

,,

" _

-

2015

: . -

"

:

""____"___ : . -

""____

,, " ____

: – :

: ______

-. -. -, .

Complex interpretation of data obtained from seismic reflection and refraction, Goran Aleksovski, Marjan Delipetrev, Vladimir Manevski, Goran Slavkovski, Zoran Toshik (VI.Balkanmine – Petrosani, Romania 2015);

Application and usage of the method of geo – electrical mapping for geological environment with presence of vertical fault, Trajan Sholdov, Marjan Delipetrev, Vladimir Manevski, Goran Slavkovski, Goran Aleksovski (VI.Balkanmine – Petrosani, Romania 2015);

Correlation of the seismic data with the geo – mechanical parameters obtained through the method of refraction, Marjan Boshkov, Krsto Blazev, Blagoj Delipetrev, Trajan Sholdov, Goran Aleksovski (VI.Balkanmine – Petrosani, Romania 2015).

. • , ,

.

.

5 а , 210 m. 30 m,

,

,

,

15 m. а , 60 m, 30

m . ,

4 . ,

.

Κ

.

:

, t₀

•

,

,

•

USAGE AND COMPLEX INTERPRETATION OF THE SEISMIC METHODS OF REFRACTION AND REFLECTION

Abstract

The seismic methods of refraction and reflection are both based on registration and determination of the velocities of propagation of the elastic waves through geological known environments with the certain geomechanical features. he main difference between these two methods is in the rays that are registering. Namely the reflective method is registering the ray that that is reflected from the boundary surface that is dividing two different geological environments, whereas the refractive method is registering the refractive ray that is breached while passing through a certain boundary surface. Every refraction has a process of reflection, therefore the procedure of registering the refractive and reflective waves is performed simultaneously by setting more geophones along the investigated environment.

The investigated area that is chosen to be modelled through models of refraction and reflection is geologically investigated with five exploratory boreholes and has a total length of 210 m. With the seismic method of refraction the investigated area is examined to a maximal depth of 30 m, whereas with the seismic method of reflection the investigated area is examined with maximal depth of 15 m. Because the depth of examination of the environment depends on the distance between the source and the receiver of the elastic waves and it's equal to one half of that length, the seismic profiles of refraction are made with length of 60 m, whereas the seismic profiles of reflection with length of 30 m, with the source of the elastic waves positioned in the middle of the refractive profiles. In order to examine the whole length of the investigated area through the modelling a total of four refractive and reflective profiles are made. The modelling of the profiles is made synthetically on the basis of the geo – mechanical data for the geological environments as well as the geological data obtained from the exploratory boreholes. The last phase of the modelling in this paper is the process of complex interpretation of the obtained seismic models.

Through the process of interpretation are determined the propagation velocity of the elastic waves through the geological structures, the geological characteristics of the investigated environment and with the t_0 method the depths to the boundary surfaces that are separating the different geological environments.

Key words: Seismic research, elastic waves, seismic refraction, seismic reflection

	:	
1.	_	11
1.1.		
2.		15
2.1.		15
2.1.1.	()15
2.1.2.		()17
2.1.3.		19
2.1.4.		
2.1.5.		
2.2.		
2.2.1.		23
2.2.1.1.		23
2.2.1.2.		26
2.2.2.		
29		
2.2.3.		
3.		E33
3.1.		
3.1.1.		
3.1.2.		
3.2.		
3.2.1.		
3.2.2.		44
3.2.3.		46
3.3.		47
3.4.		
4.		52
4.1.		
4.2.		52

4.3.	
4.4.	54
4.5.	55
5.	A56
5.1.	
5.1.1.	
5.1.2.	
5.1.3.	59
5.2.	62
6.	
6.1.	
6.2.	
7.	71
7.1.	
7.2.	83
7.3.	90
7.4.	94
	(REFERENCES)100

1.

,

,

,

,

19-

,

,

,

,

_

20-

,

,

,

,

:

,

,

,

: >;; >;

> ; > . ,

2 3

. . .

1.1.

.

.

1.1.

,

,

,

è

.

.

210 m.

30 m,

,

,

),

)

(

,

,

.

,

(

)

(

.

)

15 m,

30 m.

1. Figure 1. Stretching rod

,

•

 (Δl)

.

 $\Delta l = k \cdot l \cdot \frac{F}{S}$ (2.4) (Δl) (†_n) (1). (*k*) (*k*) (*E*), : $E = \frac{l}{\Delta l} \cdot \frac{F}{S}$ (2.5) (*E*) (*F*), (†) , $(\Delta l).$

 $\dagger = \frac{\Delta l}{l} \cdot E$ (2.6)

Paskal= N/m².

2.1.2.		(Poisson)	()
	(<i>F</i>)			,
			(S).	
	(<i>d</i>),		(Δd).
				(€)

:

2.1.3.

,

,

(),

,

', BB', CC'

(‡)

(*G*)

,

•

, . .
$$(F)$$

 (G) (E)
 (G) (E)

•

(G)

$$\sim = G = \frac{E}{2 \cdot (1 + \epsilon)} \tag{2.11}$$

(*k*)

(E)

:

2.1.4.

((), (E)
(), .
:

$$k = \frac{F \cdot v}{G \cdot \Delta v}$$
(2.12)
:
 $v - (F);$

$$\Delta v - (F).$$
(k)
Paskal = N/m².

2.1.5.

$$(€); (k) (G); (k, ~).$$

$$V_p = \sqrt{\frac{\} + 2^{\sim}}{...}}$$
 (2.13)

$$V_s = \sqrt{\frac{\tilde{}}{\dots}}$$
(2.14)

каде што:

$$V_p$$
 - ;
 V_s - ;

$$(, , \sim)$$
 V_p

 V_s :

$$V_{p} = \sqrt{\frac{1}{\dots} \cdot \frac{E(1 - \epsilon)}{(1 + \epsilon) \cdot (1 + 2\epsilon)}}$$

$$V_{s} = \sqrt{\frac{G}{\dots}}$$
(2.15)
(2.16)

$$(V_p)$$

 $(V_s).$

,

.

 $(\}, \ \sim, \ E \ , \ \in)$

(...).

2.1

 $(E, \in, \}, \sim, k)$:

2.1.	
Table 2.1. Dependencies between different parameters of elastici	ty

	Ε	€	I	~	}
(<i>E</i> ,€)			$\frac{E}{3(1-2\mathfrak{E})}$	$\frac{E}{2(1+\epsilon)}$	$\frac{E}{(1+\varepsilon)(1-2\varepsilon)}$
(E,K)		$\frac{3 -E}{6 }$		$\frac{3 E}{9 -E}$	$\frac{3 (3 -E)}{9 -E}$
(E, \sim)		$\frac{E-2}{2^{\sim}}$	$\frac{\sim E}{3(3\sim -E)}$		$\frac{\sim (E-2\sim)}{3\sim -E}$
€,)	3 (1 − 2€)			$\frac{3 \mid (1-2\mathfrak{E})}{2(1+\mathfrak{E})}$	$\frac{3 {\color{black} \in}}{(1+{\color{black} \in})}$
€,~)	2~(1+€)		$\frac{2 \sim (1 + \varepsilon)}{3(1 - 2\varepsilon)}$		$\frac{\sim \mathscr{X}}{(1-\mathscr{X})}$
€,})	$\frac{\left(1+\in\right)\left(1-2\in\right)}{\in}$		<u>}(1+€)</u> €	$\frac{(1-\mathcal{X})}{\mathcal{X}}$	
(,~)	$\frac{9 \notin}{3 + \notin}$	$\frac{3 -2\varepsilon}{2(3 +\sim)}$			-2~/3
(,})	$\frac{9 (-\})}{3 -\}}$	$\frac{3}{3 -3}$		3/2(-})	
(~,})	$\frac{-(3)+2-)}{+-}$	$\frac{\}}{2(\}+\sim)}$	} + (2/3~)		

2.2.

),

,

•

2.2.1.

,

,

,

,

,

(

2.2.1.1.

, a , : > ((,)) P; > ((,)) S.

Figure 4. Deformation in longitudinal movement of elastic (P) waves and thus the oscillation of the elementary particles of ground

Figure 5. Deformation in transverse movement of elastic (S) waves and oscillation mode of the elementary particles of ground

S

2000 5000 m/s.

Ρ

2.2.1.2.

		Р		S	
		а		3	:
\triangleright	(Rayleigh)		R	;	
\triangleright	(Love)	Q			

,

,

,

(Rayleigh) R

P SV

,

.

Figure 6. Elliptical motion of particles In the spreading of Rayleigh-s waves

(Dzon

Figure 7. Deformation when noving Rayleigh-s waves and oscillation mode of the elementary paticles of ground

8.

Figure 8. Deformation in spreading the Love-s waves and oscillation mode of the elementary particles of ground

2000 6000 m/s.

.

9. Figure 9. Diagrams in logarithmic scale according Gardner, 1974

2.2.

Ρ

Table 2.2. Propagation speed of P waves through environments with different textures

a /	/speed	a /	/speed
geological environment	m/s	geological environment	m/s
/ air	315 - 360	/ clay shale	2700 - 4800
/ water	1740	/ granite	4000 - 5700
/ ice	310 - 420	/ basalt	4500 - 6000
/ clay	1200 - 2500	/ anhydrite	3000 – 6000
/ quarry	200 - 3500	/limestone	2500 - 6000
/ dry sand	100 - 600	/ coal	1600 - 1900
/ wet sand	200 - 1800	/ salt	5000

$$E = V \cdot \dots \cdot C^{2}$$

$$\vdots$$

$$V -$$

$$\dots -$$

$$C -$$

.

(2.18)

•

;

;

10. (Figure 10. Schedule of oscillations on the ground

)

67%.

2.2.3.

,

,

,

(Snellius)

,

 V_{1} ,

 V_2

.

 $\frac{\sin r}{\sin s} = \frac{V_1}{V_2} \tag{2.19}$

3.

3.1.

),

,

1

3 – 5

,

"

"

,

(

.

(II),

.

3.1.1.

(I) (*i*) : , $\sin i = \frac{V_1}{V_2}$ (3.1) (A) , (MN) V₂, V₂, (I) $V_1.$ (II) () 12 () (I), (B) (MN). (I) (CB). (MN) (*i*). , (*i*) () (F) OA, AB, BE, EF. 12 , (D) (D) (D) (D) (D) , (O) . (O) (D), $V_{1,} \\$ V₂. • , (OAD) (I), (D) , • (II)

3.1.2.

13. a a a Figure 13. Hodohron of refracted wave from the boundary plane

(I) V_1 , (II) V_2 . (*h*), V_2 V_1 , :

 $t = \frac{\bar{OA}}{V_1} + \frac{\bar{AB}}{V_2} + \frac{\bar{BC}}{V_1}$ (3.2)

$$\therefore \bar{OA} = \bar{BC}$$
 $AB = x - 2x_1$

:

а

$$\bar{OA} = \bar{BC} = \frac{h}{\cos i},$$
(3.3)
: $x_1 = h tg i$

 $\bar{OA}, \bar{BC}, \bar{AB}$ (3.2)

(*x*) :

$$t = \frac{x}{V_2} + \frac{2h}{V_1} \cos i$$
 (3.4)

 $\cos i$

,

$$t = \frac{x}{V_2} + \frac{2h}{V_1 V_2} \sqrt{V_2^2 - V_1^2}$$
(3.5)

:

$$\rightarrow$$
 x_c

.

:

,

:

•

•

$$x = x_c$$
, $t_1 = t_2$, (3.4)

$$x_{c} \frac{1}{V_{1}} = \frac{x_{c}}{V_{2}} + \frac{2h}{V_{1}} \cos i$$
(3.6)

, *h*

$$h = \frac{x_c}{2\cos i} (1 - \sin i) \tag{3.7}$$

$$h = \frac{x_{c}}{2} \sqrt{\frac{V_{2} - V_{1}}{V_{2} + V_{1}}}$$
(3.8)

13,

.

13,

.

 $t = \frac{1}{3},$

 $t = \frac{1}{2} \cdot \frac{V_{1} \cdot t_{0}}{\cos i}$
(3.9)

 $h = \frac{V_{1}V_{2}}{2} \frac{t_{0}}{\sqrt{V_{2}^{2} - V_{1}^{2}}}$
(3.10)

 $t = \frac{V_{1}}{2} \frac{t_{0}}{\sqrt{V_{2}^{2} - V_{1}^{2}}}$
(3.10)

 $t = \frac{V_{1}}{2} \frac{t_{0}}{\sqrt{V_{2}^{2} - V_{1}^{2}}}$
(3.10)

 $h = \frac{V_{1}}{2} \frac{t_{0}}{\sqrt{V_{2}^{2} - V_{1}^{2}}}$
(3.11)

 $h = \frac{V_{1}V_{2}}{2\sqrt{V_{2}^{2} - V_{1}^{2}}} \left(t_{2} - \frac{x}{V_{2}}\right)$
(3.12)

 $V_{1} \quad V_{2}$
(3.12)

 $V_{1} \quad V_{2}$
(3.11)

(3.12)

(MN).

 (3.12)
(3.12)

 (h)

3.2.

:

;

;

,

,

,

,

).

(

.

,

,

 t_0

,

,

,

;

,

.

è

,

,

(

39

•

.),

(**_**1)

(CR) (CR) . (S'S)
(CD) (CD) (I) (V),
$$t = \frac{\overline{SC} + \overline{CR}}{V}$$
 (3.13)

SC=SC ['] (SCR),	(S ['] R)	
:		
$t = \frac{\overline{S'R}}{V}$		(3.14)
	(<i>x</i>),	:
$(S'R)^2 = x^2 + (2h)^2 = x^2 + 4h^2$		(3.15)
		:
$t^{2} = \frac{x^{2}}{V^{2}} + \frac{4h^{2}}{V^{2}}$		(3.16)
V ² :		4h ²
$\frac{V^2 t^2}{4h^2} - \frac{x^2}{4h^2} = 1$		(3.17)
		3
·	(R)	
(SR+CR),	(SR). è	(SR)
(OM), (SR)	(ON [']). (SR+CR) ,	(x)

t₀ S, (MN), :

$$t_0 = \frac{2 \cdot h}{V} \tag{3.18}$$

, *h* :

$$h = \frac{1}{2} \cdot V \cdot t_0 \tag{3.19}$$

$$t^{2} = \frac{x^{2}}{V^{2}} + \frac{4h^{2}}{V^{2}} = \frac{x^{2}}{V^{2}} + t_{0}^{2}$$
(3.20)

 $t{=}t_0 \qquad x{=}0.$

V

.

2h :

)⁴]

$$t = \frac{2h}{V} \left[1 + \left(\frac{x}{2h}\right)^2 \right]^{1/2} = t_0 \left[1 + \frac{1}{2} \left(\frac{x}{Vt_0}\right)^2 - \frac{1}{8} \left(\frac{x}{Vt_0}\right)^4 + \dots \right]$$
(3.21)

t₁

:

:

x₁, x₂,

$$\Delta t = t_2 - t_1 = \frac{x_2^2 - x_1^2}{2V^2 t_0}$$
(3.22)

(S), x₁=0,

$$\Delta t = \frac{x_{2}^{2}}{2V^{2}t_{0}}$$
(3.23)

$$\Delta t = \frac{x^{2}}{2V^{2}t_{0}} - \frac{x^{4}}{8V^{4}t_{0}^{2}} = \frac{x^{2}}{2V^{2}t_{0}} \left[1 - \left(\frac{x}{4h}\right)^{2} \right]$$
(3.24)

$$(t_{0}, \Delta t, \Delta x, V)$$

$$h, , , (t_{0}, \Delta t, \Delta x, -V)$$

$$V.$$

$$V.$$

$$\int_{0}^{\frac{2}{2}} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{$$

Figure 15. Relationship of hodohrons of reflected and refracted seismic waves

15

,

ΜN

V₁,

.

x=0 t₀=2h/V.

3.2.2.

,

(S)

16. Figure 16. Hodohron of reflected wave from the two boundary planes

.

 \mathbf{X}_1

90⁰.

$$(h_{2}), H = h_{1} + h_{2}.$$

$$(I) (V_{1}), (II) (V_{2})$$

$$(S) (R_{1}) (SABCR_{1})$$

$$(SABCR_{1}) (S'BR_{1}) .$$

$$(S) (MN), (S').$$

$$(S') (B) (R), (R),$$

$$(MN). (\bar{V})$$

 $t_2 = \frac{S'R_1}{\bar{V}}$ (3.25)

:

$$t_2^2 = \frac{x^2}{\bar{V^2}} + \frac{4H^2}{\bar{V^2}}$$
(3.26)

$$t_{02} = \frac{2H}{\bar{V}}; \quad H = \frac{\bar{V}t_{02}}{2}$$
(3.27)

$$t_{2} = \frac{x^{2}}{\bar{V}^{2}} + t_{02}^{2} = \frac{x^{2}}{\bar{V}^{2}} \frac{4H^{2}}{\bar{V}^{2}}$$
(3.28)

$$x = 0 \qquad t_2 = t_{02}.$$

$$\mathsf{R}_1 \quad \mathsf{R}_2 \; \mathsf{e} \; \Delta t_2 \, . \qquad t_{21} \, , \qquad t_{22} \, ,$$

:

$$(x_1),$$
 $(x_2),$:

$$\Delta t_2 = t_{22} - t_{21} = \frac{x_2^2 - x_1^2}{2V^2 t_{02}}$$
(3.29)

(S),

x = 0 ,

$$\Delta t_{12} = \frac{x_2^2}{2V^2 t_{02}} \tag{3.30}$$

:

:

$$\Delta t_{n2} = \frac{x_2^2}{2V^2 t_{02}} \left[1 - \left(\frac{x}{4h}\right)^2 \right]$$
(3.31)

H

$$t_{02}, \Delta t_{n2}, x V$$

 $\Delta t_{n2}, x, H t_{02}$
(V).

3.2.3.

.

. (V)

•

•

•

(3.26) 45,

$$t_2^2 = \frac{x^2}{\bar{V^2}} + \frac{4H^2}{\bar{V^2}}.$$

.

$$x^{2}-t^{2} \qquad x=0,$$

$$\left(t^{2}\right) \qquad \frac{4h^{2}}{V^{2}},$$

$$(V)$$
.

(

,

:

,

,

3.3.

 \triangleright

 \triangleright

,

.).

.

Table 3.1. Types of measure in se	zmic metod of refraction
/ the surface	/ in
of the ground	underground investigative facilities
/	/
continuous longitudinal profiling	continuous longitudinal profiling
	/
/	seismic sounding
continuous profiling with lateral initiation	
,	/
	vertical seizmic profiling
longitudinal profiling by lines on profile	
/	/
seismic sounding	seismic mapping of the borehole
/	(-)
fan initiation	transparency (galleries- boreholes)

3.1. Fable 3.1. Types of measure in seizmic metod of refractior

3 5

,

100 200 ,

.

.

.

5-20.

500 .

,

.

.

.).

,

,

.

,

,

1963 .

2014

.

,

(

"

,

",

,

,,

,

,

",

,

_

3.4.

50-

.

60-

:

 \triangleright

 \triangleright

 \triangleright

,

(0, 1).

,

-

"

•

,,

:

:

;

;

14 Hz.

18.ABEMFigure 18. Geophysical instrument ABEM

4.1.

,,

,

"

"

4.2.

, a

1

m.

4.3.

.

25 m 210 m.

-

, ≻ (H) ; ≻ (CI/MI) ;

,

> (CI/MI) ;
 > (CL)

> (ML) ;

≻ (SFs) ;

≻ (GFs)

(GP) ;
(PI) ;

➢ (Plpc)

4.4.

"" () () è

;

:

;

,

(,).

,

_

500 mm ,

.

,

, . .

4.5.

, VIII IX° MCS

	VIII	іл		WOO,
1963			IX°	MCS
,		"		"
	5 km.			
	1963 ,	1963 . , 5 km.	1963 . , " " 5 km.	1963 . IX° , " 5 km.

800 m/s.

Figure 21. Line of engineering-geological profile

		or invooligation					
<i>I</i> Borehole	/ Depth [m]	/ Final depth [m]	· · · / Appearance of groundwater	/ Level of groundwater	 ○ - □ - ■ - 	Sampling /disturbee /semi-dis /non-diste	/ g d turbed urbed
1	2	3	4	5	6	7	8
	0.00÷0.70						
-1	0.70÷3.00	10.0	,	,			
	2.00÷5.60	10.0	/	/			
	5.60÷10.0						
	0.00÷0.90						
2	0.90÷2.40	10.0	/	/			
-2	2.40÷4.80	10.0					
	4.80÷10.0						
	0.00÷0.90	10.0	6.3	/			
	0.90÷1.60						
-3	1.60÷4.90						
	4.90÷8.00						
	8.00÷10.0						
	0.00÷0.80			6.3			
	0.80÷1.60	10.0					
-4	1.60÷3.60		/				
	3.60÷5.20						
	5.20÷10.0						
	0.00÷0.80						
	0.80÷1.80		/	8.3			
-5	1.80÷6.50	10.0					
	6.50÷9.30						
	9.30÷10.0						
	0.00÷0.70						
E	0.70÷2.00	10.0	1	6.2			
-0	2.00÷5.00	10.0	/	0.3			
	5.00÷10.0						
	0.00÷1.00						
7	1.00÷1.90	10.0	0.0	1			
-7	1.90÷6.20	10.0	0.3	/			
	6.20÷10.0						

.5.1. Table 5.1. Overview of investigation boreholes

:

,

:,,,

	0.00÷1.30		8.3	/		
0	1.30÷2.60	40.0				
-0	2.60÷6.30	10.0				
	6.30÷10.0					
-9	0.00÷0.50	10.0	/	/		
	0.50÷1.30					
	1.30÷6.00					
	6.00÷10.0					
	0.00÷0.40			/		
-10	0.40÷3.80	10.0	/			
	3.80÷10.0	-				

-

,

,

5.1.2.

-

,

,

– CI/MI

•

1.00 m.

5.2

5.2	-
Table 5.2. Physica	al-mechanical charasteristics

-

,

	S	{	С	{ ′	C'	Мv
Mg/m ³	%	[°]	kPa	[°]	kPa	kPa
1.835÷2.072	8.34÷19.66	19.56÷25.92	10.0÷25.50	12.36÷15.56	70.32÷93.57	4878

- ML, CL/SFs, SFs/ML, SFs

,

5.3

5.3. - Table 5.3. Physical-mechanical charasteristics

	S .	{	С	{ ′	c'	Mv
Mg/m ³	%	[°]	kPa	[°]	kPa	kPa
1.78÷2.10	8.93÷42.60	10.14÷19.56	10.0÷11.2	19.38÷19.71	24.01÷89.63	3000÷5970

-

– GP, GFs

5.1.3.

-

,

,

, (H) \triangleright ; (CI/MI) \triangleright ; (CL) \triangleright (ML) \triangleright ; (SFs) \triangleright ; (GFs) \triangleright ; (GP) ; ≻ (PI) \triangleright ;

,

> (Plpc)

.

22,

,

:

;

Геолошки профил Д -9 - Д-8 - Д-6 - Д-4 - Д-2 моделиран од пет истражни дупнатини, истражени до длабочина од 25м

22. 5 , 25 m Figure 22. Geological profile composed from five exploratory boreholes, examined to a depth of 25 m 5.2.

,

(

,

:

,

)

Vp

v 0

5.4:

.

5.4.		Vp	Vs	
able 5.4. Review of seismic speeds V	/p Vs			
				_

	5.4.			vp vs		
	Table 5.4. Review of	seismic spe	eds Vp Vs			
				/Spead of		/Spead of
	/	/ Depht	V _p (m	/sec)	V _s (m	/sec)
	litology construction	(m)		/		/
		(11)	/ Frames	Medium	/ Frames	Medium
1	/ high plastic clay	1 - 3	340-450	400	125 - 180	150
2	, / sands and	2 - 5	400- 550	500	180 - 250	220
	gravels, silty and clayey					
3	, ,	8 - 12	910-1360	1100	400 - 570	460

	. / sand, gravel, sandy dust clayey etc.					
4	, sand, gravels and slay dust	8 - 23	1750-2350	2000	650 - 950	800
5	, samdstones, marstones and conglomerates	>23	2420-2760	2600	1000-1100	1000

5.5

,

.

/ Parameter		/ Clayed composition Proluvial sediments	, Clayed sands and gravel Proluvial sediments	, , , Sands and gravel, Proluvial sediments	, , , / Pliocene sands and gravels Pliocene sediments
		(Q ₂ prsk)	(Q ₂ prsk)	(Q ₂ prsk)	(PL)
Н	(m)	1-3	2-5	8-12	25-60
Vp	(m/s)	340-450	400-550	910-1360	1750-2750
Vs	(m/s)	125-180	180-250	400-570	650-1100
	(kN/m ³)	15-16	17-18	19-20	21-23
μ_{din}		0.42-0.40	0.38-0.37	0.38-0.39	0.42-0.40
E_{din}	(MPa)	68-148	165-315	855-1840	2570-7950
G_{din}	(MPa)	25-55	60-115	375-660	905-2840
K_{din}	(MPa)	142-247	230-405	1100-2790	5350-13250

5.5. Table 5.5. Geo – mechanical parameters of the geological environments

(

(

)

)

(

,

(

)

),

-

è

V₁<V₂<V₃<V₄.

Figure 23. Model of refraction presented through two curves, refractive profile 1

1 Figure 24. Model of reflection presented through two curves, reflective profile1

"

,,

.

0

,

,

è

,

 Δt

,

,

 $V_n = \frac{\Delta x_n}{\Delta t_n} \quad (m/s) \tag{7.1}$

,

,

 t_0

 (h_{n})

:

 t_0 (3.9) 38. (3.19) t_0 , (i_n)

(3.1) 35.
$$(V_n, V_{nm})$$
, (h_n)

(7.1), (3.9), (3.19) (3.1).

,

7.1.

42.

•

Figure 25. Curves of refraction for refractive profile 1 with marked distances intercept t_0

$$\Delta x \quad \Delta x_{nm} (x), a a \Delta t \quad \Delta y_{nm} y$$

$$- 7.1,$$

$$7.2.$$

7.1. 1 Table 7.1. Measures for refractive profile 1 procedure forward

	1 L=60m											
0 - 60												
n	Δx	Δt	Δx_{nm}	Δy_{nm}	t_{0n}							
	(m)	(m)	(m)	(m)	(ms)							
1	5,0383	14,1810	5,0383	14,1810	7,0607							
2	19,9683	28,2197	25,0066	42,4007	26,7191							
3	14,9714	9,3885	39,9780	51,7892	35,3782							
4	20,0220	8,2191	60,0000	60,0083	60,0000							

Table	Table 7.2. Measures for refractive profile 1 procedure back											
	1 L=60m											
60 - 0												
n	Δx	Δt	Δx_{nm}	Δy_{nm}	t_{0n}							
	(m)	(m)	(m)	(m)	(ms)							
1	5,0874	13,7785	5,0874	13,7785	6,7133							
2	15,0066	20,8406	20,0940	34,6191	21,6283							
3	20,0500	12,9300	40,1440	47,5491	30,6094							
4	19,9060	8,4103	60,0500	55,9594	47,5492							

7.2. 1 Table 7.2 Measures for refractive profile 1 procedure back

(7.1) 71.

:

,

-

 (V_{nm})

 $V_{nm} = \frac{\Delta x_{nm}}{\Delta t_{nm}}$

 $i_n = \arcsin \frac{V_n}{V_{n+1}}$

(7.2)

(3.1) 35

 i_n :

(7.3)

 (V_n, V_{nm}) $i_n,$ x. (h_n)

(3.9),

.

,

7.1 7.2

_

38,

(7.1), (7.2),

(3.1), (7.3) (3.9)

.

 (h_n)

7.3 7.4

_

,

Table 7.5. Calculations for refractive profile 1 procedure forward											
1 L=60m											
0 - 60											
$V_n = \frac{\Delta x_n}{\Delta t_n} V_{nm} = \frac{\Delta x_{nm}}{\Delta y_{nm}} \sin i_n = \frac{V_n}{V_{n+1}} i_n = arc\sin i \cos i_n h_n$											
(ms)	(ms)		$\begin{pmatrix} 0 \end{pmatrix}$		(m)						
355,29	355,29	0,50210	30,13890	0,86481	1,45						
707,60	589,77	0,44373	26,34236	0,89616	8,79						
1594,65	771,94	0,65461	40,89013	0,75597	18,06						
2436,03	999,86										

7.3.	1	-
Table 7.3. Calculations for refractive profile	e 1 procedure forwa	ard

7.4.	1
Table 7.4. Calculations for refractive profi	le 1 procedure back

	1 L=60m												
60 - 0													
$V_n = \frac{\Delta x_n}{\Delta t_n}$	$V_{nm} = \frac{\Delta x_{nm}}{\Delta y_{nm}}$	$\sin i_n = \frac{V_n}{V_{n+1}}$	$i_n = arcsini$	$\cos i_n$	$h_n = \frac{1}{2} \frac{V_n \cdot t_n}{\cos i_n}$								
(ms)	(ms)		$\binom{0}{}$		(m)								
369,23	369,23	0,51277	30,84846	0,85853	1,44								
720,07	580,43	0,46436	27,66891	0,88565	7,09								
1550,66	844,26	0,65515	40,93132	0,75550	17,10								
2366,86	1073,10												

 (h_n)

.

26.

,

26.

1

 t_0

Figure 26. Interpreted seismic model of refraction for refractive profile 1 dimensioned acording to the t_0 method

		7.5.					2	-			
	Table 7.	5. Measure	es and cal	culations for	or refractiv	e profile 2 p	procedure for	ward			
		2	L=60m								
			50 -	110							
						$V = \frac{\Delta x_n}{\Delta x_n}$	$V = \frac{\Delta x_{nm}}{\Delta x_{nm}}$	$\sin i = \frac{V_n}{V_n}$			$h = \frac{1}{V_n \cdot t_n}$
n	Δx	Δt	Δx_{nm}	Δy_{nm}	t_{0n}	Λt_n	Δy_{nm}	V_{n+1}	$i_n = ar \sin i$	$\cos i_n$	$2\cos_n$
	(m)	(m)	(m)	(m)	(ms)	(ms)	(ms)		$\binom{0}{}$		(m)
1	5,0000	14,2820	5,0000	14,2820	8,0769	350,09	350,09	0,43447	25,75179	0,90068	1,57
2	20,0000	24,8206	25,0000	39,1026	24,7692	805,78	639,34	0,46198	27,51507	0,88689	8,93
3	15,0000	8,6000	40,0000	47,7026	29,9286	1744,19	838,53	0,77503	50,80767	0,63193	19,86
4	20,0000	8,8870	60,0000	56,5896	60,0000	2250,48	1060,27				

7.5.

7.6.	2	-
Table 7.6. Measures and calculations for refractive profile 2	2 procedure back	

		2	L=60m 110 -	50							
n	Δx	Δt	Δx_{nm}	Δy_{nm}	<i>t</i> _{0<i>n</i>}	$V_n = \frac{\Delta x_n}{\Delta t_n}$	$V_{nm} = \frac{\Delta x_{nm}}{\Delta y_{nm}}$	$\sin i_n = \frac{V_n}{V_{n+1}}$	$i_n = ar \sin i$	$\cos i_n$	$h_n = \frac{1}{2} \frac{V_n \cdot t_n}{\cos i_n}$
	(m)	(m)	(m)	(m)	(ms)	(ms)	(ms)		$\begin{pmatrix} 0 \\ \end{pmatrix}$		(m)
1	5,0000	14,2075	5,0000	14,2075	7,7588	351,93	351,93	0,45389	26,99376	0,89106	1,53
2	20,0788	25,8964	25,0788	40,1039	25,7299	775,35	625,35	0,44440	26,38469	0,89583	8,98
3	14,9000	8,5400	39,9788	48,6439	30,8721	1744,73	821,87	0,77558	50,85792	0,63125	20,10
4	20,0212	8,9000	60,0000	57,5439	60,0000	2249,57	1042,68				

Figure 27. Interpreted seismic model of refraction for refractive profile 2 dimensioned acording to the t_0 method

_	Table 7.7. Measures and calculations for refractive profile 3 procedure forward												
		3	L=60m	160									
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
n	Δx	Δt	Δx_{nm}	Δy_{nm}	<i>t</i> _{0<i>n</i>}	$V_n = \frac{n}{\Delta t_n}$	$V_{nm} = \frac{nm}{\Delta y_{nm}}$	$\sin n_n = \frac{n}{V_{n+1}}$	$i_n = ar \sin i$	$\cos i_n$	$h_n = \frac{1}{2} \frac{n}{\cos i_n}$		
	(m)	(m)	(m)	(m)	(ms)	(ms)	(ms)		$\begin{pmatrix} 0 \end{pmatrix}$		(m)		
1	4,9912	13,5026	4,9912	13,5026	7,4852	369,65	369,65	0,44565	26,46480	0,89521	1,55		
2	19,9788	24,0865	24,9700	37,5891	23,2223	829,46	664,29	0,47698	28,48825	0,87891	8,78		
3	15,0000	8,6257	39,9700	46,2148	28,6758	1738,99	864,87	0,76272	49,70496	0,64672	19,17		
4	20,0300	8,7852	60,0000	55,0000	60,0000	2279,97	1090,91						

7.7. 3 -

7.8.	3
Table 7.8. Measures and calculations for refract	ive profile 3 procedure back

		3	L=60m 160 -	100							
n	Δx	Δt	Δx_{nm}	Δy_{nm}	<i>t</i> _{0<i>n</i>}	$V_n = \frac{\Delta x_n}{\Delta t_n}$	$V_{nm} = \frac{\Delta x_{nm}}{\Delta y_{nm}}$	$\sin i_n = \frac{V_n}{V_{n+1}}$	$i_n = ar \sin i$	$\cos i_n$	$h_n = \frac{1}{2} \frac{V_n \cdot t_n}{\cos i_n}$
	(m)	(m)	(m)	(m)	(ms)	(ms)	(ms)		$\begin{pmatrix} 0 \\ \end{pmatrix}$		(m)
1	5,0788	13,5039	5,0788	13,5039	6,7143	376,10	376,10	0,50279	30,18460	0,86441	1,46
2	20,0000	26,7370	25,0788	40,2409	25,8273	748,03	623,22	0,42992	25,46224	0,90287	8,91
3	15,0000	8,6210	40,0788	48,8619	32,5458	1739,94	820,25	0,70887	45,14285	0,70534	18,92
4	19,9060	8,1099	59,9848	56,9718	60,0000	2454,53	1052,89				

-

Figure 28. Interpreted seismic model of refraction for refractive profile 3 dimensioned acording to the t_0 method

	Table 7.9. Measures and calculations for refractive profile 4 procedure forward										
		4	L=60m								
	150 - 210										
						$V_n = \frac{\Delta x_n}{\Delta x_n}$	$V_{nm} = \frac{\Delta x_{nm}}{\Delta x_{nm}}$	$\sin i_n = \frac{V_n}{V_n}$		_	$h_n = \frac{1}{V_n \cdot t_n}$
n	Δx	Δt	Δx_{nm}	Δy_{nm}	t_{0n}	$^{n} \Delta t_{n}$	Δy_{nm}	" V_{n+1}	$i_n = ar \otimes 1n^2$	$\cos i_n$	^{<i>n</i>} $2\cos_n$
	(m)	(m)	(m)	(m)	(ms)	(ms)	(ms)		$\binom{0}{}$		(m)
1	4,9973	14,7035	4,9973	14,7035	8,4080	339,87	339,87	0,42817	25,35117	0,90370	1,58
2	19,9788	25,1690	24,9761	39,8725	25,5237	793,79	626,40	0,45603	27,13123	0,88996	8,98
3	15,0000	8,6175	39,9761	48,4900	30,9291	1740,64	824,42	0,76464	49,87488	0,64446	19,78
4	20,0239	8,7962	60,0000	57,2862	60,0000	2276,43	1047,37				

7.9. 4 - able 7.9. Measures and calculations for refractive profile 4 procedure forward

7.10.		4
Table 7.10. Measures	and calculations for refractive	profile 4 procedure back

		4	L=60m 210 -	150							
			Arc	<u>A</u> 11	4	$V_n = \frac{\Delta x_n}{\Delta t}$	$V_{nm} = \frac{\Delta x_{nm}}{\Delta x}$	$\sin i_n = \frac{V_n}{V}$	i — anoini	200 i	$h_n = \frac{1}{2} \frac{V_n \cdot t_n}{c_n \cdot c_n}$
n	Δx	Δt	$\Delta \mathbf{x}_{nm}$	Δy_{nm}	ι_{0n}	$\Delta \boldsymbol{u}_n$	Δy_{nm}	<i>V_{n+1}</i>	$l_n = a r \sin t$	$\cos l_n$	$2\cos_n$
	(m)	(m)	(m)	(m)	(ms)	(ms)	(ms)		$\begin{pmatrix} 0 \end{pmatrix}$		(m)
1	5,0000	13,8800	5,0000	13,8800	7,2028	360,23	360,23	0,48106	28,75491	0,87669	1,48
2	20,0788	26,8139	25,0788	40,6939	26,2986	748,82	616,28	0,42982	25,45633	0,90291	8,97
3	15,0000	8,6100	40,0788	49,3039	33,2331	1742,16	812,89	0,69857	44,31248	0,71554	18,88
4	19,9212	7,9880	60,0000	57,2919	60,0000	2493,89	1047,27				

-

Figure 29. Interpreted seismic model of refraction for refractive profile 4 dimensioned acording to the t_0 method

30.

è

Figure 30. curves of reflection f reflective profile 1 with marked distances Δx and time Δt

 (t_0)

,

1

,

31 1 – *t*₀, .

,

.

 $\Delta x = \Delta x_{nm}$

,

y

.

(x), a a Δt Δy_{nm} (y). 7.11.

7.11. Table 7.11. Measures for reflective profile 1

		1	L=60m		
	0 -	60			
n	Δx	Δt	Δx_{nm}	Δy_{nm}	<i>t</i> _{0<i>n</i>}
	(m)	(m)	(m)	(m)	(ms)
1	4,0000	11,1245	4,0000	11,1245	8,5800
2	15,9473	27,7000	19,9473	38,8245	35,7900
3	10,0618	4,1008	30,0091	42,9253	42,9253

 (V_n)

 (V_{nm})

-

,

x y

(7.1) 71.

74.

(7.2)

 $(V_n),$

x.

 (h_n)

(3.19) 42,

7.11

(7.1), (7.2), (3.19),

•

1

•

 (h_n)

-

7.12.									
Table 7.12. Calculations for reflective profile									
1 L=60m									
0 - 60									
$V_n = \frac{\Delta x_n}{\Delta t_n}$	$V_{nm} = \frac{\Delta x_{nm}}{\Delta y_{nm}}$	$h_n = \frac{1}{2} \cdot V_n \cdot t_{0_n}$							
(ms)	(ms)	(m)							
359,57	359,57	1,54							
575,71	513,78	9,19							
2453,62	699,10	15,00							

 (h_{n})

1

,

31.

,

Figure 31. Interpreted seismic model of reflection for reflective profile 1 dimensioned acording to the t_0 method

1, : 2, 3 4.).

(

		7.13.						2
	Table 7.13. Measures and calculations for reflective profile 2							
		2	L=60m					
	50 -	110						
n	Δx	Δt	Δx_{nm}	Δy _{nm}	t _{0n}	$V_n = \frac{\Delta x_n}{\Delta t_n}$	$V_{nm} = \frac{\Delta x_{nm}}{\Delta y_{nm}}$	$h_n = \frac{V_n t_{0n}}{2}$
	(m)	(m)	(m)	(m)	(ms)	(ms)	(ms)	(m)
1	5,0000	15,9974	5,0000	15,9974	12,6600	312,55	312,55	1,98
2	15,0000	25,7900	20,0000	41,7874	38,1700	581,62	478,61	9,13
3	10,0503	4,0944	30,0503	45,8818	45,8818	2454,65	654,95	15,03

Figure 32. Interpreted seismic model of reflection for reflective profile 2 dimensioned acording to the t_0 method

87

		7.14.						3
	Table 7.14. Measures and calculations for reflective profile 3							
		3	L=60m					
	100 -	160						
n	Δx	Δt	Δx_{nm}	Δy _{nm}	t _{0n}	$V_n = \frac{\Delta x_n}{\Delta t_n}$	$V_{nm} = \frac{\Delta x_{nm}}{\Delta y_{nm}}$	$h_n = \frac{V_n t_{0n}}{2}$
	(m)	(m)	(m)	(m)	(ms)	(ms)	(ms)	(m)
1	4,9730	15,9430	4,9730	15,9430	13,4000	311,92	311,92	2,09
2	15,0527	21,9815	20,0257	37,9245	34,8100	684,79	528,04	9,19
3	9,9660	4,1646	29,9917	42,0891	42,0891	2393,03	712,58	15,00

Figure 33. Interpreted seismic model of reflection for reflective profile 3 dimensioned acording to the t_0 method

		7.15.						4
	Table 7.15. Measures and calculations for reflective profile 4							
		4	L=60m					
	150 -	210						
n	Δx	Δt	Δx_{nm}	Δy _{nm}	t _{0n}	$V_n = \frac{\Delta x_n}{\Delta t_n}$	$V_{nm} = \frac{\Delta x_{nm}}{\Delta y_{nm}}$	$h_n = \frac{V_n t_{0n}}{2}$
	(m)	(m)	(m)	(m)	(ms)	(ms)	(ms)	(m)
1	5,0016	15,9430	5,0016	15,9430	13,4000	313,72	313,72	2,10
2	15,0527	21,9815	20,0543	37,9245	34,8100	684,79	528,80	9,20
3	9,9473	4,1646	30,0016	42,0891	42,0891	2388,54	712,81	15,00

Figure 34. Interpreted seismic model of reflection for reflective profile 4 dimensioned acording to the t_0 method

1

Figure 35. Interpreted seismic model of refraction and reflection for profile 1 dimensioned acording to the t_0 method

 t_0

7.3.

 t_0

Figure 36. Interpreted seismic model of refraction and reflection for profile 2 dimensioned acording to the t_0 method

Figure 37. Interpreted seismic model of refraction and reflection for profile 3 dimensioned acording to the t_0 method

 t_0

Figure 38. Interpreted seismic model of refraction and reflection for profile 4 dimensioned acording to the t_0 method

,

,

,

.

•

4 -2.

Сеизмички профил Д -9 - Д-8 - Д-6 - Д-4 - Д-2 претставен преку 4 рефракции и 4 рефлексии од 60m

39. Figure 39. Seismic profile of the investigated area

Сеизмички профил Д -9 - Д-8 - Д-6 - Д-4 - Д-2 претставен преку 4 рефракции и 4 рефлексии од 60m

40. Figure 40. Corrected seismic profile of the investigated area

Моделиран геолошки профил Д -9 - Д-8 - Д-6 - Д-4 - Д-2 претставен преку 4 рефракции и 4 рефлексии од 60m

41. Figure 41. Modeled geological profile of the investigated area

.),

,

(

,

,

,

.

,

(

10 m)

),

.

,

(

;

,

è

,

, 5

.

- Tihomir Dragaševi (1983). Seizmi ka istraživanja. Geofizi ki institut Beograd.
- 2. John, M. Reynolds (1997). An Introduction to Applied and Environmental Geophysics, Reynolds Geo Sciences Ltd, UK.
- 3. Prem, V. Sharma (2004). Environmental and engineering geophysics, Emeritus Professor, Niels Bohr Institute University of Copenhagen.

- 9. John, M. Reynolds (1997). An Introduction to Applied and Environmental Geophysics. Reynolds Geo Sciences Ltd, UK.
- 10. , . (2011) . " "_ , _ _ _ _
- 11. J.J.Jakosky (1960) Geofizi ka Istraživanja.
- 12. Šandor Slimak (1996) Inzenjerska geofizika.
- 13. Kujundzic B. (1977) Osnove mehanike stena.

: