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Abstract—Energy efficiency is gaining importance in wireless
communication networks which have nodes with limited energy
supply and signal processing capabilities. We present a numerical
study of cooperative communication scenarios based on simple
local rules. This is in contrast to most of the approaches in the
literature which enforce cooperation by using complex algorithms
and require strategic complexity of the network nodes. The
approach is motivated by recent results in evolutionary biology
which suggest that, if certain mechanism is at work, cooperation
can be favored by natural selection, i. e. even selfish actions of the
individual nodes can lead to emergence of cooperative behavior
in the network. The results of the simulations in the context of
wireless communication networks verify these observations and
indicate that uncomplicated local rules, followed by simple fitness
evaluation, can generate network behavior which yields global
energy efficiency.

I. INTRODUCTION

One of the major aspects of future wireless networks is their
energy efficiency, which lies at the focus of this work. The
provisioning of energy efficient protocols and communication
schemes is one of the main challenges in the design of present
and future communication networks. The concept of energy
efficiency is particularly relevant in emerging heterogeneous
networks which, besides the ”classical” communication nodes,
include various other devices with low-power capabilities, such
as sensors and other nodes producing machine-type traffic.

Wireless communication systems have two fundamental
properties. The first one is that they receive power decays
according to a power law function of the distance between the
users, which puts stress on the power consumption. The second
important property is the broadcast nature of the wireless
communication, which leads to interference between the users.
With the increase in the number of subscribers and growth in
data traffic in wireless networks, these two features gain in
importance and have a strong adverse effect on the network
performance in terms of throughput and energy consumption.

The study of the fundamental limits of wireless networks
suggests that cooperation among the units could potentially
overcome these effects. In this context, techniques such as

cooperative diversity [1], [2] and interference alignment [3]
have been proposed.

As cooperation is considered to be beneficial in general,
most of the present approaches which deal with the aspects of
cooperative communications, assume that the network nodes
act in a pre-defined way, i. e. their behavior is determined by
(usually) centralized network rules. In such systems it is often
assumed that the cooperation between the network nodes is
beneficial ”by default” and no freedom is left to the individual
nodes to decide about their involvement in the cooperative act.
Besides the networks with central infrastructure, this is also
the case in decentralized networks such as ad-hoc networks.
One general observation is that the proper functioning of these
networks is generally maintained either by enforcing cooper-
ation, or by keeping track of the cooperative behavior which
demands intensive computation [4]–[8]. Since cooperation is
associated with a cost (usually energy) and requires certain
signal processing capabilities (computational complexity), this
approach may lead to a ”cooperation burden” which can be
unreasonably high for some network nodes.

The above described networks, as well as all other present
communication networks, can be seen as systems which are
mostly “engineered”, meaning that they reflect a number of
accepted principles of good design. The parts in these systems
have known functions and designers attempt to maintain sepa-
ration of concerns. On the other hand, there are other networks
such as biological, social and economic, which evolve over
time as a result of the interactions between the system entities
and the environment. A formidable remark is that, compared
to present communication systems, information storage and
processing in living organisms is more efficient by many
orders of magnitude, with respect to both information density
and energy consumption. Low energy consumption paired with
simplicity, efficiency and adaptability seems to be an important
objective for information exchange in living organisms.

Motivated by these observations, we will present a game-
theoretic approach to the energy efficiency in decentralized
wireless networks, which is motivated by the insights obtained



from evolutionary biology. In particular, we will concen-
trate on the concept of cooperation and its emergence in
communication networks. The model studied in this work
considers forwarding the packets of the senders towards the
receivers by entities that are cooperators. The choice between
cooperative or defective behavior that nodes make in this
game theoretic approach is based solely on calculation of
their energy consumption. This assumption greatly reduces the
computation complexity, as compared with the studies found in
the literature [6]–[9]. The simulations show that the population
of cooperators persists although the nodes’ decisions are
selfish, which results in decreased average energy consumption
both for the whole population and for the individual nodes.

The remaining of the paper is organized as follows. In Sec-
tion II the relation between energy efficiency and cooperation
is given. Next, in Section III the model studied in this work
is described. The experiments and the results obtained are
explained in Section IV. Section V concludes this paper.

II. ENERGY EFFICIENCY AND COOPERATION

A. Wireless communication networks

The primary focus of this paper is on the communication in
wireless networks. However, the key ideas could be applicable
to other communication networks, as well as networks in
general, including social and economic networks.

The performance analysis of wireless networks is often
based on simplifying assumptions. As a general rule, the cost
of establishing cooperation in wireless networks is not prop-
erly taken into account when deriving the performance limits
of different cooperative schemes [10]. For example, in some
scenarios the benefits of cooperation might be overshadowed
by the cost of establishing cooperation in the first place. Also,
very often a central infrastructure/control is assumed, which is
not always the case. In addition, as cooperation comes at a cost
for the network users, in a network which lacks centralized
control, at certain time instants for some users it might be
beneficial to defect, instead of cooperate.

Cooperation in decentralized networks is usually estab-
lished by complex algorithms [11], [12], which usually pro-
mote/enforce cooperation based on reputation tables about the
users’ behavior. In contrast to the present approaches which
rely on complex algorithms in order to enforce cooperation, we
are interested in cooperation which emerges as a result of the
system evolution. This approach is inspired by recent results
in evolutionary biology which suggest that cooperation can
emerge and persist in evolving systems, i. e. that cooperation
can also be favored by natural selection, if certain mechanism
is at work [13], [14].

While we will build on the legacies of communication pro-
tocols for establishing cooperation in decentralized networks,
our approach differs in one important aspect. Namely, we will
not assume cooperation to be beneficial ”by default”, but we
will rather adopt a game-theoretic approach where the network
nodes decide whether to cooperate or not based only on their
individual fitness, where the fitness is a quantity related to the
energy consumption of the individual nodes. We will propose

and evaluate different strategies of the individual nodes in
terms of the average energy consumption. The focus will be on
simple, decentralized strategies which do not require strategic
complexity of the involved nodes. This is in the spirit of
evolving systems (such as biological) where the cooperative
behavior is based on simple rules and its emergence can be
understood by relatively simple mechanisms. As we will see,
some interesting insights will appear as consequence of the
analysis performed in this paper. The most important one
is probably the conclusion that, under certain circumstances,
there are simple strategies which do not enforce cooperation,
but it emerges as a result of the network evolution. These
results also serve as an indicator that uncomplicated local,
evolutionary-like rules, followed by simple fitness evaluation,
can generate network behavior which yields global energy
efficiency.

B. Cooperation in biological systems

Recent results in biology [13]–[16] show that cooperation
has played a fundamental role in many of the major transitions
in biological evolution and is essential to the functioning
of a large number of biological systems. Observations show
that cooperative interactions are required for many levels of
biological organization ranging from single cells to groups of
animals. Human society, as well, is based to a large extent
on mechanisms that promote cooperation. In the following
paragraphs we will shortly address the concept of cooperation
in biology and revisit the candidate mechanisms which explain
the emergence and stability of cooperation.

1) Emergence of cooperation in biological systems: It is
well known that in unstructured populations, natural selection
favors defectors over cooperators. There is much current
interest, however, in studying evolutionary games in structured
populations and on graphs [13]. In [13] the authors describe a
simple rule that is a good approximation for different graphs,
including cycles, spatial lattices, random regular graphs, ran-
dom graphs and scale-free networks. The conclusion is that
natural selection favors cooperation, if the benefit of the
altruistic act, b, divided by the cost, c, exceeds the average
number of neighbors, k, b/c > k. The intuition behind is that
in this case cooperation can evolve as a consequence of ”social
viscosity” even in the absence of reputation effects or strategic
complexity.

2) Mechanisms behind the emergence of cooperation:
Candidate mechanisms in biology which are able to explain
the emergence and stability of cooperation are kin selection,
direct reciprocity, indirect reciprocity, network reciprocity, and
group selection [14].

Among the candidate mechanisms which promote coopera-
tion based on natural selection, we identify network reciprocity
as the most relevant for wireless communication networks.
Network reciprocity is a mechanism that aims to explain why
cooperation persists in populations where some individuals
interact more often [14]. The approach of capturing this
effect is evolutionary graph theory, which allows the study of
how spatial structure affects evolutionary dynamics. According



to this model, the individuals of a population occupy the
vertices of a graph, where the edges determine who interacts
with whom. Additionally, the users are assumed to be plain
cooperators and defectors without any strategic complexity. In
this setting, the experiments show that cooperators can prevail
by forming network clusters, where they help each other.

III. ENERGY-EFFICIENT DECENTRALIZED WIRELESS
NETWORKS

Many of the most fundamental instances of cooperation in
biological systems involve simple entities which lack strategic
complexity. This prevents them to adopt strategies that take
into account the history of their interactions with other entities.
Yet, remarkably, cooperation is present in theses systems, as
supported by evidence [17]–[19].

In the context of decentralized wireless networks, we will
be interested in design rules which are simple enough to be
implemented by communication nodes with limited processing
capabilities, yet powerful enough to promote cooperation and
to yield global energy efficiency. This is in contrast to most of
the present approaches which rely on complex algorithms and
reputation tables in order to enforce cooperation in the network
[4], [11], [12]. Our objective is to promote cooperation by
relying on simple strategies, i.e. by imposing a limited set
of rules which mimic the principles of evolution, and let the
systems evolve in time.

The question we ask is the following: Can cooperation arise
in communication networks by evolution? If yes, which mech-
anism should be at work? It seems that network reciprocity
is a promising candidate for promotion of cooperation in
communication networks. Indeed, when wireless networks are
described as graphs, an analogy can be drawn with populations
which are not well mixed. The reason for this is that, given
a power constraint, one user can interact only with the nodes
which are in the range of its transmission, forming a cluster
of potential cooperators.

In order to investigate the effects of the application of this
kind of mechanism to wireless communication networks, we
define a relatively simple network model which, however,
captures both the essence of wireless communication networks
and the graph models used in evolutionary game theory.
We simulate the emergence of cooperative behavior in a
communication network in order to explore whether rules such
as natural selection can favor cooperation in these networks.

A. Network model

We model the network as a graph where the users represent
the nodes and the edges are related to interactions between
them. The objective of each network node is to be power
efficient, i.e to minimize the amount of power it spends
for packet transmission. As in game theory, we assume two
types of nodes, cooperators and defectors. Additionally, we
make the following assumptions. First, we assume that the
power decays as a power law function of the distance to the
transmitter (source). Hence, if the transmit power is PT , the

power received at distance d from the transmitter is

PR =
PT
Kdα

, (1)

where α depends on the propagation characteristics of the area
(urban, suburban, rural, etc.) and K is an arbitrary constant.
Typically, α takes values in the range 2 ≤ α ≤ 4. Due to
the power law decay, the presence of cooperators might be
beneficial with regard to the energy efficiency. For simplicity
we assume either one-hop retransmission (in the presence of a
cooperator), or direct communication (in the case when there
are no cooperators willing to retransmit the packet).

A time division multiple access (TDMA) approach is used
where the nodes take turns in transmitting their packets (no
frequency reuse). We divide the time scale in time slots of
equal duration and assume that one transmitter/receiver pair
is activated at random in each time slot. This multiple access
scheme is known to be optimal, at least in first approximation,
from a minimum energy per bit perspective. Although this
assumption simplifies the network analysis, it may be regarded
as restrictive, as it does not include interference/collisions.
Nevertheless, we expect that this simple scenario will be able
to capture the essence of the cooperative behaviour of the
users and that, from the perspective of the investigated phe-
nomenon (emergence of cooperation), the simulation results
will be a reasonable indicator of the network behaviour in
the more general case. A precise study of the phenomenon
in the scenario which embraces simultaneous transmission is
a topic of current work. Under these assumptions, we will
be essentially interested in the total power consumed by the
network over time.

Let us say that during one time slot user A needs to transmit
to user B and that the power it uses for direct transmission
is PD. As a result of the propagation effects, the received
power at user B is PR = PD/ (KdαAB). We define the signal-
to-noise ratio at the receiver as SNR = PR/σ

2, where
σ2 is the noise variance. We say that the transmission is
successful if the signal-to-noise ratio at the receiver exceeds
a certain threshold, SNR ≥ SNR0 = PR0/σ

2, which is
required for reliable reception. In other words, in order to have
a successful transmission, the node A should transmit with
power PD ≥ KdαABPR0

. In the first instant, for simplicity,
we assume perfect power adaptation (which should be justified
in general) and assume that the node A adjusts the transmit
power to the distance dAB , such that it meets the receive
SNR requirement exactly. This is, of course, a simplification,
since for this adaptation to work, A should know the network
topology (the distance to B, dAB) or, at least, to have a
feedback from B about the receive SNR such that it can adjust
the transmit power PD.

We say that a node C is in range of A, or connected to A, if
it can ”hear” A’s transmission to B. Under the assumed power
adaptation, a node C is in the range of A if dAC ≤ dAB .
On the other hand, the retransmission only makes sense if
dCB ≤ dAB . Hence, potential cooperators will be located in



the area described by

dAC < dAB ;

dCB < dAB . (2)

A node C which fulfills (2) is called intermediate node. The
equality in (2) has been left out in order to avoid defining
B as an intermediate node. In the time period when node A
transmits data to node B, there may be several intermediate
nodes. In Fig. 1 the intermediate nodes are located in the
area enclosed with a dashed line. In order to decrease the
transmission cost for user A, we further reduce the region
where the possible cooperators are found by introducing
a parameter ν ∈ (0, 1). With this convention, instead of
engaging all cooperators from the area defined with (2) in the
retransmissions, we account only for those in the area enclosed
by full line. This area includes the nodes at reduced distance
ν · dAB from the transmitter.
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Fig. 1. Typical communication scenario: yellow circle - transmitter ; green
circle - receiver; blue circles - cooperators; red circles - nodes that do not
participate in the communication; dashed line - the area where intermediate
nodes are located; full line - the area where the cooperators for the transmis-
sion/receiver pair A/B are located;

The relations between the nodes are represented as edges
in the graph. We note that this means that each transmission
from A to B is associated with one directed network graph.
Since in real networks there are simultaneous transmissions
between different pairs of users, at each time slot the networks
is actually described by a set of different directed graphs,
rather then a single graph. Depending on the users activity,
the set of graphs also changes over time.

Now, if an intermediate node C decides to help A in the
transmission, i.e. to cooperate, it will retransmit the signal
received from A to B. The benefit that node A obtains
from the cooperative act of C is that it can decrease the
transmit power to a value lower then the power required for
direct transmission, PI ≤ PD, where the subscript I stands
for indirect transmission (transmission when cooperators are
involved). In this context, we can define the benefit of the
cooperative act as b = PD − PI .

In general for a given transmitter/receiver pair there can
be multiple cooperators. In this case they can either share the
cost for cooperation or let one cooperator pay the overall cost.
For simplicity, we propose that only the closest cooperator to
B retransmits the signal. Different approaches to cost sharing
will be left for future study. Without loss of generality, let k be
the index for which dCkB is minimal. As elaborated before,
we take that the power received at B should be exactly the
minimal one required for successful transmission, PR0 . In this
case the cost that the cooperator k (the closest one) pays is

PCk
= PD(Ck, B), (3)

while the other potential cooperators pay no cost.
Let us now change the perspective and look at the network at

time slot n from the viewpoint of a single node (user), node C
for example. For the node C we distinguish between incoming
and outgoing edges as depicted in Fig. 2. The outgoing edges
are associated with the nodes which are in the range of C,
when C transmits its own packets. We take that the number
of incoming edges to node C is L, out of which J ≤ L are
active (associated with ongoing transmissions). According to
this model, the total power that C spends for cooperation, PC ,
is a function of J , PC = PC(J). On the other hand, the power
that C spends for its own transmission is either PI or PD.

C

Fig. 2. Incoming and outgoing edges for node C.

If the node C is in the range of a transmitting node, let us say
A for example, then there is an incoming edge to C, outgoing
from A. We note that by adapting this model, we allow that at
one time slot the node C can be in the range of several other
nodes and also help several of them in the transmission. In
reality this can be done by performing a kind of multiplexing
at the nodes, for example by using spread-spectrum sequences
to distinguish between the different users.

Following the analogy with biology, we will define fitness
of the individual nodes. Intuitively, the fitness has to be
related with the energy consumption of the individual nodes.
Ideally, the appropriate fitness function has to be simple
enough to be evaluated locally (possibly without requiring
complex processing and memory), but also rich enough to
capture the essence of wireless transmission and network
dynamics. In addition, we recall that the strategies of the
individual nodes (in game-theoretic sense) are adopted with
respect to the fitness function. In this sense, the choice of the



fitness function is related to the game-theoretic analysis of the
different strategies.

We will define two discrete time scales, according to which
the fitness will be evaluated. The fitness function is evaluated
at the end of a block of duration T slots. The network
performance is observed over N such blocks (iterations).

Since we have two time scales, we introduce two indices,
t and n, where t ∈ {0, 1, . . . , T} indicates the time slot and
n ∈ {0, . . . , N} indicates the iteration. The fitness is then a
function of n and t, F = F (n, t). We note that, in order to
be consistent with the definition of t, we denote the initial
iteration (of duration T ) as the 0-th iteration. Additionally, we
denote the initial fitness as F (0, 0) = F0.

Now, let us define

∆f(n, t) = F (n, t)− F (n, t− 1), t = 1, . . . , T, (4)

which measures the difference in the fitness evaluated at two
consecutive time instants t− 1 and t, of the n-th iteration. In
our model, ∆f(n, t) for the network node C is defined as

∆f(n, t) = −α (1− β) [PD − PI ]− γδPC(J) (5)

where α, β, γ, δ ∈ {0, 1} are parameters which indicate packet
transmission and the presence of cooperators and defectors. In
particular, α = 1 when C has a packet to transmit; β = 1 when
C has at least one cooperator as a neighbor; γ = 1 when C
is connected to at least one active node at that time instant;
and δ = 1 corresponds to C being a cooperator (otherwise the
parameter values are zeros). We note that the above parameters
are also functions of n and t. However, whenever there is no
ambiguity, and in order to simplify the notation, we will skip
these indices.

Having introduced ∆f(n, t), we can define the fitness of
the node C in the following way

F (0, 0) = F0,

F (n, t) = F (n, t− 1) + ∆f(n, t),

F (n+ 1, 0) = F (n, T ) (6)

where n = 0, 1, . . . , N − 1 and t = 0, 1, . . . , T . In addition,
we define the quantity

∆F (n) = F (n, T )− F (n− 1, T ), n = 1, . . . , N (7)

to be the change of fitness between two consecutive iterations,
n− 1 and n. As we will see, this quantity will be relevant for
the definition of the different strategies.

B. A Game-theoretic Approach

Game-theoretic approaches to modeling of phenomena as-
sumes the existence of some quantity – utility, or benefit –
that units in the system try to maximize. In some scenarios
the agents may choose to help the others, i.e. to cooperate –
this is modeled by the cost they pay for the cooperation. Some
agents choose their strategy to be selfish, i.e. they defect, and
thus avoid any costs. The cost of cooperative act implies that
the cooperators will have smaller fitness than the defectors.
Thus natural selection of the fittest favors defectors. However,

there are observations and theoretic analyzes of cases when
cooperation persists – there is at least a fraction of cooperators
present in the population.

In this work we study four different strategies of cooperative
behavior of nodes in communication networks. According to
our approach we assume that all network nodes adopt the
same strategy during the simulations. This approach certainly
does not cover some more general scenarios, for example one
where the individual nodes are able to choose their strategy at
random, or according to some rule. Nevertheless, we expect
that the results from our analysis will fairly well indicate the
general trend and, as such, will be useful in the evaluation of
the fundamental limits of the energy efficiency in decentralized
networks.

The first strategy addresses the trivial case when there is no
cooperation between the nodes, i. e. all nodes are defectors. We
denote this strategy by DEF. The second strategy corresponds
to the case where all nodes cooperate and will be denoted
as COOP. It corresponds to a centralized scenario where
the cooperation is in a way enforced in the network. The
main effect we expect from cooperation among the nodes is
a decrease in the total energy consumption. The simulation
results show that when all nodes cooperate the total energy
consumption is reduced by as much as 60% as opposed to the
case when all nodes defect.

As already discussed, for us of greater interest are strategies
which are appropriate for the decentralized scenario at hand,
where the individual nodes decide whether to cooperate or not
based on their individual fitness. In the decentralized scenario
that we propose, at the end of each iteration the network nodes
decide whether to cooperate or defect in the next iteration. As
we do not assume nodes with strategic complexity, we will
concentrate on simple strategies. According to this approach,
at the end of the n-th iteration each node makes the decision
only based on the change in the fitness ∆F (n) = F (n, T )−
F (n− 1, T ), as defined in (7).

We will distinguish between two simple and intuitive strate-
gies for the decentralized scenario. According to the first one,
if the node observes an increase in the fitness, ∆F (n) > 0,
it will retain the previous status in the next iteration. If, on
the other hand, the node observes a decrease in the fitness
∆F (n) < 0, the node will change its behavior, i. e. a
cooperator will become a defector and vice versa. We observe
that from the perspective of a single node, the game resembles
the repeated prisoner’s dilemma [15]. In this regard, the above
described strategy corresponds to the well known win-stay,
lose-shift and is based on the simple idea of retaining the
previous status when the node is doing well, but changing it
otherwise. In the remaining of the text we refer to this strategy
as WSLS.

According to the other strategy for the decentralized sce-
nario, the node will decide to cooperate in the next iteration if
it observes an increase in the fitness, ∆F (n) > 0. Otherwise,
it will defect. According to this strategy, a defector will
become cooperator and a cooperator will stay cooperator, if
∆F (n) > 0. Otherwise, the node will choose to defect. We



note that the increase in fitness reflects the average behavior of
the adjacent nodes, in the sense that the reason for the fitness
increase is the cooperative behavior of some of the adjacent
nodes. In the context of the repeated prisoner’s dilemma, this
strategy resembles the tit-for-tat strategy which is based on the
idea of mimicking the other node(s) behavior in the previous
turn. This means that the node will become cooperator only
if it observes cooperative behavior of other nodes which is
reflected in the increase in the fitness. In the remaining of the
text, we will refer to this strategy as TFT.

IV. DESCRIPTION OF THE EXPERIMENT

A. Simulation setup

Having defined the different strategies, the aim of the
simulations will be to evaluate and compare the performance
of all strategies in terms of both the energy consumption of
the individual nodes and the global energy consumption in the
network. As already discussed, although we would like to see
the global energy consumption decreased, we would also like
to have the energy consumption distributed as uniformly as
possible between the different nodes.

Our simulation is set up as follows. We place M wireless
nodes at random in a circle of radius r, according to a
uniform distribution. Since we are interested only in the
relative performance of the different strategies and not in the
absolute value of the consumed energy, we normalize the circle
radius to a single distance unit, r = 1. The nodes send their
messages during time slots of fixed duration (same for all
nodes), where in each time slot exactly one transmitter/receiver
pair is activated at random. We group the time slots in blocks
of length T , where we denote the block of T slots as one
iteration. The network behavior is observed over N iterations.

We consider two simulation scenarios. In the first scenario
we assume that either all nodes are defectors (DEF strategy),
or cooperators (COOP strategy). In the second simulation
scenario we start by assuming that in the initial iteration all
users are defectors. At the end of the initial iteration we choose
one user at random and change its behavior from defector to
cooperator. At the end of each next iteration the nodes perform
a fitness update and perform a comparison with the fitness at
the end of the previous iteration, as given by (7). According
to the change of the fitness defined in (7), the users determine
their behavior during the next iteration (cooperate or defect)
according to the TFT or the WSLS strategy. Once again, we
note that in our setup all users follow the same strategy during
all iterations.

In both scenarios we are interested in the individual and in
the total energy consumption during the N iterations. Since
we are interested in the relative performance of the different
strategies, for reference we will take the average consumed
energy (power) per node in the case when the nodes adopt the
DEF strategy. Without loss of generality, we will consider this
energy to have value 1 and express the energy consumption
of the different strategies with respect to this value.

The simulations were performed for the extreme case of
the propagation parameter α = 4, for which the cooperation

is most beneficial in terms of energy consumption. To mimic
the simultaneous transmissions present in reality, we have
taken a frame length of T = 1000 consecutive time slots that
correspond to 1000 packets. Additionally, the simulations last
N = 1000 iterations. At last, we have considered Nt = 1000
different network topologies obtained by random placement
of the nodes in the unit circle with uniform distribution. The
large number of repetitions has the effect of smoothing the
graphical results. The choice of the numerical values of the
simulation parameters are summarized in Table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
T 1 000 r 1
α 4 N 1 000
M 30 Nt 1 000

B. Scenario 1: DEF and COOP strategy

When the users adopt the DEF strategy, a transmitter A
communicates with a receiver B by direct transmission. Hence
the cost associated with the transmission is PD = KdαABPR0

,
where PR0

is the minimal receive power necessary for suc-
cessful transmission, as defined in Section III.

In the case when the users adopt the COOP strategy, for a
transmitter/receiver pair A/B, node A receives a benefit from
the cooperators located in the area defined by (2).

The benefit is reflected in the fact that A can adopt (reduce)
the transmit power to a value PI = K (ν · dAB)

α
PR0

, where
0 < ν < 1 is a parameter which determines the reduced
range of A’s transmission. Once fixed, the parameter ν is
kept constant for all nodes and during all transmissions. As
we will see, the results from the simulations indicate that
the choice of this parameter is particularly important for the
energy consumption in the network.

The main effect we expect from cooperation among the
nodes is a decrease in the average energy consumption.
The results from the simulations show that when all nodes
cooperate the average energy consumption is reduced by as
much as 60% as opposed to the case when all nodes defect,
as indicated in Table II. Apart from the reduction in average
energy consumption, cooperation leads to a more-fair energy
consumption among the individual nodes. Indeed, when there
is no cooperation the nodes which are located further from the
center are at a disadvantage as the average distance to the rest
of the nodes is larger compared to the nodes which are located
near the center, leading to increased energy consumption for
transmission. The introduction of cooperation lessens this
imbalance to some extent. An illustration of this effect is
shown in Fig. 3. As we can see, the introduction of cooperation
balances the amount of energy spent by the individual nodes,
and decreases the effect of the network topology on the
individual energy consumption.
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Fig. 3. Average energy consumption for nodes at different distances from the
center.

C. Scenario 2: TFT and WSLS Strategy

As discussed, in this simulation scenario we start by assum-
ing that in the initial iteration all users are defectors. At the
end of the initial iteration we choose one user at random and
change its behavior from defector to cooperator.

For one transmitter/receiver pair A/B, the nodes which
fulfill (2) are potential cooperators. If there is a cooperator
present, it retransmits the signal to user B. Now, based on
the estimation of the receive SNR, the receiver B informs
A via feedback (which can also be quantized) that there are
cooperators present. With this in mind, the sender A adopts
(reduces) the transmit power to a value

PI = K (ν · dAB)
α
PR0

, (8)

We note that by introducing this heuristics, the sender A does
not have to know the identity of the cooperators in each
iteration. We recall that after a period of T time slots (one
iteration), the nodes calculate their fitness and compare it with
the fitness at the end of the previous iteration, as given by (7).

The simulation results indicate that the choice of the pa-
rameter ν is crucial for the energy consumption. We fix this
parameter to ν = 0.39, a value for which the total energy
consumption is approximately minimal, for all strategies, as
indicated by the performed simulations.

D. The effect of cooperation

Although the simulation results (as expected) show that the
COOP strategy yields a minimal total energy consumption
among all four strategies, this is not the optimal strategy
from the perspective of all of the individual nodes. Indeed, as
Fig. 4 indicates, the simulation results show that the adoption
of the WSLS strategy yields lower energy consumption for
the nodes closer to the center. Further the WSLS strategy
yields the most balanced energy consumption as function of
the geographical distribution of the nodes. The difference in
the balance of energy consumption can be inferred from the
standard deviation values given in Table II.

Let us recall that the population starts with only a single
cooperator while all other nodes are defectors. The simulations
show that with time cooperation spreads through the network.
As a single node changes its behavior frequently during a
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Fig. 4. Average energy consumption for nodes at different distances from the
center.

TABLE II
MEAN AND STANDARD DEVIATION OF THE AVERAGE ENERGY

CONSUMPTION E

strategy mean(E) std(E)
DEF 1.00000 0.72150
COOP 0.39755 0.13093
TFT 0.48858 0.11559
WSLS 0.60966 0.01671
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Fig. 5. Average frequency of cooperation for nodes at different distances
from the center.

single simulation (depending on the fitness evaluation and on
the strategy), we calculate the frequency of cooperation as

f(i) =
number of iterations when node i is cooperator

total number of iterations
(9)

The results of the simulations show that the frequency of
cooperators is fairly constant (around 50%) for the different
placement of the nodes for the TFT strategy, as depicted
in Fig. 5. The explanation for this effect is that when the
nodes use the TFT strategy, they are more prone to change
their behavior from defectors to cooperators and vice versa.
We recall that the frequency of cooperators is averaged over
1000 different network topologies, and therefore the constant
frequency of cooperators does not come as a surprise. As for
the WSLS strategy, it is intuitive to expect that nodes closer
to the center will be less incentive to cooperation, compared
to those which are further away.



Fig. 5 can help us understand the balanced energy con-
sumption present in the WSLS scenario. A key observation
is that nodes which are positioned closer to the center are
cooperators less frequently then others. This reduces their
individual energy consumption. Additionally, the absence of
cooperators close to the center shifts the cooperation burden
to the outer regions. The peripheral nodes thus experience
an increase in their energy consumption. Overall, these two
effects combined reduce the differences in the individual
energy consumption witnessed in TFT and produce the flat
curve shown in Fig. 4.

V. CONCLUSIONS

We investigated the mechanisms for promotion of cooper-
ation in decentralized wireless networks. The approach was
motivated by recent results in evolutionary biology which
suggest that cooperation can be favored by natural selection,
if certain mechanisms are at work. We modeled the wireless
network as a graph, where benefits and costs were associated
with the strategy that the network users follow. In game-
theoretic spirit, the nodes based their behavior on calculations
of their energy spending.

We presented numerical study of cooperative communi-
cation scenarios based on simple local rules, which is in
contrast to most of the approaches in the literature which
enforce cooperation by using complex algorithms and require
strategic complexity of the network nodes. We considered four
strategies for the users’ behavior and observed the energy
consumption of the individual nodes and the network in total.
In two of the strategies, TFT and WSLS, we considered that
the nodes determine their behavior only based on individual
fitness. The simulations showed that even selfish decision
making of the nodes can lead to emergence of cooperation.
These observations served as indicator that uncomplicated
local rules, followed by simple fitness evaluation, can generate
network behavior which yields global energy efficiency.

We recall that here we adopted the convention that the same
strategy was used by all users in all iterations. In a future
version of the work, we will consider the case where each of
the individual users is allowed to choose its own strategy at
every iteration. As discussed, the results from the simulations
indicate that, depending on the node distance from the center,
distinct nodes could find optimal to follow different strategies.
It is expected that this analysis will bring valuable insights in
the dependencies between the choice of optimal strategy for
the individual users and the network topology.

In addition, it will be interesting to evaluate the network
behavior in the case when the nodes have buffers with limited
energy capacity, under a particular random arrival process.
This is in contrast to the here addressed scenario where
we assumed that the nodes have infinite-length buffers. We
expect that the adoption of this more realistic assumption
will influence both the behavior of the individual nodes and
the way energy is consumed in the network. This more
general approach also includes the energy harvesting scenario

where the nodes harvest energy quants from the environment
according to some arrival process.
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