

Workshop "From Molecules to Functionalised Materials" – Ohrid, Macedonia 2015

The impact of chemical composition on the antioxidant, antibacterial and antifungal activity of commercial Macedonian cold-pressed oils

Sanja Kostadinović Veličkovska^{a,b*}, Galaba Naumova^a, Maja Jancovska^a, Augustin C. Mot^a and Radu Silaghi-Dimitrescu^a

^aFaculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania ^bFaculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, Macedonia

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Cold pressed edible oils

- the most important foodstuff polyunsaturated fatty acids and tocopherols (Vitamin-*E*-active compounds)
- reduced risk of coronary hearth diseases, the level of LDL, degenerative diseases and cancer
- minor grope of phenolic components as powerful antioxidants responsible for human health benefits.

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Cold pressed walnut oil

- The highest level of γ-tocopherol
- Improves blood circulation
- Lowers heart disease risk
- Prevents eczema
- Maintains hormone balance

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Cold pressed almond oil

- the highest level of α-tocopherol
- retains moisture in the skin
- provides a protective barrier that resists infections in premature infants

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Poppy seed oil

- prevents of diabetes
- prevents of inflammations
- reduces blood pressure
- prevents Asthma and Rheumatoid Arthritis

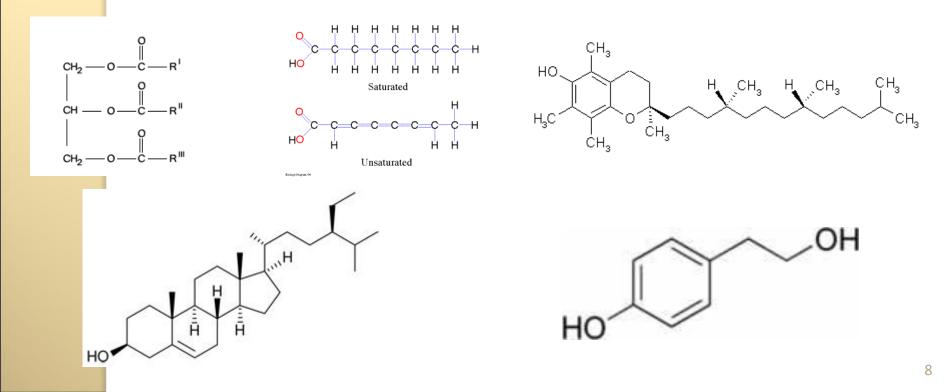
Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Wheat germ oil

- aids in cellular metabolism
- booths immune system
- reduces blood pressure
- helps to improve stamina and performance

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Process of cold pressing


- 1. Pressing of the seeds under high pressure (the temperature did not increase 40°C)
- 2. Sedimentation of waxes and other impurities
- 3. Decantation after sedimentation of pure virgin oil
- 4. Filtration with high porous filter
- 5. Filtration with very fine filter

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Composition of cold pressed oils Complex mixture

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015 Determination of fatty acid profile by GC-FID

• Preparation of fatty acid methyl esters using trimethyl sulfonium hydroxide (TMSH)

The sample was dissolved in *tert*-butyl methyl ether (TBME) and mixed with a methanolic solution of trimethylsulfonium hydroxide (TMS-OH). Glycerides are base-catalysed transesterified and fatty acid methyl esters are formed.

• Determination of fatty acid methyl esters by GC-FID The column - HP88 (100 m x 250 μm x 0.2 μm) Temperature program 175°C for 5 min and 5°C/min to 250°C Column flow rate -1mL/min Split ratio 100:1

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015 **Fatty acids in oils (%)**

Oil type	saturated	ω-7	ω-9	ω-9	ω-9	ω-6	ω-3
	Palmitic acid	Palmitoleic acid	<i>cis-</i> Oleic acid	<i>trans</i> -Oleic acid	Gondoic acid	Linoleic acid	γ-Linolenic acid (ALA)
Poppy seed oil	8.51±0.03	0.13±0.01	14.35±0.02	1.06±0.01	0.08±0.01	72.28±0.06	0.89±0.01
Walnut oil	5.93±0.02	0.07±0.00	17.89±0.01	0.78±0.00	0.20±0.00	60.73±0.01	11.74±0.01
Almond oil	6.38±0.01	0.42±0.01	67.57±0.02	1.04±0.00	0.07±0.00	20.96±0.01	0.39±0.00
Wheat germ oil	9.29±0.03	0.08 ± 0.00	38.14±0.04	0.97±0.00	0.82±0.00	37.71±0.01	2.23±0.00

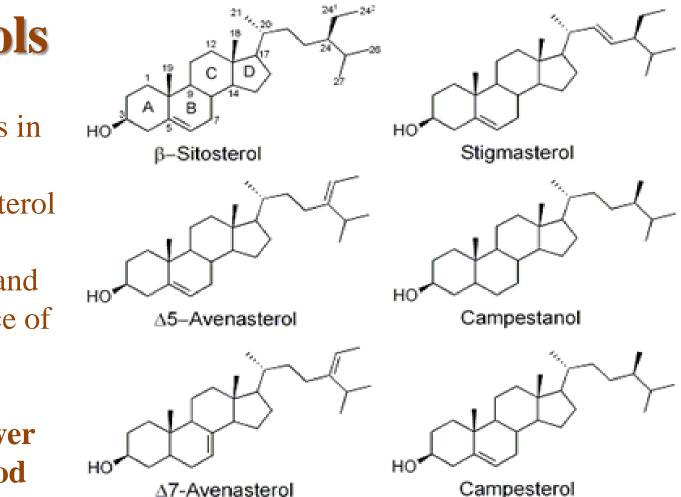
Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Determination of tocopherols and tocotrienols in oils by RP-HPLC-DAD

- oils were dissolved in *n*-hepane
- Column: Kinetex 50 × 4.6 mm
- UV dectector on 292 nm
- The mobile phase (methanol:water-96:4) and the eluation was performed at a flow rate of 2 mL/min.
- identification by retantion times and quantification by calibration curves obtained from pure standards from tocopherols and tocotrienols

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Tocopherols and tocotrienols (Vitamin E) in oils (mg/kg of oil)


Oil type		α-t	α-T3	β-t	γ-t	Plast 8	γ - T3	δ-t	Total
Poppy seed o	il	1.91±0.00ª	ND ^a	0.03±0.00ª	15.72±0.01 ^b	0.17±0.00ª	0.14±0.00 ^a	0.22±0.00ª	18.19±0.00
Walnut oil		1.03±0.01ª	ND ^a	0.12±0.00ª	21.89±0.01°	ND ^a	0.06±0.00ª	2.38±0.01 ^b	25.48±0.03
Almond oil		23.77±0.01°	0.31±0.00ª	0.23±0.00ª	1.58±0.00ª	0.37±0.05ª	0.16±0.00ª	0.04±0.01ª	26.46±0.07
Wheat germ	oil	5.80±0.06 ^b	ND^{a}	0.49±0.02ª	19.68±0.04°	0.58±0.06ª	0.30±0.02ª	5.62±0.04 ^b	32.47±0.24

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Phytosterols Steroid compounds in plants with similar structure as cholesterol and differ only in carbon side chain and presence or absence of double bonds. The main role of phytosterols – lower cholesterol in blood

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Determination of phytosterols by TLC and GC-FID

• the sample is hydrolyzed with hydrochloric acid (~3.5 M) with reflux at 100° C

- saponification with 2.5 M methanolic KOH is added directly to the oil sample
- reaction is heated 1 h on 80°C
- isolation of main classes of phytosterols on TLC with reagent for development (hexan:dietlyether)
- derivatisation by *N*-methyltrimethylsilyltrifluoroacetamide (MSTFA)
- GC-FID analyses

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Phytosterols in oils (mg/kg)

Phytosterols	Walnut oil	Poppy seed oil	Almond oil	Wheat gern
Choleste rol	7.17±0.39 ^a	1.91±0.32ª	35.27±1.44 ^b	12.21±7.18 ^c
Brassicasterol	ND ^a	9.19 ± 1.88^{b}	ND ^a	ND ^a
24-Metylencholesterol	2.02 ± 2.02^{a}	92.67±4.55°	11.75 ± 1.47^{b}	83.67±2.14 ^d
Campest erol	80.68±2.33 ^a	587.86±5.33°	129.99±7.44 ^b	1039.10±15.
Campestanol	ND ^a	1.91±0.23ª	ND ^a	72.65±1.49 ^b
Stigmast erol	6.75±0.38 ^a	986.16±8.52 ^d	32.66±3.14 ^b	822.46±7.99
Δ7-Campesterol	ND ^a	ND ^a	ND ^a	75.89 ± 4.96^{b}
5,23-Stigmastadienol	16.13±0.35 ^a	27.57±1.55 ^{ab}	48.66±2.14 ^b	162.15±9.22
Chlerosterol	38.80±0.42 ^a	46.72±1.28 ^b	54.87±0.69ab	81.73±11.48
<mark>β-Sitoste</mark> rol	1476.47±13.50ª	1739.08±12.57 ^b	2396.35±13.59°	3148.44±49.
Sitostanol	14.02 ± 0.32^{b}	6.51±0.11 ^a	54.87±0.71c	129.07±28.1
Δ5-Avenasterol	118.75±1.75 ^b	273.83±4.29°	365.15±3.27 ^d	70.70±4.67a
5,24-Stigmastadienol	28.37±1.39 ^a	32.55±2.07 ^a	60.42±1.51 ^b	240.64±19.5
Δ7-Stigm astenol	309.85±3.48°	10.72 ± 0.98^{a}	57.16 ± 2.78^{b}	345.71±29.1
Δ7-Aven asterol	10.22±0.61ª	13.40±1.12 ^{ab}	19.27±1.17 ^b	101.18±5.47
Total	2109.23±26.94	3750.08±44.77	3266.42±39.05	6485.6±196

rm oil c |d 5.98^d b **9**c 5b 2^c -8c 9.33^d .12^d 'a .54^c .14^c **7**° 96.71

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

TPC and antioxidant assays

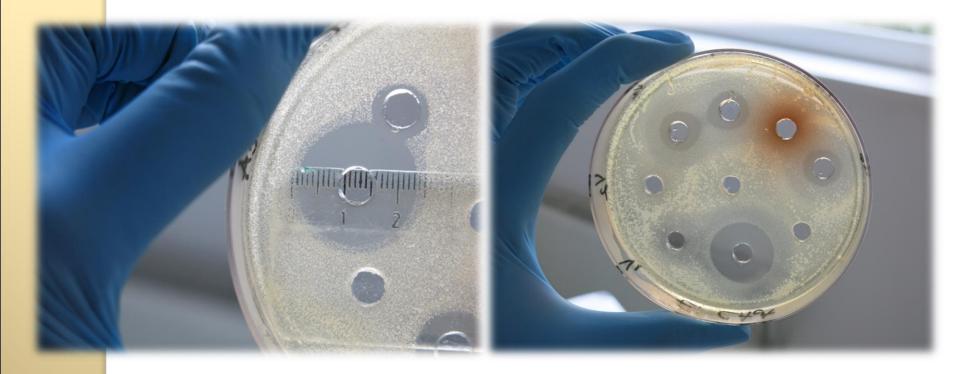
Samples	DPPH assay for (mg of α- tocopherol/L oil)	TPC assay (mg/L GAE)	DPPH assay for methanol extracts (mg Trolox/L oil)	TEAC assay for methanol extracts (mg of Trolox/L oil)
Almond oil	1379.19 ± 46.57^{b}	558.82 ± 10.335 °	160.30±7.10 ^c	$124.23 \pm 1.17^{\circ}$
Walnut oil	1704.92 ± 27.17°	524.78 ± 18.246°	66.69±1.03 ^b	98.00 ± 1.65^{b}
Poppy seed	oil 1160.17± 5.55 ^a	368.23 ± 17.717 ^b	56.47±3.43 ^b	88.78 ± 3.68^{b}
Wheat gerr	n oil 2015.67 ± 21.86 ^d	61.57 ± 3.816^{a}	27.89±13.61 ^a	59.13 ± 15.71^{a}

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Antimicrobial tests

• Antibacterial activity against two gram-positive bacterial strains: Listeria monocytogenes (ATCC 13076), and Staphylococcus aureus (ATCC 49444), and against two gram-negative bacterial strains: Salmonella enteritidis (ATCC 13076), Escherichia coli (ATCC 25922), and against antifungal activity using: Candida albicans (ATCC 10231)

• Each microorganism was suspended in Mueller Hinton (MH) broth and diluted approximately to 10E6 colony forming unit (cfu)/mL.


• The plates were incubated at 37 °C and the diameters of the growth inhibition zones were measured after 24 h. Gentamicin (10 μ g/well) was used as positive control. The negative control was performed with only sterile broth cultured 24 h with 10 μ L of 70% ethanol.

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Antimicrobial tests

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Antimicrobial activity

Inhibition zone in diameter (mm)

Sample	s Staphylococcus aureus	Listeria monocytogenes	Salmonella enteritidis	Escherichia coli	Candida albicans
Almond o	il 8.0±0.0	8.0±0.0	8.0±1.0	8.0±0.5	14.0±1.0
Walnut oi	1 8.0±0.0	8.0±1.0	8.0±1.0	8.0±1.0	14.0±0.5
Poppy see oil	d 8.0±1.0	10.0±0.5	8.0±2.0	8.0±0.5	16.0±0.5
Wheat gei oil	rm 8.0±0.5	8.0±0.5	8.0±1.0	8.0±1.5	8.0±0.5

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Future prospective studies:

- in vivo analyses
- tocopherols

$$\alpha > \beta > \gamma > \delta$$

antioxidant activity ≠ biological activity

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Aknowledgements

Financial support from **Deutscher Akademischer Austausch Dienst (DAAD)** for Sanja Kostadinović Veličkovska as a participant in the program "Academic Reconstruction of South Easter Europe" is gratefully acknowledged.

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

Aknowledgements

- Prof. Dr. Radu Silaghi-Dimitrescu
- Prof. Dr. Luminita Silaghi-Dimitrescu
- Dr. Augustin C. Mot

Workshop "From Molecules to Functionalised Materials" – Ohrid, September 2015

