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Introduction

 Optimal reservoir operation methods include:

Dynamic programming (DP)

Stochastic dynamic programming (SDP)
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“curse of dimensionality” “curse of modelling” 

Successive approximations, incremental 
dynamic programming and differential 
dynamic programming

the computational complexity with the 
state – decision space dimension 



Dynamic programming
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1 Reservoir model 
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Bellman equation 

(for stages t=T-1,T-2,…1)
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Main question
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How to enhance DP/SDP algorithm and develop new algorithm (methodology) that 
is flexible with  including  additional objectives like cities water demand, 
agriculture water demand, ecology water demand, hydro power production and 
etc., alleviate as much as possible the curse of dimensionality and computational 
cost?
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Main idea
nested algorithm
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One step of the DP algorithm.  One step of the nDP algorithm
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Nested optimal allocation algorithms
Simplex – Quadratic Knapsack
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Implementing the idea into
nSDP and nRL

 The same idea of nesting optimization algorithm is 
implemented in nSDP (nested Stochastic dynamic 
programming)

and nRL (nested Reinforcement learning)
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Zletovica river basin
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Zletovica river basin is in the eastern part of the Republic of Macedonia.

HIC, NYC August 17 – 21, 2014



Schematic representation of Zletovica river 
basin
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Objective function
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The optimization problem has eight objectives and six decision variables. 

weighted sum of squared deviations over the entire time horizon
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where d1t and d2t are the minimum 
and maximum level targets and ht is 
the reservoir level height at time step t
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Objective function

 Water demand users

1) the towns of Zletovo and Probishtip (one intake), d3t, 

2) the upper agricultural zone, d4t, 

3) the towns of Shtip and Sveti Nikole (one intake), d5t, 

4) the lower agricultural zone, d6t, 

5) the minimum environmental flow, d7t.
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where ht is the hydropower demand and pt is the hydropower production
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Comparing optimal reservoir policies
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Results
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• 55 years weekly data is separated in two parts 1) training and 2) testing. The
data from 1951-1994 (2340 time-steps) is used for training and 1994-2004 (520
time-steps) for testing

• The reservoir operation volume 23 million m3 is discretized in 73 equal levels
(300 103 m3 each).

• The minimum reservoir level target was set at 1021.5 [amsl],

• and the maximum reservoir level target at 1060 [amsl].

• The water supply, irrigation, and hydropower are set to their weekly demands

• The nDP is executed with 10 different sets of weights to provide screening of
possible multi-objective solutions in the training data.

• The optimal reservoir policy has this structure <time step, storage volume,
reservoir inflow, tributary inflow, next reservoir storage> (<t, xt, qt, qt

Tr,xt+1>)
weights

w1 w2 w3 w4 w5 w6 w7 w8

nDP-L5,

nDP-Q5

nSDP-L5,
nSDP-Q5

nRL-L5,
nRL-Q5

2,000,000 2,000,000 200 1 200 1 300 0.01



nRL agent learning
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nRL-L5 agent learning with increasing the number of episodes: nDP-L5 
target reservoir storage (blue) and nRL-L5 obtained reservoir storage 
(red) (testing period)

Sum of absolute difference between 
nRL-L5 and nDP-L5 measured as 
difference in reservoir volumes in 
period 1994-2004 as a function of 
the nRL number of episodes. 
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Results
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Results
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Results
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Results
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Comparison of the sum of minimum level (D1) and maximum level (D2) 
deviations, sum of users' deficit (D3-7) and sum of hydropower deficit (D8) 
in the testing period 1994-2004



Conclusions

The nested algorithms have the following advantages:

 Effectively alleviate the curse of dimensionality in optimal reservoir operation.

(optimization problem has eight objectives and six decision variables)

 They have better optimization capabilities compared to the DP aggregated 
water demand approach (and similar SDP and RL) and can solve problems 
that are more complex where the DP aggregated water demand approach is 
not feasible.

 Computationally, they are very efficient and runs fast on standard personal 
computers. The presented case study optimization was executed in less than 
five minutes.

 The algorithms allow for employing dense and variable discretization on the 
reservoir volume and release.

 Support using a variable weight at each time step for every objective 
function. 
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Conclusion

 Provides a framework for including many objectives in the nested optimization 
algorithm without a significant change in the source code or an increase in 
the computational expenses.

 Different optimization algorithms can be used in the nesting for water 
allocation, however, since nested optimization has to be repeated multiple 
times (for each transition of DP) the algorithm used for this purpose needs to 
be fast. 

 The nSDP and nRL policies were benchmarked against the nDP results and it 
was obvious that the nRL performs better than nSDP overall and for all 
objectives separately. The main conclusion is that nRL is a better and more 
capable optimal reservoir algorithm than nSDP, at least in this case study.
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The main idea is to include nested optimization algorithm inside the state 
transition, which lowers the problem dimension. With this method, it is possible 
to solve optimization problems that are currently unsolvable with classical 
methods, rapidly decrease the optimization time and improve the result that was 
demonstrated in this paper. 
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Email  blagoj.delipetrev@ugd.edu.mk
b.delipetrev@unesco-ihe.org
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