3 nucleotides from both sequences
are partially compared until the first hit GCT is identifed.
The search requires totally 20 base comparisons (Table 1).
The number of performed comparisons per pair of DNA
words depends of the position of the first identified pair
of mismatching nucleotides. For instance, one base

comparison is required to detect the mismatch:
(AGCTA, TGCTGÞ since the word’s starting nucleotides
mismatch. Two comparisons have to be performed to
detect the mismatch: (TAG, TGCÞ, because the first mis-
match of nucleotides is found at position 2 and four
base comparisons are required in order to detect the
mismatch of the words GCTA and GCTG since all nucleo-
tides, except the last ones, match (Table 1).

The first identified hit GCT derives two new consistent
domains. The first consistent domain is made of the
nucleotides that precede GCT (A in a and T in b),
whereas the second is made of the nucleotides that fol-
low GCT in a and b (AG in a and G in b) (Figure 4(b)).
There is no common hit in the domain that precedes
GCT, whereas a single guanine match is found in
the consistent domain that follows GCT (Figure 4(c)). The
algorithm requires totally 23 comparisons to derive the
set of consistent hits for the samples a : AGCTAG and
b : TGCTG, fGCT : 2; 4; 2; 4ð Þ; Gð6; 6; 5; 5Þ} (Table 1).

Since tuples are appended into a set as hits are identi-
fied, before moving to the second phase, the set of tuples
needs to be sorted according to hits’ occurrence in the
analysed sequences. This means that if we have obtained
the set of tuples: f 7; 12; 9; 14ð Þ; 1; 4; 1; 4ð Þ;
ð17; 19; 15; 17Þg for the samples aDACACAATGGGG
GCTCTACA and bDACACTGTTTGGGGGACA, because
TGGGGG : 7; 12; 9; 14ð Þ is identified at first, then ACAC :
1; 4; 1; 4ð Þ and finally; ACA : ð17; 19; 15; 17Þ, before

Figure 3. Searching for consistent hits: one consistent domain
(a), one hit (two new consistent domains) (b), three hits (four
new consistent domains) (c) and all nucleotides in consistent
domains are compared (d).
Note: arrows represent consistent domains; thickened and con-
nected segments represent identified hits in each step; sequen-
ces (Seq)

Figure 4. Identifying consistent hits for the samples AGCTAG and
TGCTG: short samples (a), the first identified hit GCT derives two
new consistent domains (b) and a single Guanine match is found
in the consistent domain that follows GCT (c).

392 D. STOJANOV ET AL.

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

moving to the second phase, the algorithm will swap the
first two tuples, because 1; 4; 1; 4ð Þ corresponds to hit
ACAC that precedes TGGGGG; which is tracked
by 7; 12; 9; 14ð Þ. As a result, we get the set of tuples:
1; 4; 1; 4ð Þ;f 7; 12; 9; 14ð Þ; 17; 19; 15; 17ð Þg, which tracks

the natural order of appearance of the consistent hits
found in the samples a and b (ACAC, followed by
TGGGGG and then ACAÞ (Figure 2).

We can use the previous samples to analyse the gain
in terms of memory reduction, compared to Huang’s
algorithm [14] and the gain in saved nucleotide compari-
sons regarding Smith�Waterman.[2] For instance, if
Huang is applied to aDACACAATGGGGGCTCTACA and
bDACACTGTTTGGGGGACA, the memory requirement
would be proportional to the sum of the lengths of the
sequences being aligned, i.e. nCmD 19C 17D 36 inte-
gers would have to be stored in the memory, in contrast
to number of hits£ 4D 3£ 4D 12 integers that store
the proposed algorithm for tracking hits’ positions. To
derive a set of consistent hits for the samples a :

AGCTAG and b : TGCTG, Smith�Waterman requires
lengthOf að Þ£lengthOf bð ÞD 6£5D 30 comparisons,
whereas our algorithm, for the same purpose, requires
23 comparisons, without losing data for any consistent
hit that may happen in heuristic algorithms for local
DNA alignment, such as: FASTA,[20] BLAST,[21] BLAT,[22]
PatternHunter,[23] FLASH [24] and YASS.[25]

Phase 2: generating local pairwise alignment

At the beginning of the second phase, the number of
indels between successive hits is precisely calculated.

Assuming that a is the longer sequence and b is the
shorter sequence, then for each two successive hits, k0th
and ðkC 1Þ0th the number of gaps n:g which have to be
inserted between them is calculated according
to Equation (1), where ðpa;s j k;pa;f j k; pb;s j k; pb;f j kÞ and
ðpa;s j kC 1;pa;f j kC 1; pb;s j kC 1; pb;f j kC 1Þ are tuples that track
their positions in a and b; respectively. The sign of n:g
(>, < or 0) determines whether gaps should be inserted
or not and if yes, in which mismatching fragment they
have to be inserted, whether in sequence a or in
sequence b.

n:gD pa;s j kC 1 � pa;f j k � ðpb;s j kC 1 � pb;f j kÞ (1)

If n:g> 0 then n:g gaps have to be inserted in b. If
n:g< 0 then j n:g j gaps have to be inserted in a. If
n:gD 0 then no indel is found between successive hits.

If we apply Equation (1) to the set of consistent hits
fACAC : 1; 4; 1; 4ð Þ; TGGGGG : 7; 12; 9; 14ð Þ;ACA :
ð17; 19; 15; 17Þg, which was derived for the
samples aDACACAATGGGGGCTCTACA and bD
ACACTGTTTGGGGGACA, as a result, we obtain that two
gaps have to be inserted between ACAC and TGGGGG in
a and four gaps have to inserted between TGGGGG and
ACA in b, i.e. n:g D pa;s j kC 1 � pa;f j k � pb;s j kC 1�

�

pb;f j kÞD 7� 4� 9� 4ð ÞD � 2 for ACAC : 1; 4; 1; 4ð Þ
and TGGGGG : 7; 12; 9; 14ð Þ, whereas n:gD pa;s j kC 1 �
pa;f j k � pb;s j kC 1 � pb;f j k

� �D 17� 12� 15� 14ð ÞD 4 for
TGGGGG : 7; 12; 9; 14ð Þ and ACA : ð17; 19; 15; 17Þ.

Indels/inserted gaps shift consistent hits towards their
alignment. This means that TGGGGG : 7; 12; 9; 14ð Þ in
sample a needs to be shifted for two positions (Figure 5(a))

Table 1. Compared words and nucleotides, until consistent hits in the samples a : AGCTAG and b : TGCTG are identified.

Searching for hit in the consistent domain: a: AGCTAG and b: TGCTG

Compared words a1…a5:AGCTA a2…a6:GCTAG Comparisons
b1…b5:TGCTG AGCTA GCTAG 2

TGCTG TGCTG

a1…a4:AGCT a2…a5:GCTA a3…a6:CTAG
b1…b4:TGCT AGCT GCTA CTAG 3

TGCT TGCT TGCT
b2…b5:GCTG AGCT GCTA CTAG 6

GCTG GCTG GCTG

a1…a3:AGC a2…a4:GCT a3…a5:CTA a4…a6:TAG
b1…b3:TGC AGC GCT CTA TAG 5

TGC TGC TGC TGC
b2…b4:GCT AGC GCT - - 4

GCT GCT (hit)

Searching for hit in the consistent domain: a1: A and b1: T prior to GCT hit
Compared words a1:A
b1:T A 1

T

Searching for hit in the consistent domain: a5a6: AG and b5: G after GCT hit
Compared words a5:A a6:G
b5:G A G 2

G G(hit)
Total number of performed base comparisons: 23

BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT 393

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

and ACA : ð17; 19; 15; 17Þ in sample b needs to be shifted
for four positions (Figure 5(b)), if we want these hits to
match perfectly within an alignment.

Before localizing indels, two matrices ½A�4£4 and ½B�4£4

that track the numbers of occurrence of all nucleotide
pairs XY;X; Y 2 fA;C; T;Gg in a and b are computed. Hav-
ing marked each row and each column in A and B with
one of the letters: A;C; T;G, which correspond to the four
DNA nucleotides, A X; Y½ �ðB X; Y½ �Þ represents the number
of occurrence of nucleotide pair XY in a bð Þ. These matri-
ces for the samples: aDACACAATGGGGGCTCTACA and
bDACACTGTTTGGGGGACA are shown in Figure 6. For
instance: A C;A½ �D 3 and B C;A½ �D 2; because CA occurs
three times in a and two times in b (Figure 6). Some base
pairs may not occur at all, if short sequences are analysed.
Sample a conatins one AA and one AT nucleotide pair,
but they do not occur at all in the other sample
ðB A;A½ �D 0; B A; T½ �D 0Þ (Figure 6).

The algorithm pinpoints indels in mismatching frag-
ments which are obtained by appending the last and
the first nucleotide from surrounding hits. Extending is
required, because except inside mismatching fragments,
gaps can also be inserted between hits and mismatching
DNA. For instance, two gaps except inside AA mismatch
(Figure 7(a)) can be also inserted between the first hit
ACAC and AA in sample a (Figure 7(b)), as well as
between AA and the second hit TGGGGG (Figure 7(c)).

The CAAT-gapped modifications shown in Figure 7
are based on continuous insertion of gaps and they are

three of six possible two indel transformations of the
extension, since gapped transformations C�A�AT,
C�AA�T and CA�A�T of CAAT, which are based on
interrupted localization of indels, are also possible.

The whole process of identifying indels step by step,
according to the proposed methodology, is shown in
Figure 8. Our algorithm reports CA�A�T modification,
because AA and AT are considered for mutated triplets
whose mid-elements were deleted (A� A!AA;
A� T!AT), due to the fact that CA nucleotide pair
tends to be more preserved than AA/AT in a (CA occurs
three times, whereas AA and AT occur only once). There-
fore, rather than modifying a frequently occurring nucle-
otide pair (CA), our algorithm will choose to pinpoint
indels in rarely occurring nucleotide pairs (AA/AT)
(Figure 8(b) and 8(c)).

In general, for each extension, a list of all nucleotide
pairs found there and data regarding their occurrence in
a bð Þ; is compiled. The number of occurrences of each
base pair is read from matrixA (matrixB), depending on
which sequence the extension belongs to. Data from the
list is used to identify the rarest occurring nucleotide
pair in each step, where, in fact, an indel is identified.

Figure 5. Indels �ð Þ or DNA shifts enable perfect alignment of
matching fragments: TGGGGG needs to be shifted for two posi-
tions in sample a (a), ACA needs to be shifted for four positions
in sample b (b).

Figure 6. Occurence of nucleotide pairs XY; X; Y 2 fA; C; T;Gg in aDACACAATGGGGGCTCTACA and bDACACTGTTTGGGGGACA.

Figure 7. Indels in extended mismatching fragments (marked
with rectangles). Two gaps inserted: inside AA mismatch (a),
between the first hit ACAC and AA (b) and between AA and the
second hit TGGGGG (c).

394 D. STOJANOV ET AL.

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

The rarest occurring nucleotide pair XY in aðbÞ of all
nucleotide pairs in the list is the one where the first gap
is inserted: XY!X� Y. This nucleotide pair, in which an
indel is identified, has to be removed from the list before
repeating the search, if another gap has to be inserted.
The same is repeated until all gaps are inserted (their
number is calculated according Equation(1)). If insertion
has to be proceeded, but the list is empty (in all nucleo-
tide pairs in the extension gaps were inserted), the pro-
posed algorithm chooses to insert all remaining gaps
next to the first nucleotide in the extension.

For the samples that we consider, CAAT is an exten-
sion of the mismatching AA fragment in sample a which
is obtained by appending the last nucleotide C from the
first hit (ACAC) and the first nucleotide T of the following
hit (TGGGGG). This extension contains three nucleotide
pairs: CA;AA and AT (Figure 8(a)). The numbers of occur-
rence of these nucleotide pairs are read from matrix A
(Figure 6(a)) and they are stored in list
LD fA CAð ÞD 3;A AAð ÞD 1;A ATð ÞD 1g.

Searching the list for the rarest occurring nucleotide
pair in a of all nucleotide pairs in the list, the algorithm
pinpoints the location of the first indel. The first found
nucleotide pair is always reported and that is the nucleo-
tide pair where the gap is inserted.

The corresponding nucleotide pair in this case is AA in
the extension CAAT; which is transformed in (CA�AT)
(Figure 8(b)). According to the previous discussion, the
nucleotide pair AA; where the gap is inserted,
A AAð ÞD 1 is removed from the list LD fA CAð ÞD
3;A ATð ÞD 1g. Once again the algorithm looks for the
rarest occurring nucleotide pair in LD A CAð ÞDf
3;A ATð ÞD 1g; but now to identify the position where
the second gap has to be inserted. The nucleotide pair
AT is reported, since AT appears once and CA three
times. The second gap insertion transforms (CA�AT) in
(CA�A�T) (Figure 8(c)). Due to the absence of mis-
matching DNA content between TGGGGG and ACA in b,

all four gaps are inserted next to the last nucleotide G of
the second hit (TGGGGG) (Figure 8(d)).

The algorithm pinpoints indels in ‘the least preserved
nucleotide pairs’, because it assumes that they ‘originate
from codons whose mid nucleotides were deleted’ when
working with coding DNA. This property does not restrict
the application of our algorithm only to coding DNA. It is
a general approach that can also be applied to junk DNA
(tandem repeats and interspersed repeats), where
instead of codon mutations, mutations in non-coding
triplets may be considered for accurate prediction of
indels within satellite DNA or precise localization of Alu
(LINE) repetitions. By applying our algorithm to eukary-
otic chromosomes, we expect to retain Alu repetitions
intact, due to its high occurrence rate, which can facili-
tate the identification of a newly evolved gene. On the
other hand, Smith�Waterman will pinpoint indels in one
or more Alu repetitions, if that results in a better score
alignment.

Figure 8(d) shows the alignment of the samples a and
b according to the proposed model. As it can be noticed,
all matching nucleotides are included in the solution.
Shortened alignment, which partially depicts the struc-
tural relationship between the samples, is obtained if
Smith�Waterman is applied, based on metrics which
penalizes mismatch alignments and gap insertions with
�1 and awards C 1 for each nucleotide match (Figure 9).
For this metrics, consistent hits ACAC and ACA, are not
detected (included in the alignment) (Figure 9). The
overall alignment score would not be increased if the
first consistent hit ACAC is included in the solution. On
the other hand, the overall alignment score would have
been decreased for 1, if the third consistent hit ACA is
included, since four gaps have to be inserted to align
three matching nucleotides: A;C and A.

Obviously, when applying Smith�Waterman, the out-
put depends on the selected metrics. As a consequence,
some local similarities ‘remain unidentified’ (‘excluded of

Figure 8. Steps for generating a solution: (a) CAAT is an extension of the mismatching AA fragment and contains three nucleotide pairs:
CA, AA and AT; (b) gapped modification of AA; (c) gapped modification of AT; and (d) four gaps are inserted following the last nucleo-
tide G in TGGGGG.

BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT 395

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

the alignment’). For instance, although three matching
fragments (ACAC; TGGGGG; ACA) can be included in
the alignment of the samples a and b, Smith�Waterman
detects only one (TGGGGG) matching fragment.

Partial solutions derived from Smith�Waterman may
imply incorrect identification, characterization and classi-
fication of DNA data, such as errors when predicting dis-
ease predisposition of a specific gene and incorrect
taxonomic classification. Unlike Smith�Waterman, the
proposed algorithm maximizes the number of matching
nucleotides per alignment, regardless any specific met-
rics and rather than inserting gaps at arbitrary positions,
they are inserted at positions in the least preserved
nucleotide pairs.

Due to these properties, a more accurate model for
the relationship of trinucleotide repeat disorders associ-
ated with spliced mRNA can be derived in comparison
to Smith�Waterman. It is known that trinucleotide
repeat disorders, such as Huntington’s disease,[31,32]
Spinocerebellar ataxia [33] and Dentatorubropallidoluy-
sian atrophy [34] are genetic disorders which are associ-
ated with excessive expansion of trinucleotide repeats in
certain genes’ fragments. Usually, the number of uninter-
rupted trinucleotide repetitions determines whether an
individual will be affected or not. For instance, Hunting-
ton’s disease, which is associated with excessive number
of uninterrupted CAG repetitions in Huntingtin gene,
causes a progressive decline of brain cells. An individual

is affected if the number of uninterrupted repetitions
exceeds 35. We found that indels of CAG repetitions in
spliced mRNA of huntingtin polyglutamine (polyQ) tract
are more specifically identified by the proposed algo-
rithm than Smith�Waterman.

Figure 10 shows the alignments of Homo sapiens iso-
late hunt1 huntingtin partial coding sequence (cds)
(ENA ID: EU797016.1) and Homo sapiens isolate hunt3
huntingtin partial cds (ENA ID: EU797018.1) near
polyQ coding strands by applying Smith�Waterman
(Figure 10(a)) and the proposed algorithm (Figure 10
(b)). Our algorithm detects double deletion of gluta-
mine (CAG) in polyQ tract of hunt3 huntingtin spliced
mRNA regarding polyQ tract of hunt1 huntingtin
spliced mRNA (Figure 10(b)). On the other hand, gluta-
mine’s double deletion is not confirmed by
Smith�Waterman (Figure 10(a)), since non-glutamine
nucleotide (cytosine) in hunt3 huntingtin partial cds is
aligned to glutamine nucleotide (cytosine) in polyQ
tract of hunt1 huntingtin partial cds.

Regardless if non-glutamine to glutamine or non-glu-
tamine to non-glutamine cytosine is aligned, the overall
Smith�Waterman alignment score is not affected and
that is the only parameter, which Smith�Waterman con-
siders. The proposed algorithm does not separate cyto-
sine in hunt3 huntingtin partial cds from …

CCTCAAGTCCTT matching fragment, because its length
is increased for one, if non-glutamine cytosines are

Figure 9. Smith�Waterman solution for specific metrics.
Note: nucleotide (nucl).

Figure 10. Detection of glutamine (CAG) indels in spliced mRNA of Homo sapiens huntingtin gene by applying Smith�Waterman (a)
and the proposed algorithm (b).
Note: European Molecular Biology Open Software Suite (EMBOSS); polyglutamine (polyQ).

396 D. STOJANOV ET AL.

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

aligned (Figure 10(b)). Moreover, the nucleotide pair TC
is considered to be unsplittable due to its frequent
occurrence in hunt3 huntingtin partial cds (Figure 10(b)).

By knowing the number of uninterrupted glutamine
repetitions in hunt1 huntingtin spliced mRNA, it is easy to
find out whether the carrier of spliced mRNA, associated
with hunt3 huntingtin, is affected by the disease or not.

In addition, we summarize the instructions in which
our algorithm runs. Following these instructions, we
developed a desktop application in C# which was tested
on Acer Aspire 5570Z computer with Genuine Intel CPU
2080 at 1.73 GHz and 2 GB RAM memory.

Input: DNA sequence a, DNA sequence b
Output: Local alignment A
10. Partly comparing mismatching DNA words, IDEN-

TIFY ALL CONSISTENT HITS.
20. REPRESENT each hit with data tuple: ðpa;s;

pa;f ;pb;s;pb:f Þ in the memory.
30. SORT the set of tuples according to their appear-

ance in a and b.
40. CALCULATE the number of indels between suc-

cessive hits by applying Equation (1).
50. TRACK the number of occurrences of each nucle-

otide pair XY in aðbÞ in matrix ½A�4£4 (½B�4£4).
60. EXTEND each mismatching fragment (where at

least one indel is identified) with the last nucleo-
tide from the preceding hit and the first nucleo-
tide from the following hit.

70. FOR EACH nucleotide pair in extension, read the
number of occurrence from matrix A(B) and store
it in list L.

80. UNTIL all gaps are inserted.
90. SEARCH L for the rarest occuring nucleotide pair

XY and TRANSFORM XY in X � Y in the
extension.

100. PRINT alignment A.

Figure 11 is a screen capture of the application
output, when we compared partial cds of homosapiens
hunt1 huntingtin (ENA ID: EU797016.1) with hunt3 hun-
tingtin (ENA ID: EU797018.1) near polyQ tracts, where
indels / gaps are marked with ‘N’.

In total, there were nine tests that were performed on
very similar huntingtin partial cds (ENA IDs:
EU797016�24.1), which were retrieved from the Euro-
pean Nucleotide Archive,[35] as well as a test, which was
performed on dissimilar coding DNA of human tetratri-
copeptide repeat protein 25 (UniProt ID: Q96NG3) to tet-
ratricopeptide repeat protein 23 (UniProt ID: Q5W5£9).
The same samples were also aligned using European
Molecular Biology Open Software Suite (EMBOSS) Water
implementation of Smith�Waterman.[36]

Both algorithms were compared in terms of
computational performance and hit detection rate.
Additionally, we analyzed the number of detected glu-
tamine deletions in polyglutamine tracts and the
number of detected matching residues in tetratrico-
peptide repeats (TPR), which are considered to be
similar, but different. TPR is usually made of 34 amino
acids and in spite of the fact that W4 � L7 � G8 �
Y11 � A20 � F24 � A27 � P32 consensus has been
derived, all residues, except alanine at positions 20 and
27 (A20;A27), are likely to change.

Results and discussion

We got better computational results when we analysed
partial cds of huntingtin gene than when we analysed
the coding DNA of rather than similar tetratricopeptide
repeat proteins. Even for tetratricopeptide repeat pro-
teins, for which the percentage of identity is approxi-
mately 24%, our algorithm requires less memory than
Huang, but the time complexity seems to approximate
Smith�Waterman, i.e. in both cases, six seconds were
required for deriving a solution. In all cases, regardless if
similar or dissimilar sequences were analysed, our algo-
rithm detected more consistent hits than Smith�Water-
man that has resulted in better detection of matching
residues in tetratricopeptide repeats. Moreover, our algo-
rithm pinpointed indels in polyglutamine tracts of partial
cds of huntingtin gene more accurately than
Smith�Waterman’s due to the fact that it considers the
relative frequency of mismatching DNA, when it pin-
points an indel.

Figure 11. Output of the application near polyQ tracts of Homo sapiens huntingtin hunt1 to Homo sapiens huntingtin hunt3 partial cds
alignment.

BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT 397

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

We chose to compare the performance of our algo-
rithm to Smith�Waterman and Huang, because
Smith�Waterman is considered to be the most accurate
method for local pairwise alignment, whereas Huang
has the same accuracy of Smith�Waterman, but instead
of Oðn£mÞ memory, it requires linear OðnCmÞ space
for deriving a solution. There are computationally better
algorithms than Smith-Waterman/Huang, such as:
FLASH, YASS and PatternHunter, but in most of the cases
they generate partial (incomplete) solutions.

Glutamine deletions in polyQ tracts were analysed
by applying the proposed algorithm and
Smith�Waterman based on gap open D C 5 and
gap extend D C 5 metrics. We found that a total of 17
missing glutamines in polyQ tracts were more specifi-
cally identified by the proposed algorithm compared to
Smith�Waterman (Table 2). The number of precisely
identified deletions in polyQ tracts applying the pro-
posed algorithm ranges between 0 and 3 per alignment
Table 2. Due to the key algorithmic feature to preserve
highly conserved CA and AG nucleotide pairs in unin-
terrupted CAG repetitions in polyQ tracts, in 9 out of 10
cases our algorithm detects at least one more gluta-
mine deletion more specifically than Smith�Waterman.

Equal algorithmic outputs in the same context are
obtained only once (Table 2).

In the cases of spliced hungtingtin mRNA alignments,
our algorithm runs faster than Smith�Waterman, due to
the fewer numbers of comparisons that were performed
when compared with Smith�Waterman. The number of
performed comparisons and the overall time required
per alignment, when applying our algorithm and
Smith�Waterman, are given in Table 3. Less nucleotide
comparisons are performed, because rather than com-
paring mismatching DNA entirely, our algorithm escapes
performing redundant comparisons, starting from the
first found pair of mismatching nucleotides. According
to the data in Table 3, the speed up of the proposed
algorithm over Smith�Waterman depends on the num-
ber of matching fragments (hits). The speed up is
greater, if fewer, but longer hits are detected (Table 3). In
the best case, our algorithm runs 23 to 27 times faster
than Smith�Waterman. These numbers correspond to
alignments which include only two matching fragments.
In the worst case, the seed up is approximately five times
faster and that is the case when 8(9) hits are detected
(Table 3). In spite of the fact that most of the time is
spent for comparing nucleotides, minor part of the total
time is spent for computing the frequencies of mis-
matching DNA and tracking/sorting the set of consistent
hits. For hunt 4 (EU797019.1) and hunt 5 (EU797020.1)
partial cds, it took only 0.1%, while 99.9% of the total
time was required for comparing nucleotides.

On the other hand, six seconds were required for
computing the alignment of human tetratricopeptide
repeat protein 25 (UniProt ID: Q96NG3) to human tetra-
tricopeptide repeat protein 23 (UniProt ID: Q5W5£9),
when applying our algorithm and Smith�Waterman. In
this case, there was no speed up over Smith�Waterman,
because instead of few, but long common hits, our algo-
rithm detected 162 short identities, which were not lon-
ger than four residues. The presence of many, but short
common hits, as in this case, has a negative impact on

Table 2. Detected glutamine deletions in polyQ tract by applying
the proposed algorithm.

Aligned sequences

Number of detected glutamine deletions
in polyQ tract which were not
identified by Smith�Waterman

(hunt3; hunt6) partial cds 3
(hunt6; hunt9) partial cds 3
(hunt1; hunt3) partial cds 2
(hunt2; hunt3) partial cds 2
(hunt4; hunt5) partial cds 2
(hunt2; hunt7) partial cds 2
(hunt7; hunt6) partial cds 1
(hunt6; hunt8) partial cds 1
(hunt1; hunt6) partial cds 1
(hunt9; hunt8) partial cds 0

Note: polyglutamine (polyQ); huntingtin (hunt); coding sequence (cds).

Table 3. Time performance analysis.

Number of base comparisons (Total time)

Aligned sequences Hits Smith�Waterman Proposed algorithm fD n£hits£log2m Speed up

(hunt4; hunt5) partial cds 2 234,247 (0.5198 s) 8,678 (0.01925 s) 8,678 27
(hunt2; hunt3) partial cds 2 162,400 (0.3604 s) 7,019 (0.0156 s) 7,019 23
(hunt7; hunt6) partial cds 2 161,200 (0.3578 s) 6,967 (0.0155 s) 6,967 23
(hunt1; hunt3) partial cds 3 166,800 (0.3702 s) 10,848 (0.0241 s) 10,813 15
(hunt6; hunt9) partial cds 3 156,400 (0.3471 s) 10,363 (0.0230 s) 10,333 15
(hunt2; hunt7) partial cds 4 163,618 (0.3631 s) 14,130 (0.0313 s) 14,055 12
(hunt3; hunt6) partial cds 4 160,000 (0.3551 s) 13,895 (0.0308 s) 13,830 11
(hunt1; hunt6) partial cds 4 166,800 (0.3702 s) 14,508 (0.0322 s) 14,418 11
(hunt9; hunt8) partial cds 8 150,535 (0.3341 s) 27,865 (0.0630 s) 26,865 5
(hunt6; hunt8) partial cds 9 154,000 (0.3418 s) 32,169 (0.0728 s) 30,919 5

Note: huntingtin (hunt); coding sequence (cds).

398 D. STOJANOV ET AL.

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

the overall time performance, mainly due to the sizeable
number of nucleotide comparisons that had to be per-
formed. In this case, we estimated that 0.8% of the total
time was spent for computing the frequencies of mis-
matching DNA and tracking/sorting the set of consistent
hits that was likely to happen due to the high portion of
mismatching DNA and the increased length of the con-
sistent hits set.

We got better results than Smith�Waterman for the
pairwise alignments of partial cds of huntingtin gene,
because there were only few, but long common hits
(2�9). This is specific only for very similar DNA data (the
percentage of identity for partial cds of huntingtin gene
is more than 90%), for which the obtained results
confirm that our algorithm runs several times faster than
Smith�Waterman. We found that n; m; kð ÞD
n£k£log2m is the best fitting function for the time sam-
ples of spliced huntingtin mRNA alignments and, there-
fore, the time complexity of our algorithm when it works

with very similar DNA is Oðn£k£log2mÞ, where n is the
length of the longer sequence, m is the length of the
shorter sequence and k is the number of hits (matching
fragments) in alignment (Figure 12).

On the other hand, if sequences with poor identity are
analysed, such as the cds of human tetratricopeptide
repeat protein 23 to human tetratricopeptide repeat pro-
tein 25, for which the percentage of identity is 24%, our
algorithm is not worse than Smith�Waterman, but there
is no time improvement (Oðn£mÞ time is required).

The results of the memory analysis for partial hunting-
tin cds are shown in Table 4. Space requirements of the
proposed algorithm and Huangs’ memory linear algo-
rithm are compared. The memory requirement of the
proposed algorithm was calculated according to
Equation (2) and it depends on the Number of hits and
the size of the list L j L j which tracks the numbers of
occurrence of all nucleotide pairs in mismatching exten-
sions. The constant 32 in Equation (2) represents the

Figure 12. Best fitting function for the number of nucleotide comparisons.
Note: huntingtin (hunt).

Table 4. Memory analysis.

Memory (int)

Proposed algorithm

Aligned sequences Hits Huang Equation (1) Equation (3)
Memory reduction-ratio
applying Equation (1)

(hunt4; hunt5) partial cds 2 968 47 43 20.6
(hunt7; hunt6) partial cds 2 803 44 40 18.3
(hunt2; hunt3) partial cds 2 806 47 43 17.1
(hunt6; hunt9) partial cds 3 791 56 50 14.1
(hunt1; hunt3) partial cds 3 817 64 58 12.8
(hunt2; hunt7) partial cds 4 809 67 59 12.1
(hunt3; hunt6) partial cds 4 800 70 62 11.4
(hunt1; hunt6) partial cds 4 817 75 67 10.9
(hunt9; hunt8) partial cds 8 776 80 64 9.7
(hunt6; hunt8) partial cds 9 785 91 73 8.6

Note: integer (int); huntingtin (hunt); coding sequence (cds).

BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT 399

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

cost for storing two matrices: ½A�4£4 and ½B�4£4 in the
main memory.

Memory requirementD 4£number of hitsC Lj jC 32

(2)

According to the results in Table 4, our algorithm
requires between 8 and 20 times less memory than
Huang. The same relationship, in terms of the number of
hits, can be derived again, i.e. fewer hits are detected
and the memory saving is greater (Table 4). The align-
ment which includes nine hits is the worst case of mem-
ory improvement, whereas the best one corresponds to
the alignment of only two hits Table 4.

The proposed TMO algorithm required 2,592 B (648
integers) for tracking 162 residual common hits of
human tetratricopeptide repeat protein 23 to human tet-
ratricopeptide repeat protein 25. There were 1 four-resi-
due hit, 3 three-residue hits, 25 two-residue hits and 133
one-residue hits detected. Regardless of the common hit
length, our algorithm requires 16 B (four integers) per
match representation, which means that the cost for
tracking four-residues common hit equals the cost for
tracking one-residue common hit or in both cases, 16 B
(four integers) are required for tracking the hits’ loca-
tions. For the same purpose, Huang required five times
more memory, or 13,428 B. This confirms the space effi-
ciency of the proposed methodology, even when
sequences with poor percentage of identity are
analysed.

Further improvement of the memory complexity for
25% for tracking data tuples is possible, if instead of four
integers per data tuple, we use data tuples of three inte-
gers, since each common hit can be tracked with only
three integers ðpa;s; pb;s; lÞ, where pa;s is the starting posi-
tion of the common hit in sequence a, pb;s is the starting
position of the common hit in the sequence b and l is
the length of the common hit, which is the same in both
sequences. This is the maximum possible cut per data
tuple without losing any tracking information, but com-
pared to the first representation, which is based on four
integers ðpa;s; pa;f ; pb;s; pb;f Þ, this results in an additional
memory saving of 25% for tracking data tuples.

If we exclude the length of the hits l from the
data tuples, the number of indels between successive
hits can also be precisely calculated, but this will result in
memory saving of 50% for tracking tuples, compared to
the first representation. This requires rearrangement
of Equation (1), such as the final positions of the k0th
hit in a bð Þ, pa;f j kðpb;f j kÞ have to be written as pa;f j k D
pa;s j k C lk � 1 (pb;f j k D pb;s j k C lk � 1Þ, where pa;s j k
ðpb;s j kÞ is the starting position of the k0th hit in a bð Þ and
lk is the length of the hit. With a substitution of

pa;f j kðpb;f j kÞ with pa;s j k C lk � 1 (pb;s j k C lk � 1Þ in Equa-
tion (1), we get Equation (3), or the starting positions of
hit k and hit kC1 in a and b : pa;s j k; pb;s j k and
pa;s j kC 1; pb;s j kC 1 are enough to calculate the number of
indels.

n:gD pa;s j kC 1 � pa;f j k � pb;s j kC 1 � pb;f j k
� �

D pa;s j kC 1 � ðpa;s j k C lk � 1Þ � ðpb;s j kC 1 � ðpb;s j k C lk � 1ÞÞ
D pa;s j kC 1 � pa;s j k � pb;s j kC 1 C pb;s j k

(3)

By using Equation (3), instead of Equation (1), we
reduced the overall memory requirement with up to
20% for huntingtin spliced mRNA (Table 4) and with
35% in the case of human tetratricopeptide repeat pro-
tein 25 to tetratricopeptide repeat protein 23 alignment.
We got better memory reduction ratio for human tetra-
tricopeptide repeat proteins, because there were more
hits that were identified (162) than in the cases of hun-
tingtin spliced mRNA alignments (2�9). The overall
memory complexity was not reduced for 50%, because
according to Equation (2), the algorithm also needs
memory for tracking the mismatching DNA (jLj) and 32
integers for two matrices ½A�4£4 and ½B�4£4.

An equal number of matching nucleotides in spliced
mRNA samples of huntingtin gene is identified when
applying the proposed algorithm and EMBOSS Water
implementation of Smith�Waterman based on
gap openD C 5 and gap extendD C 5 metrics. But
when we run tests based on increased gap penalty
(gap openD C 50, gap extendD C 10), some of the
matching nucleotides which were detected by the pro-
posed algorithm were not detected by applying
Smith�Waterman (Table 5). Regardless of any specific
alignment metrics, in 9 out of 10 cases, our algorithm
detected more matching nucleotides in partial cds of
huntingtin gene than Smith�Waterman (Table 5). Their
number ranges between 8 and 19 and they are excluded
by Smith�Waterman, due to the decrease the overall
alignment score.

When we compared human tetratricopeptide repeat
protein 23 to human tetratricopeptide repeat protein 25,
59 matching amino acids were found by Smith�Water-
man, whereas our algorithm reported 192. The analysis
of the number of matching residues in tetratricopeptide
repeats: TPR1, TPR2, TPR3 and TPR4 of human tetratrico-
peptide repeat protein 23 to human tetratricopeptide
repeat protein 25 shows that our algorithm detected 46
matching amino acids more in tetratricopeptide repeats
than Smith�Waterman (Table 6).

Moreover, Smith�Waterman completely excluded
TPR4 repeat from the solution, due to the fact that it
could not detect even a single matching residue,

400 D. STOJANOV ET AL.

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

whereas our algorithm detected 14 matching amino
acids there (Table 6). Our algorithm detected between
11 and 12 matching residues more in TPR1, TPR2 and
TPR3 than Smith�Waterman and a total of four consen-
sus elements were confirmed.

Even for sequences with small percentage of identity,
such as human tetratricopeptide repeat protein 23(25),
our algorithm was able to detect more common hits
than Smith�Waterman, regardless of any specific align-
ment metrics what makes it suitable for comprehensive
analysis of structural, functional and evolutionary rela-
tionship between coding DNA data.

The problem of identifying common hits between
two DNA sequences has been widely explored in the sci-
ence and different solutions have been proposed. Index-
based solutions, such as MUMmer, AVID and FLASH, can
discover common hits faster than our algorithm, but
they are expected to be worse in terms of memory com-
plexity, due to the indexed data structure that they
employ. For instance, MUMmer and AVID build suffix
tree, whose size is proportional to the sum of the
sequences’ lengths and FLASH builds an index of all

words found in both sequences, regardless if they are
matching or not. There is also a preprocessing phase
which precedes the actual hits’ searching phase, which
may be considered an additional computational cost.

Recent methods based on DNA hashing enable fast
comparison on DNA words and efficient data storage.
Instead of comparing words, their hash representations
are mutually compared and the cost for storing hash of a
DNA word is only 4 B (1 integer). Sequence Search and
Alignment by Hashing Algorithm (SSAHA) [37] is one of
the hash-based implementations which can be applied
for discovering common hits based on their hash-repre-
sentations. It assigns a unique number to each DNA
nucleotide f bj

� � 2 f0, 1, 2 or 3}, bj 2 fA;C; T;Gg and cal-
culates the hash of DNA word of k nucleotides
w : b1 . . .bk by applying the equation f w : b1 . . . bkð ÞDPk

jD 1f ðbjÞ£4j�1. SSAHA requires 4 B (1 integer) for stor-
ing DNA hash f ðwÞ, 4 B (1 integer) for hash’s starting
position p and 4 B (1 integer) for the index i of the
sequence where the hash occurs, or 12 B (3 integers) per
hashed/tracked DNA word are required. This means that
for hashing/tracking 12 Kbp common hit
12; 000=5£12D 28; 800 B (7,200 integers) would be
required, given that kD 5. For tracking the same hit, our
algorithm requires 16 B (four integers), which results in
memory saving of 28; 800� 16D 28; 784 B.

In general, indexing and hashing allow faster compar-
ison of DNA words, but there is an additional memory
cost for storing word’s index/hash. For instance, it would
be faster to compare hashes fðGCTAAÞ and fðGCTAG)
than performing partial comparison based on linear walk
on GCTAA and GCTAG, because instead of comparing
five characters (5 B), integer would have to be compared
with integer, for what is a required comparison of 4 B.
Faster comparison, based on indexing/hashing, is only
possible at the cost of increased memory requirement,
because 8 B (two integers) that track the hashes of
GCTAA and GCTAG would have to be stored in the mem-
ory. There is also an additional computational cost for

Table 6. Detailed analysis of matching residues in TPR1�TPR4 repeats.

Smith�Waterman Our algorithm

Repeat Matching amino acids
Longest common

hit/hits
Confirmed TPR

consensus elements Matching amino acids
Longest common

hit/hits
Confirmed TPR

consensus elements

TPR1 8:
K,N,E,K,V,L,C,I

K, N…I / 18:
L,L,C,E,K,A,S,S,N,Y,K,L,V,R,C,L,R,C

LC, SN, LV /

TPR2 12:
E,L,F,H,G,R,L,L,A,N,K,E

LFH / 23:
E,L,T,M,G,L,L,L,Q,K,K,E,A,E,L,T,K,A,E,L,K,E,L

KAE G8-A20-A27

TPR3 8:
A,A,Q,V,A,A,L,E

AQV, ALE / 19:
A,R,I,R,F,A,V,Q,Q,K,K,E,L,H,Y,Q,A,A,Y

FA, QA A27

TPR4 0 / / 14:
E,G,A,D,L,A,G,S,G,R,K,L,L,I

DL /

Note: tetratricopeptide repeat (TPR).

Table 5. Number of matching nucleotides per alignment.

Number of matching nucleotides

Aligned sequences

EMBOS Water
(Smith�Waterman
gap openD 50,
gap extend D 10)

Proposed
algorithm

Additionally
identified
matching
nucleotides

(hunt6; hunt8) partial cds 366 385 19
(hunt1; hunt6) partial cds 378 396 18
(hunt1; hunt3) partial cds 385 400 15
(hunt2; hunt3) partial cds 385 400 15
(hunt9; hunt8) partial cds 367 382 15
(hunt4; hunt5) partial cds 466 481 15
(hunt2; hunt7) partial cds 383 396 13
(hunt3; hunt6) partial cds 382 390 8
(hunt6; hunt9) partial cds 382 390 8
(hunt7; hunt6) partial cds 400 400 0

Note: European Molecular Biology Open Software Suite (EMBOSS); huntingtin
(hunt); coding sequence (cds).

BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT 401

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

computing the hashes of the words, which is propor-
tional to the length of words that are indexed. Our algo-
rithm is a compromise between the time and memory
requirement, i.e. it is expected to run slower than hash/
index-based methods, but there is no cost for storing
DNA index/hash and no preprocessing phase that pre-
cedes the actual hits’ searching phase.

Theoretically, different sets of consistent hits can be
defined if at least one of the common hits is found as a
repeating sequence. For instance, if the trinucleotide GCT
in the sample a : AGCTAG is extended in GCTGCTGCT
trinucleotide microsatellite (a : AGCTGCTGCTAGÞ, then,
instead of one, three different sets of consistent hits,
which are equal in terms of the matching con-
tent:fGCT : 2; 4; 2; 4ð Þ; Gð12; 12; 5; 5Þ}, fGCT : 5; 7; 2; 4ð Þ;
Gð12; 12; 5; 5Þ} and fGCT : 8; 10; 2; 4ð Þ; Gð12; 12; 5; 5Þ}
can be defined for the samples a : AGCTGCTGCTAG and
b : TGCTG. So, which one of the three candidates does
the algorithm report?

Our algorithm works accurately for coding and non-
coding DNA, due to the fact that the leftmost positioned
consistent hits in minisatellite (microsatellite) DNA are
always reported. For the samples a and b; the first
set:fGCT : 2; 4; 2; 4ð Þ; Gð12; 12; 5; 5Þ} is the one which is
reported, because GCT : ð2; 4Þ is the leftmost positioned
microsatellite triplet of all three (GCT : ð2; 4Þ,GCT : ð5; 7Þ
and GCT : ð8; 10ÞÞ in the samplea : AGCTGCTGCTAG
(Figure 13(a)). This approach enables accurate indel’s

prediction, since the alignment is built starting from
the leftmost positioned match in the set of consistent
hits. Our model is based on the set:
fGCT : 2; 4; 2; 4ð Þ; Gð12; 12; 5; 5Þ} where two GCT indels
are pinpointed (Figure 13(a)). Incorrect solutions would
have been derived if the second (third) candidate set of
consistent hits were used, where instead of 2, 1(0) GCT
local indels are predicted (Figure 13(b) and 13(c)). Table 7
summarizes the key features of our algorithm.

Conclusions

In the present study, a TMO and more accurate algo-
rithm than the well-known and often used dynamic pro-
gramming algorithms is presented. Four crucial aspects
outline the benefit of the proposed algorithm. First, our
algorithm allows precise detection of missing glutamine-
coding triplets in polyglutamine tracts of partial cds of
huntingtin gene, due to its predisposition to pinpoint
indels in less frequently occurring nucleotide pairs. This
property makes our algorithm suitable for accurate
detection of Huntington’s disease and other diseases,
which are associated with excessive trinucleotide repeti-
tions, such as: Spinocerebellar ataxia and Dentatorubro-
pallidoluysian atrophy. Second, our algorithm runs faster
than Smith�Waterman for very similar DNA, but not at
the cost of generating partial or shortened alignments,
which may happen in recent developments, such as
FLASH, YASS, PatternHunter and other related
approaches that usually cut in the search space in order
to improve the time performance. It is also very impor-
tant to note that the time improvement (the reduced
number of comparisons) does not affect the complete-
ness of the solution. Third, our algorithm requires less
memory than the most memory efficient dynamic pro-
gramming algorithm, the Huang’s algorithm, regardless
if similar or dissimilar DNA is analysed. The memory com-
plexity of the proposed algorithm is linear and it is pro-
portional to the number of hits being detected. Fourth,

Figure 13. Aligning sequences with repeats. Hits in the microsat-
ellite DNA: GCT (2,4) � being reported (a), GCT (5,7) (b) and GCT
(8,10) (c).

Table 7. Summary of the proposed algorithm’s key features.

Factors Advantages Applications

Detection of continuous glutamine deletions
in polyQ tracts of Huntington’s disease
associated genes

More precise detection than Smith�Waterman Suitable for accurate detection of trinucleotide repeat
associated diseases

Time complexity Requires less nucleotide comparisons than
Smith�Waterman.Requires Oðn£k£log2mÞ time
for very similar sequences, whereas there is no
time improvement over Smith�Waterman for
dissimilar DNA, i.e. Oðn£mÞ time is requested

It can be applied on medium-size DNA sequences (long
genes, chromosomes)

Memory complexity Requires less memory than Huang’s algorithm. Fixed memory requirement per hit: 4 int D 16 B, ragrd-
less its length

Detection rate of matching nucleotides Higher than Smith�Waterman, if it is based on
metrics that assigns high penalties

Suitable for the detection of complete homology
between two DNA samples, regardless of any specific
alignment metrics

402 D. STOJANOV ET AL.

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

unlike Smith�Waterman, our algorithm does not reject
any of the matching nucleotides which can be included
in the solution and, therefore, is suitable for a complete
detection of the homology between two DNA samples.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Needleman SB, Wunsch CD. A general method applicable
to the search for similarities in the amino acid sequence
of two proteins. J Mol Biol. 1970;48(3):443�453.

[2] Smith T, Waterman M. Identification of common molecu-
lar subsequences. J Mol Biol. 1981;147(1):195�197.

[3] Sellers PH. An algorithm for the distance between two
finite sequences. J Combin Theory Ser A. 1974;16(2):
253�258.

[4] Sellers PH. The theory and computation of evolutionary
distances: pattern recognition. J Algorithms. 1980;1
(4):359�373.

[5] Ulam SM. Some combinatorial problems studied experi-
mentally on computing machines. In: Zaremba SK, editor.
Applications of number theory to numerical analysis. San
Diego, CA, Academic Press; 1972. p. 1�3.

[6] Smith TF, Waterman MS, Fitch WM. Comparative biose-
quence metrics. J Mol Evol. 1981;18(1):38�46.

[7] Goad WB, Kanehisa MI. Pattern recognition in nucleic acid
sequences. I. A general method for finding local homolo-
gies and symmetries. Nucleic Acids Res. 1982;10(1):
247�263.

[8] Waterman MS, Eggert M. A new algorithm for best subse-
quence alignments with application to tRNA-rRNA com-
parisons. J Mol Biol. 1987;197(4):723�728.

[9] Fitch WM, Smith TF. Optimal sequence alignments. Proc
Natl Acad Sci U S A. 1983;80(5):1382�1386.

[10] Gotoh O. An improved algorithm for matching biological
sequences. J Mol Biol. 1982;162(3):705�708.

[11] Gotoh O. Pattern matching of biological sequences with
limited storage. CABIOS. 1987;3(1):17�20.

[12] Hirschberg DS. A linear space algorithm for computing
maximal common subsequences. Commun ACM. 1975;18
(6):341�343.

[13] Myers EW, Miller W. Optimal alignments in linear space.
CABIOS. 1988;4(1):11�17.

[14] Huang X, Hardison RC, Miller W. A space-efficient algo-
rithm for local similarities. CABIOS. 1990;6(4):373�381.

[15] Huang X, Miller W. A time-efficient, linear-space local simi-
larity algorithm. Adv Appl Math. 1991;12(3):337�357.

[16] Sankoff D, Kruskal JB. Time warps, string edits, and macro-
molecules: the theory and practice of sequence compari-
son. 1st ed. Boston, MA: Addison-Wesley; 1983. p. 382.

[17] Fickett JW. Fast optimal alignment. Nucleic Acids Res.
1984;12(1):175�179.

[18] Ukkonen E. Algorithms for approximate string matching.
Inf Control. 1985;64(1):100�118.

[19] Chao KM, Pearson WR, Miller W. Aligning two sequences
within a specified diagonal band. CABIOS. 1992;8
(5):481�487.

[20] Lipman DJ, Pearson WR. Rapid and sensitive protein
similarity searches. Science. 1985;227(4693):1435�
1441.

[21] Altschul SF, Gish W, Miller W, et al. Basic local alignment
search tool. J Mol Biol. 1990;215(3):403�410.

[22] Kent WJ. BLAT—the BLAST-like alignment tool. Genome
Res. 2002;12(4):656�664.

[23] Ma B, Tromp J, Li M. PatternHunter: faster and more sensi-
tive homology search. Bioinformatics. 2002;18(3):
440�445.

[24] Califano A, Rigoutsos I. FLASH: A fast look-up algorithm for
string homology. In: IEEE, editor. Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition;
1993 Jun 15�17; New York, NY: IEEE Computer Society;
1993.

[25] No�e L, Kucherov G. YASS: enhancing the sensitivity of
DNA similarity search. Nucleic Acids Res. 2005;33(suppl 2):
W540�W543.

[26] Delcher AL, Kasif S, Fleischmann RD, et al. Alignment of
whole genomes. Nucleic Acids Res. 1999;27(11):
2369�2376.

[27] Bray N, Dubchak I, Pachter L. AVID: A global alignment
program. Genome Res. 2003;13(1):97�102.

[28] Brudno M, Do CB, Cooper GM, et al. NISC comparative
sequencing program. LAGAN and multi-LAGAN: efficient
tools for large-scale multiple alignment of genomic DNA.
Genome Res. 2003;13(4):721�731.

[29] Brudno M, Morgenstern B. Fast and sensitive alignment of
large genomic sequences. In: IEEE, editor. Bioinformatics
Conference; 2002 Aug 14�16; Stanford, CA: IEEE Com-
puter Society; 2002.

[30] Shen SY, Yang J, Yao A, et al. Super pairwise alignment
(SPA): an efficient approach to global alignment for
homologous sequences. J Comput Biol. 2002;9(3):
477�486.

[31] Walker FO. Huntington’s disease. The Lancet. 2007;369
(9557):218�228.

[32] Craufurd D, Thompson JC, Snowden JS. Behavioral
changes in Huntington disease. Cogn Behav Neurol.
2001;14(4):219�226.

[33] Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable
trinucleotide CAG repeat in spinocerebellar ataxia type 1.
Nat Genet. 1993;4(3):221�226.

[34] Nagafuchi S, Yanagisawa H, Sato K, et al. Dentatorubral
and pallidoluysian atrophy expansion of an unstable CAG
trinucleotide on chromosome 12p. Nat Genet. 1994;6
(1):14�18.

[35] The European Nucleotide Archive [Internet]. Heidelberg:
The European Molecular Biology; [cited 2015 June 20].
Available from: http://www.ebi.ac.uk/ena/.

[36] EMBOSS Water online tool [Internet]. Heidelberg: The
European Molecular Biology; [cited 2015 June 20]. Avail-
able from: http://www.ebi.ac.uk/Tools/psa/emboss_water/.

[37] Ning Z, Cox AJ, Mullikin JC. SSAHA: a fast search method
for large DNA databases. Genome Res. 2001;11
(10):1725�1729.

BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT 403

D
ow

nl
oa

de
d

by
 [

G
oc

e
D

el
ce

v
-

U
ni

ve
rs

ity
 in

 S
tip

]
at

 0
1:

52
 1

2
A

pr
il

20
16

http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/Tools/psa/emboss_water/

	Abstract
	Introduction
	Materials and methods
	Phase 1: searching and representing common hits
	Phase 2: generating local pairwise alignment

	Results and discussion
	Conclusions
	Disclosure statement
	References

