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Introduction

= Optimal reservoir operation methods include:
Dynamic programming (DP)
Stochastic dynamic programming (SDP)

“curse of dimensionality” “curse of modelling”

the computational complexity with the
state — decision space dimension

Successive approximations, incremental
dynamic programming and differential
dynamic programming
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Dynamic programming

X, =X +Q, -1 —¢€ Reservoir model
Bellman equation

Vi (St): mi”{g(st St411 at)+vt+1(st+l)} (for stages t=7-1,7-2,...1)
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Main question

How to enhance DP/SDP algorithm and develop new algorithm (methodology) that
is flexible with including additional objectives like cities water demand,
agriculture water demand, ecology water demand, hydro power production and
etc., alleviate as much as possible the curse of dimensionality and computational

cost?

Multiple
water
demand
users
Minimum
and
maximum
reservoir
targets
Hydropower
production
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Main idea
nested algorithm

One step of the DP algorithm. One step of the nDP algorithm

Nested optimal
allocation algorithm

g(St1St+l,at)+mi nV(SH_l)

0(StSt+1,8) +MINV/(Sts1)
mMinV(Se+1)
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Nested optimal allocation algorithms
Simplex — Quadratic Knapsack

ly + Dot [ < T
r <dg, oy <dogg.. e <d g
,di1,di5..,d =0

mmZ:W,t i) manWn = he)’

Slmplex Quadratlc Knapsack
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Implementing the idea into
NnSDP and nRL

= The same idea of nesting optimization algorithm is
implemented in nSDP (nested Stochastic dynamic

programming)
vt(s»:mm{ 06,5887 T Vo }

Py = {qtlln interval t+1 | g, in interval t}

and nRL (nested Reinforcement learning)

— Xult Agent

=
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Zletovica river basin

Zletovica river basin is in the eastern part of the Re/public of Macedonia.
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Schematic representation of Zletovica
basin
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Objective function

The optimization problem has eight objectives and six decision variables.

weighted sum of squared deviations over the entire time horizon

8
0: (St 81,8 )= Zwit -Di

=1

0, if d,>h
h

—dy, It d, <h  where d,; and d,, are the minimum
0, if d, <h and maximum level targets and /is
d

2t — . . )
_h, if d, >h the reservoir level height at time step ¢
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Objective function

Water demand users
the towns of Zletovo and Probishtip (one intake), d,
the upper agricultural zone, d,,
the towns of Shtip and Sveti Nikole (one intake), ds,
the lower agricultural zone, d,
the minimum environmental flow, d,.

it — -
di; — i, It di; >y
where A, is the hydropower demand and p; is the hydropower production

oo if d, <p.
. d8t_pt’ If d8t> pt
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Comparing optimal reservoir policies

nSDP

nDP

Training
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AT

Training data
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Optimize
nSDP

Train/learn
nRL

Testing

nSDP optimal
reservoir policy
<policy>

nRL optimal
reservoir policy
<policy>

Test data
1994-2004

JESAN

nDP optimal
reservoir operation

Results

Results
nSDP

Results
nRL

Results
nDP

Comparing

Compare
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Results

55 years weekly data is separated in two parts 1) training and 2 testinﬂ. The
data from 1951-1994 (2340 time-steps) is used for training and 1994-2004 (520
time-steps) for testing

The reservoir operation volume 23 million m3 is discretized in 73 equal levels
(300 103 m3 each).

The minimum reservoir level target was set at 1021.5 [amsl],
and the maximum reservoir level target at 1060 [amsl].
The water supply, irrigation, and hydropower are set to their weekly demands

The nDP is executed with 10 different sets of weights to provide screening of
possible multi-objective solutions in the training data.

The optimal reservoir po_Iic?/ has this structure <time step, storagre volume,
reservoir inflow, tributary inflow, next reservoir storage> (<¢ x, g, G,",X,.;>)
weights

w, w, W w, Wg W w, Wg

nDP-L;,
nDP-Q;

nSDP-Ls,

nSDP-Q, 2,000,000 2,000,000 200 1 200 1 300 0.01

nRL-Ls,
nRL-Q;
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NRL agent learning
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Results
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Results
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Conclusions

The nested algorithms have the following advantages:
m Effectively alleviate the curse of dimensionality in optimal reservoir operation.

(optimization problem has eight objectives and six decision variables)

= They have better optimization capabilities compared to the DP aggregated
water demand approach (and similar SDP and RL) and can solve problems
that are more complex where the DP aggregated water demand approach is
not feasible.

= Computationally, they are very efficient and runs fast on standard personal
computers. The presented case study optimization was executed in less than
five minutes.

= The algorithms allow for employing dense and variable discretization on the
reservoir volume and release.

= Support using a variable weight at each time step for every objective
function.
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Conclusion

= Provides a framework for including many objectives in the nested optimization
algorithm without a significant change in the source code or an increase in
the computational expenses.

= Different optimization algorithms can be used in the nesting for water
allocation, however, since nested optimization has to be repeated multiple
times (for each transition of DP) the algorithm used for this purpose needs to
be fast.

= The nSDP and nRL policies were benchmarked against the nDP results and it
was obvious that the nRL performs better than nSDP overall and for all
objectives separately. The main conclusion is that nRL is a better and more
capable optimal reservoir algorithm than nSDP, at least in this case study.

The main idea is to include nested optimization algorithm inside the state
transition, which lowers the problem dimension. With this method, it is possible
to solve optimization problems that are currently unsolvable with classical
methods, rapidly decrease the optimization time and improve the result that was
demonstrated in this paper.
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Nested optimal
allocation algorithm

minV(Se+1)

https://github.com/deblagoj/

Email blagoj.delipetrev@ugd.edu.mk
b.delipetrev@unesco-ihe.org
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