Serdica Mathematical Journal

Volume 41, Number 1, 2015





C O N T E N T S

· Preface (pp. i-ii)
· Lin, Y.-F. The C*-algebra of a locally compact group (pp. 1−12)
· Todorov, I. G. Interactions between harmonic analysis and operator theory (pp. 13−34)
· Anoussis, M. S. Shift operators (pp. 35−48)
· Katavolos, A. Operator algebras: an introduction (pp. 49−82)
· Karanasios, S. EP elements in rings, semigroups, with involution and in C*-algebras (pp. 83−116)
· Eleftherakis, G. K. Some notes on Morita equivalence of operator algebras (pp. 117−128)
· Felouzis, V. The logic of quantum mechanics (pp. 129−158)

A B S T R A C T S


THE C*-ALGEBRA OF A LOCALLY COMPACT GROUP
Ying-Fen Lin y.lin@qub.ac.uk

2010 Mathematics Subject Classification: 22D25, 22E25.
Key words: Group C*-algebras, unitary representations, locally compact groups.


INTERACTIONS BETWEEN HARMONIC ANALYSIS AND OPERATOR THEORY
I. G. Todorov i.todorov@qub.ac.uk

2010 Mathematics Subject Classification: Primary 47L05, 47L35; Secondary 43A45.
Key words: locally compact group, spectral synthesis, Schur multiplier, relexivity.


SHIFT OPERATORS
M. S. Anoussis mano@aegean.gr

2010 Mathematics Subject Classification: Primary 46L05; Secondary 47A15, 47B35.
Key words: shift operator, Toeplitz algebra, Wold decomposition, invariant subspace.


OPERATOR ALGEBRAS: AN INTRODUCTION
Aristides Katavolos akatavol@math.uoa.gr

2010 Mathematics Subject Classification: Primary 46L05; Secondary 47L55.
Key words: C*-algebras, Gelfand Theory; masa bimodules.


EP ELEMENTS IN RINGS AND IN SEMIGROUPS WITH INVOLUTION AND IN C*-ALGEBRAS
Sotirios Karanasios skaran@math.ntua.gr

2010 Mathematics Subject Classification: Primary 46L05, 46J05, 46H05, 46H30, 47A05, 47A53, 47A60, 15A09, 15A33, 16A28, 16A32, 16B99,16W10; Secondary 46E25,46K05, 47A12, 47A68.
Key words: EP operator, EP element, involution, strong involution, semigroup with involution, ring with involution, regular ring, antiregular ring, *-regular ring, faithful ring, C*-algebra, group inverse, Drazin inverse, generalized inverse, Moore-Penrose inverse, regular element, antiregular element, polar element, quasipolar element, global star cancelation law, annihilator.


SOME NOTES ON MORITA EQUIVALENCE OF OPERATOR ALGEBRAS
G. K. Eleftherakis gelefth@math.upatras.gr

2010 Mathematics Subject Classification: Primary 47L40; Secondary 47L45, 47L55.
Key words: Morita equivalence, operator algebras.


THE LOGIC OF QUANTUM MECHANICS
V. Felouzis felouzis@aegean.gr

2010 Mathematics Subject Classification: Primary 81P10, 4703; Secondary 0101.
Key words: logic, observable, linear operator.


Back