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3Department of Economics, Division of Mathematics and Informatics, National and Kapodistrian University of Athens,
Sofokleous 1 Street, 10559 Athens, Greece
4Department of Statistics, Athens University of Economics and Business, 76 Patission Street, 10434 Athens, Greece

Correspondence should be addressed to Predrag S. Stanimirović; pecko@pmf.ni.ac.rs
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A newmethod for the reconstruction of blurred digital images damaged by separable motion blur is established.Themain attribute
of the method is based onmultiple applications of the least squares solutions of certain matrix equations which define the separable
motion blur in conjunction with known image deconvolution techniques. The key feature of the proposed algorithms is reflected
in the fact that they can be used only in symbiosis with other image restoration algorithms.

1. Introduction

In practice, the recorded image unavoidably represents a
degraded version of the original scene because of inevitable
imperfections in the imaging and capturing process. Medical
images, satellite images, astronomical images, or poor-quality
family portraits are often blurred. A wide range of different
degradations need to be taken into account, covering, for
instance, noise, blur, illumination, and color imperfections,
and geometrical degradations. The elimination of these
imperfections is crucial in various tasks of image processing
and image analysis. Image restoration methods are used for
reconstructing the original image from a degraded model.
The problem of image restoration has been studied in many
articles and books [1–7].

The application of the least squares solutions in image
processing (and in image restoration particularly) is not
frequently investigated so far. An application of the least
square techniques in image processing is presented in [8].
Removal of blur in images based on the least squares solutions
is investigated in [9, 10]. Particularly, an application of the
least squares solution of minimal norm in image deblurring
is investigated in [11–13]. Our main intention in this paper

is further investigation and extension of the algorithms
introduced in [9, 10] that allows us to remove a linear or
separablemotion blur from images.The algorithms presented
in these papers are based on the least squares solution of a
matrix equation which represents the mathematical model
of the linear or separable motion blur. The least squares
solution, denoted by 𝐸

1
, includes the Moore-Penrose inverse

of the blurring matrix as well as an arbitrary matrix 𝑌. The
particular least squares solution, based on theMoore-Penrose
inverse, was investigated in [11–13].

The main goal of this paper is the development of an
algorithm that allows us to remove amotion blur from images
by means of the consecutive applications of the least squares
solutions of a matrix equation which models the separable
two-dimensional blurring process. The least squares solu-
tions are matrix expressions that include the Moore-Penrose
inverse of the blurring matrix as well as an appropriately
chosen arbitrary matrix. The matrix transformation defined
in this way is idempotent (see [9, 10]). This difficulty forces
us to find the way to manage consecutive applications of the
least squares solutions from [9, 10]. Significant improvements
in ISNR and PSNR values are attained applying such an
approach with respect to the classical approach based on
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the Moore-Penrose solution of certain matrix equations,
which is investigated in [11, 12], as well as with respect to
a single application of the least squares solutions, used in
[9, 10].

The paper is organized as follows. Motivation and
description of the method are presented in the second
section.Themain algorithmwhich enables the iterative appli-
cation of the least squares solution 𝐸

1
on images damaged

by a separable motion blur is also presented in the second
section, as well as the application of the method on blurred
and noisy images. Results generated by performed numerical
experiments are investigated in Section 3.

2. Motivation and Description of the Method

The process of the separable blurring assumes that the
blurring of the columns in the image is independent of the
blurring of the rows. The separable blurring is modeled by
two blurring matrices, 𝐻

𝑐
and 𝐻

𝑟
, both of the general form
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where ℎ
𝑖
, 𝑖 = 1, . . . , 𝑛, are real numbers and the positive

integer 𝑛 indicates the length of linear motion blur in pixels.
The relation between the original image 𝐹 and blurred image
𝐺 is expressed by the following matrix equation, considered
in [10]:

𝐺 = 𝐻
𝑐
𝐹𝐻
𝑇

𝑟
,

𝐺 ∈ R
𝑚
1
×𝑚
2 , 𝐻

𝑐
∈ R
𝑚
1
×𝑟

,

𝐹 ∈ R
𝑟×𝑠

, 𝐻
𝑟
∈ R
𝑚
2
×𝑠
.

(2)

In (2), it is assumed that 𝑠 = 𝑚
2
+𝑛
1
−1, 𝑟 = 𝑚

1
+𝑛
2
−1, where

𝑛
1
(resp., 𝑛

2
) is the length of the horizontal (resp., vertical)

blurring in pixels.
Our approach provides a newmethod for restoration of a

blurred image which is based on multiple applications of the
least squares solutions of the matrix equations (2) in symbio-
sis with other well-known image deblurring techniques. In
general, the proposed algorithm is aimed at solving thematrix
equation (2).

The least squares solution of (2) has the general form
(used in [10])

𝐸
1
(𝑌) = 𝐹 = 𝐻

†

𝑐
𝐺(𝐻
𝑇

𝑟
)
†

+ 𝑌 − 𝐻
†

𝑐
𝐻
𝑐
𝑌𝐻
𝑇

𝑟
(𝐻
𝑇

𝑟
)
†

= 𝐹 + 𝑌 − 𝐻
†

𝑐
𝐻
𝑐
𝑌𝐻
†

𝑟
𝐻
𝑟
,

(3)

where 𝑌 is an arbitrary matrix of appropriate dimensions.
The transformation 𝐸

1
(𝑌) can be used as a deconvolution

of a blurred image 𝑌. The blurred image 𝑌 ∈ R𝑟×𝑠,
used in (3), can be determined in different ways. There are
no specific conditions for that; any random matrix 𝑌 can

be transformed into 𝐸
1
(𝑌). Continuing investigations from

[9, 10], appropriate choices for 𝑌 are chosen as the results
of particular image deblurring processes; that is, 𝑌 is an
arbitrary restoration of the degraded image. In that case,
𝐸
1
(𝑌) is an attempt to derive further improvements in the

restoration of 𝑌.
In the case 𝑌 = 𝑂, where 𝑂 is the zero matrix of appro-

priate dimensions, 𝐸
1
(𝑌) produces the next approximation 𝐹

of the original image 𝐹:

𝐸
1
(𝑂) = 𝐹 = 𝐻

†

𝑐
𝐺(𝐻
𝑇

𝑟
)
†

. (4)

The approach which assumes the condition 𝑌 = 𝑂 in (3)
exploits the Moore-Penrose solution of the matrix equation
(2), that is, the least squares solution of minimal norm.
About the least squares and minimal norm properties of
the Moore-Penrose solution, see main references [14, 15].
But the minimal norm attribute associated with the Moore-
Penrose solutionmay be, inmost of cases, only the redundant
property. Indeed, our experience from [9, 10] confirms that
only when the matrix 𝑌 is selected to be “far” from the
original image, the improvement of 𝑌 is still worse with
respect to theMoore-Penrose reconstruction (corresponding
to the case 𝑌 = 𝑂). Some of the examples that confirm this
expectation are studied in [9, 10]. We follow the main goal of
the papers [9, 10]; that is, we will determine 𝑌 in such a way
that the approximation𝐹 produces better values for ISNR and
PSNR with respect to the solution 𝐹 which is used in [11, 12].

Except the election 𝑌 = 𝑂, the results generated by
applying the Wiener filter (WF) and the constrained least-
squares (CLS) filter are used as two appropriate choices of
the matrix 𝑌 in [9, 10]. A description of the WF and CLS
filters can be found in [2]. A more advanced approach for
the selection of the matrix 𝑌 is based on the moment based
methods. The Haar basis and the Fourier basis mentioned
above are usually referred to as the most popular moment
based methods. This approach is considered in [10]. For
more details on the Fourier and the Haar basis, see [9, 12].
An algorithm for image deconvolution from the geometric
moments of an image which is degraded by a circular or
elliptical Gaussian point-spread function is considered in
[16]. For additional information on the moment based image
reconstruction methods, the reader is referred to [16–20]. A
short preview of main image restoration methods, used for
obtaining possible reconstructions 𝑌, is presented in [10].
A detailed description of these methods can be found in
[13]. A recent survey book presenting all the modern image
reconstruction methods is given in [21].

Our improvement of the methods defined in [9, 10]
arises from our intention to apply the operator 𝐸

1
repeatedly.

But the authors in [9] showed that the operator 𝐸
1
(𝑌)

is idempotent, which implies 𝐸
1
(𝐸
1
(𝑌)) = 𝐸

1
(𝑌). This

property of the operator 𝐸
1
makes its application on 𝐸

1
(𝑌)

redundant. In the present paper, we find a possibility for
multiple applications of the operator 𝐸

1
. The main idea is

to use 𝐸
1
(𝑇
𝑘
(𝐸
1
(𝑌))) instead of 𝐸

1
(𝐸
1
(𝑌)), where 𝑇

𝑘
denotes

the application of a previously defined image deconvolution
algorithm in the 𝑘th iteration.
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Let us denote byF
𝜅
the reconstructed image after 𝜅 steps.

The following approximations 𝑌
𝜅
for further restorations are

considered:

(a) 𝑌
𝜅

= 𝐵
𝑘,𝑙
(F
𝜅
) is derived applying the Haar based

reconstructed image for selected 𝑘, 𝑙;
(b) 𝑌
𝜅

= Fourier
𝑘,𝑙
(F
𝜅
) is derived applying the Fourier

based reconstructed image for selected 𝑘, 𝑙;
(c) 𝑌
𝜅

= CLS(F
𝜅
) is derived applying the constrained

least-squares filter;
(d) 𝑌
𝜅
= WF(F

𝜅
), derived applying the Wiener filter;

(e) 𝑌
𝜅
= LR(F

𝜅
), derived applying the Lucy-Richardson

algorithm.

On the other hand, an improper and unpredictable
behavior of𝐸

1
is observed in [9, 10]. Namely, to some extent, a

better improvement𝑌 implies better restoration𝐸
1
(𝑌), which

is confirmed by the inequality ISNR(𝐸
1
(𝑌)) > ISNR(𝑌). But,

after the occurrence of a limit, which is not known in advance,
the opposite situation (ISNR(𝐸

1
(𝑌)) < ISNR(𝑌)) is observed.

One of the possible ways to achieve multiple applications
of the operator 𝐸

1
is its alternating application with another

image restoration method, as it is described in Algorithm 1.

Algorithm 1 (iterative application of the operator 𝐸
1
). Con-

sider the following.
Require 𝑌

0
= 𝐺, where 𝐺 denotes a blurred image.

(1) Initial step is

F
1
= 𝐸
1
(𝑌
0
) = 𝐹
0
= 𝐻
†

𝑐
𝐺(𝐻
𝑇

𝑟
)
†

+ 𝑌
0
− 𝐻
†

𝑐
𝐻
𝑐
𝑌
0
𝐻
†

𝑟
𝐻
𝑟
.

(5)

(2) Set the number of the iterative steps to initial value
𝜅 = 1.

(3) Compute

𝑌
𝜅
= 𝑇
𝜅
(F
𝜅
)

F
𝜅+1

= 𝐸
1
(𝑌
𝜅
) = 𝐻

†

𝑐
𝐺(𝐻
𝑇

𝑟
)
†

+ 𝑌
𝜅
− 𝐻
†

𝑐
𝐻
𝑐
𝑌
𝜅
𝐻
†

𝑟
𝐻
𝑟
,

𝜅 ≥ 1,

(6)

where 𝑇
𝜅
∈ {Fourier

𝑘,𝑙
, 𝐵
𝑘,𝑙
,WF, LR,TSVD}.

(4) If a selected stopping criterion is fulfilled set 𝜅 = 𝜅+1

and go to Step (3).
(5) If the stopping criterion is fulfilled return the output

F
𝜅
.

Remark 2. Iterations (6) should provide two improvements
in the reconstruction, in each iteration, as follows:

(i) the first improvement is 𝑌
𝜅

= 𝑇
𝜅
(F
𝜅
), which gives a

restoration 𝑌
𝜅
of the previous iteration F

𝜅
by means

of an image restoration method 𝑇
𝜅
;

(ii) the second improvement arises from F
𝜅+1

= 𝐸
1
(𝑌
𝜅
),

which gives further reconstruction F
𝜅+1

of 𝑌
𝜅
by

means of the least squares solution 𝐸
1
.

Remark 3. The choice of the stopping criterion in Step (4) of
Algorithm 1 is, at this moment, an undeterminable problem.

(i) One possible choice is to stop the cycle when the
inequality ISNR(F

𝜅+1
) < ISNR(F

𝜅
) is satisfied.

(ii) But this choice may cause blocking of (possible)
improvements in further steps.
For this purpose, it seems that the terminating cri-
terion defined by an in advance defined number of
iterative steps is a better choice. In our numerical
experiments, we will use this stopping criterion.

(iii) Also, it is reasonable to stop the cycle in Step (4) when
the inequality ISNR(F

𝜅+1
) < ISNR(F

𝜅
) is satisfied

several times consecutively.

Remark 4. Essentially, iterations in (6) are based on the least
squares solution of the dynamical matrix equation

F
𝜅
= 𝐻
𝑐
F
𝜅+1

𝐻
𝑇

𝑟
. (7)

The model (7) essentially means that the iteration F
𝜅
is con-

sidered as a “blurred image” of the next (unknown) iteration
F
𝜅+1

. After resolving (7) with respect to the unknownmatrix
F
𝑘+1

, we derive the next iterationF
𝑘+1

in terms of the current
iteration F

𝜅
and the pseudoinverses of the blurring matrices

𝐻
𝑐
and 𝐻

𝑟
.

Remark 5. The authors of the papers [9, 10] have computed
𝑌 = 𝑇(𝐺), where 𝑇 is an image restoration method, and
simply compared ISNR(𝑌) with ISNR(𝐸

1
(𝑌)). The main

advantage of the proposed Algorithm 1 is that it makes
repetitive use of the operator 𝐸

1
in symbiosis with selected

deblurring methods on the blurred image and its recon-
structions. Since the operator 𝐸

1
is idempotent, Algorithm 1

defines an approach to improve the results obtained in [9, 10]
by themultiple application of the (deblurring) transformation
𝐸
1
.

2.1. Repetitive Least Squares Image Deblurring and Denoising.
Noise is unavoidable in most of applications, so that a
real observation is thus often modeled by the following
mathematical model:

𝐺
𝑁

= 𝐻
𝑐
(𝐹 + 𝑁)𝐻

𝑇

𝑟
= 𝐻
𝑐
𝐹
𝑁
𝐻
𝑇
, (8)

where 𝑁 is additive noise and 𝐺
𝑁
is the blurred noisy image.

Algorithm 6 can be adopted to restore the original image
from a blurred and noisy image, using the least squares
solution of the mathematical model (8).

Algorithm 6 (iterative application of the operator 𝐸
1
on

blurred and noisy image). Consider the following.
Require 𝑌

0
= 𝐺
𝑁
, where 𝐺

𝑁
denotes a blurred noisy

image.

(1) Initial step is

F̃
1
= 𝐸
1
(𝑌
0
) = 𝐹
0
= 𝐻
†

𝑐
𝐺
𝑁

(𝐻
𝑇

𝑟
)
†

+ 𝑌
0
− 𝐻
†

𝑐
𝐻
𝑐
𝑌
0
𝐻
†

𝑟
𝐻
𝑟
.

(9)
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Figure 1: (a) ISNR versus the number of steps of Algorithm 1; (b) PSNR versus the number of steps of Algorithm 1.

(2) Obtain the restored image F
1
by applying filtering

process on the image F̃
1
obtained in Step (1).

(3) Set 𝜅 = 1.
(4) Compute

𝑌
𝜅
= 𝑇
𝜅
(F
𝜅
) ,

F̃
𝜅+1

= 𝐸
1
(𝑌
𝜅
) = 𝐻

†

𝑐
𝐺
𝑁

(𝐻
𝑇

𝑟
)
†

+ 𝑌
𝜅
− 𝐻
†

𝑐
𝐻
𝑐
𝑌
𝜅
𝐻
†

𝑟
𝐻
𝑟
,

𝜅 ≥ 1,

(10)

where 𝑇
𝜅
∈ {Fourier

𝑘,𝑙
, 𝐵
𝑘,𝑙
,WF, LR,TSVD}.

(5) Obtain the restored image F
𝑘+1

by applying filtering
process on the image F̃

𝑘+1
obtained in Step (4).

(6) If a selected stopping criterion is fulfilled, set 𝜅 = 𝜅+1

and return to Step (4).
(7) If the stopping criterion is fulfilled then return the

outputF
𝜅
.

3. Experimental Results

In this section, we investigate the numerical results generated
by applying the two proposed algorithms. The experiments
are performed using Matlab programming language on an
Intel Core i5 CPU M430 @ 2.27GHz 64/32-bit system with
4GB of RAM memory running on Windows 7 Ultimate
Operating System.

3.1. Application of the Method on Blurred Images

Example 7. In order to emphasize the importance of the
number of iterative steps in Algorithm 1, the number of
moments in Figures 1(a) and 1(b) was kept constant with
𝑘 = 𝑙 = 195. The length of blurring is 𝐻

𝑐
= 𝐻
𝑟

= 64. The
reconstructions 𝑌

𝜅
obtained by the Haar basis (resp., Fourier

transform) are denoted by 𝑌 = 𝐻
195,195

= 𝐻195 (resp.,
𝑌 = 𝐹

195,195
= 𝐹195).

Both the graphs represented in Figures 1(a) and 1(b)
show a similar behavior. In fact, the ISNR and PSNR values
increase initially and then converge, slowly growing, to a
constant value. Also, both ISNR and PSNR values generated
by applying 𝐸

1
on Fourier basis are greater (better) with

respect to the corresponding values generated by applying 𝐸
1

on the Haar basis.
Also, the graphs in Figures 1(a) and 1(b) show that in

advance the predefined number of iterative steps is a suitable
termination criterion of Algorithm 1.

Example 8. This example shows the behavior of Algorithm 1
with respect to the length of blurring. Therefore, the number
of iterative steps remains constantwhile the length of blurring
in Step (1) increases in the range [10, 100]. In order to
compare generated results, we tested Algorithm 1 on several
standard Matlab images: Lena, Barbara, Man, Boat, and
Cameraman. The best ISNR (resp., PSNR) values versus the
length of the blurring process for Lena image, generated
after 40 steps of Algorithm 1, are illustrated in Figure 2(a)
(resp., Figure 2(b)). In general, both ISNR and PSNR values
stepwise decrease with increasing the length of blurring. Let
us mention that the values corresponding to the constrained
least-squares (CLS) filter are not included in these graphs,
since they are almost identical with the values corresponding
to Wiener filter (WF). Notations 𝐸

1
(𝑌40 = 𝐹195) (resp.,

𝐸
1
(𝑌40 = 𝐻195)) in Figure 2 mean the maximal ISNR

values generated after 40 iterative steps of Algorithm 1 using
𝑇
𝜅

= 𝐹
195

(resp. 𝑇
𝜅

= 𝐻
195

), 𝜅 ≥ 1. The same notations in
Figure 2(b) denote the corresponding PSNR values.

Figure 2(a) (resp., Figure 2(b)) shows that 𝐸
1
(𝑌40 =

𝐹195) and 𝐸
1
(𝑌40 = 𝐻195) achieve the greatest ISNR

(resp., PSNR) values for the length of blurring satisfying
𝑛 > 20. Notation 𝐸

1
(𝑌0) denotes the result derived

after a single application of the least squares operator 𝐸
1
,

that is, the restoration given by applying only Step (1) of
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Figure 2: Lena image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 1; (b) maximal PSNR versus length of blurring
after 40 steps of Algorithm 1.
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Figure 3: Barbara image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 1; (b) maximal PSNR versus length of
blurring after 40 steps of Algorithm 1.

Algorithm 1. It can be observed that both ISNR and PSNR
values corresponding to𝐸

1
(𝑌0) behave in a similar way as the

corresponding restorations derived by applying the Moore-
Penrose solution (4).

The results of ISNR and PSNR values corresponding to
Barbara and Cameraman images are presented in Figures 3
and 4. The graphs presented in these figures are similar with
the graphs presented in Figures 2(a) and 2(b).

Example 9. Figure 5 shows maximal ISNR and the PSNR
values for various moments indices 𝑘, 𝑙, from the values 𝑘 =

𝑙 = 10 to 𝑘 = 𝑙 = 400 with the incremental Step (5), keeping

the blurring process constant with the length 𝑛 = 40 and
applying 𝜅 = 40 steps of Algorithm 1.

Generally, an insignificant and stepwise increase of ISNR
and PSNR values can be observed. The graphs included in
Figure 5 confirm that the improvement of the restoration
which is based on increasing the number of moments is
insignificant compared to the increase in numerical demands,
and, therefore, it is not cost-effective.

Example 10. The tested image Lena is shown in Figure 6(a).
The blurred image that has been degraded by a uniform linear
motion in the horizontal direction is presented in Figure 6(b).
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Figure 4: Cameraman image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 1; (b) maximal PSNR versus length of
blurring after 40 steps of Algorithm 1.
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Figure 5: Maximal ISNR and PSNR versus the values of moments corresponding to the constant length 𝑙 = 40 of blurring.

(a) (b) (c) (d)

Figure 6: (a) Image of Lena. (b) Image of Lena blurred by uniform linear motion of length 64. Restoration of Lena in the cases: (c) Moore-
Penrose; (d) 𝜅 = 1.
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(a) (b) (c) (d)

Figure 7: Restoration of Lena with Haar basis for (a) 𝜅 = 10 and (b) 𝜅 = 40. Restoration of Lena with Fourier basis for (c) 𝜅 = 10 and (d)
𝜅 = 40.

(a) (b) (c)

Figure 8: (a) Blurred image by uniform linear motion of length 43. Restoration of Barbara for (b) LR algorithm and (c) WF.

Figure 6(c) illustrates the restoration based on (4) (intro-
duced in [11, 12]) and Figure 6(d) illustrates the restoration
based on a single application of the operator 𝐸

1
(the number

of iterations is 𝜅 = 1). Differences in Figures 6(c) and 6(d)
are not observable by a human eye. This observation exactly
means that a single application of the least squares solution
does not produce significantly better results compared with
the corresponding results obtained by the Moore-Penrose
inverse solution.

Figures 7(a) and 7(b) present restorations derived apply-
ing, respectively, 𝜅 = 10 and 𝜅 = 40 times the least squares
operator 𝐸

1
in conjunction with the Haar basis restoration

determined by the basis 𝑘 = 𝑙 = 195. The length of blurring is
equal to 64. Figures 7(c) and 7(d) show restorations derived
after 𝜅 = 10 and 𝜅 = 40 applications of the least squares
operator 𝐸

1
in conjunction with the Fourier basis restoration

with basis 𝑘 = 𝑙 = 195. The length of blurring is 64.
From Figure 7, one can observe that better restorations

are derived applying a greater number of iterations, in both
cases (Haar and Fourier basis).

Figures 8 and 9 show the restorations corresponding to
the Barbara image. Observation is the same as in the case of
Figure 7.

3.2. Application of the Method on Blurred and Noisy Images.
The next examples refer to the case when the image is

degraded by including image noise which is later followed by
a separable motion blur, as it is presented in Section 2.1.

Example 11. The behavior of Algorithm 6 with respect to
length of blurring and different types of noise is presented
in this example. The changes of the ISNR and PSNR values
corresponding to the degraded image of Lena are graphically
presented in Figures 10(a) and 10(b). It is possible to use
different types of filters, subject to different types of noise. A
Gaussian low-pass filter is imposed in this example. Maximal
ISNR values generated after 𝜅 = 40 steps of Algorithm 6
versus length of blurring for Lena image are presented in
Figure 10(a). The “salt and paper” noise of density 0.03 is
imposed in addition to the separable motion blur.

Maximal PSNR values versus length of blurring after
40 steps of Algorithm 6 for Lena image are illustrated in
Figure 10(b). The Gaussian white noise of mean 0 and
variance 0.01 is assumed.

All graphs included in Figure 10(a) (resp., Figure 10(b))
show similar behavior with respect to the graphs included
in Figure 2(a) (resp., Figure 2(b)). The graphs corresponding
to 𝐸
1
(𝑌40 = 𝐹195) and 𝐸

1
(𝑌40 = 𝐻195) both achieve the

greatest ISNR (resp., PSNR) values for the length of blurring
satisfying 𝑛 > 45. It can be, again, observed that both
ISNR and PSNR values derived applying 𝐸

1
(𝑌0) behave in
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(a) (b) (c)

Figure 9: Restoration of Barbara for (a) Moore-Penrose, (b) Haar basis (𝜅 = 40), and (c) Fourier basis (𝜅 = 40).
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Figure 10: Lena image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 6; (b) maximal PSNR versus length of blurring
after 40 steps of Algorithm 6.
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Figure 11: Cameraman image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 6; (b) maximal PSNR versus length of
blurring after 40 steps of Algorithm 6.
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Figure 12: Boat image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 6; (b) maximal PSNR versus length of blurring
after 40 steps of Algorithm 6.
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Figure 13: Barbara image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 6; (b) maximal PSNR versus length of
blurring after 40 steps of Algorithm 6.

a similar way as the corresponding restorations generated
by the Moore-Penrose inverse solution. Clearly, WF and LR
algorithms show the worst performances in symbiosis with
Algorithm 6.

Confirmation of our results is presented in Figures 11 and
12 for the “salt and paper” noise of density 0.03, as well as in
Figures 13 and 14 for the Gaussian white noise of mean 0 and
the variance 0.01.

Example 12. The tested image Lena with added “salt and
paper” noise with noise density of 0.03 is shown in Fig-
ure 15(a). The image that has been additionally degraded by

a uniform horizontal linear motion of length 73 is presented
in Figure 15(b).

Figure 16(a) illustrates restoration based on the Wiener
filter, Figure 16(b) illustrates restoration generated by the
Lucy-Richardson algorithm, and Figure 16(c) is the restora-
tion defined by the Moore-Penrose solution (4).

The differences in Figures 16(a) and 16(b) as opposed
to Figure 16(c) are visible by a human eye. In addition, the
Moore-Penrose inverse approach achieves a better restora-
tion than the WF and LR algorithms.

Figures 17(a) and 17(b) present restorations derived apply-
ing 𝜅 = 40 times the least squares operator 𝐸

1
in conjunction



10 Mathematical Problems in Engineering

0

5

10

IS
N

R 
(d

B)

MP inverse
LR algorithm
WF

−5

−10

E(Y40 = F195)

E(Y40 = H195)

E(Y0)

10 20 30 40 50 60 70 80 90 100
Length n

(a)

10 20 30 40 50 60 70 80 90 100

10

15

20

25

30

Length n

PS
N

R 
(d

B)

MP inverse
LR algorithm
WF

E(Y40 = F195)

E(Y40 = H195)

E(Y0)

(b)

Figure 14: Man image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 6; (b) maximal PSNR versus length of blurring
after 40 steps of Algorithm 6.

(a) (b)

Figure 15: (a) Noisy image of Lena; (b) blurred noisy image of Lena.

(a) (b) (c)

Figure 16: Restoration of Lena with (a) WF, (b) LR algorithm, and (c) Moore-Penrose.
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(a) (b)

Figure 17: Restoration of Lena with (a) Haar basis and (b) Fourier basis (𝜅 = 40).

(a) (b) (c)

Figure 18: (a) Image of Boat; (b) noisy image with “salt and paper” noise with noise density of 0.03; (c) blurred noisy image degraded by a
uniform horizontal linear motion of length 85.

(a) (b) (c) (d)

Figure 19: Restoration of Boat with (a) WF, (b) LR algorithm, (c) Haar basis (𝜅 = 10), and (d) Fourier basis (𝜅 = 40).

with theHaar and Fourier basis restorationwith the basis 195,
respectively. The length of blurring is again equal to 73.

The conclusion in this example is that the better restora-
tion is gained by using the Haar and Fourier basis (Figure 17)
compared to the methods used in Figure 16 and that the
improvement is observable by the human eye.

Visual confirmation of the previous conclusion is also
observable from Figures 18, 19, 20, and 21.

Example 13. In this example, the previously exploited meth-
ods are tested on images degraded by different types of noise.
The tested image Lena with added Gaussian white noise
of mean 0 and variance 0.01 is presented in Figure 22(a)
and blurred noisy image that has been degraded by a
uniform linear horizontal motion of length 86 is presented
in Figure 22(b).

Accordingly, a rotationally symmetric Gaussian low-pass
filter of size 3 with standard deviation 45 is used for filtering.
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(a) (b) (c)

Figure 20: (a) Image of cameraman; (b) noisy image with “salt and paper” noise with noise density of 0.03; (c) blurred noisy image degraded
by a uniform horizontal linear motion of length 64.

(a) (b) (c) (d)

Figure 21: Restoration of Cameraman with (a) WF, (b) LR algorithm, (c) Haar basis (𝜅 = 10), and (d) Fourier basis (𝜅 = 40).

(a) (b)

Figure 22: (a) Noisy image of Lena; (b) blurred and noisy image of Lena.

Restorations of Figure 22(b) based on the Wiener filter
are illustrated in Figure 23(a). Figure 23(b) illustrates the
restoration based on the Lucy-Richardson algorithm and
Figure 23(c) illustrates the restoration based on the Moore-
Penrose inverse.

Restoration of Figure 22(b) based on 𝜅 = 40 applications
of the least squares solution 𝐸

1
in symbiosis with the Haar

and Fourier basis is presented in Figures 24(a) and 24(b),

respectively. It is observable that these restorations are more
efficient than the restorations illustrated in Figure 23.

Confirmation of the previous conclusion (corresponding
to Lena image) is also valid for Figures 25, 26, 27, and 28.

3.3. Application of the Method on Gaussian Blurred and Noisy
Images. We also paid consideration to Gaussian blurring
function, because it models the blurring that is caused by
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(a) (b) (c)

Figure 23: Restoration of Lena with (a) WF, (b) LR algorithm, and (c) Moore-Penrose.

(a) (b)

Figure 24: Restoration of Lena with (a) Haar basis and (b) Fourier basis.

(a) (b) (c)

Figure 25: (a) Image of Barbara; (b) noisy image with Gaussian white noise of mean 0 and variance 0.01; (c) blurred noisy image degraded
by a uniform horizontal linear motion of length 70.

atmospheric turbulence, out-of-focus, and motion of the
camera [22]. The vector ℎ = [ℎ

1
, ℎ
2
, . . . , ℎ

𝑙
] in Gaussian blur

model is equal to

ℎ = [𝛾 (−𝑝) , . . . , 𝛾 (0) , . . . , 𝛾 (𝑘)] , (11)

where 𝛾(𝑖) = 𝑒
−𝑖
2
/(2𝑠
2
), 𝑝 = ⌊𝑛/2⌋, 𝑘 = ⌈𝑛/2⌉, and the

parameter 𝑠 represents the width of the blurring function.

Example 14. In this example, we illustrate the results for
different images when the Gaussian blur is present.The ISNR
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(a) (b) (c) (d)

Figure 26: Restoration of Barbara with (a) WF, (b) LR algorithm, (c) Haar basis (𝜅 = 10), and (d) Fourier basis (𝜅 = 40).

(a) (b) (c)

Figure 27: (a) Image of Barbara; (b) noisy image with Gaussian white noise of mean 0 and variance 0.01; (c) blurred noisy image degraded
by a uniform horizontal linear motion of length 95.

(a) (b) (c) (d)

Figure 28: Restoration of Barbara with (a) WF, (b) LR algorithm, (c) Haar basis (𝜅 = 10), and (d) Fourier basis (𝜅 = 40).

and PSNR values in case of Gaussian blur are shown in
Figures 29 and 30.

Figures 31 and 32 show the results for the Lena image.
The results for the Man image are shown on Figures 33

and 34.

Example 15. The results of ISNR and PSNR in the case of
Gaussian blur and Gaussian noise are presented in Figures 35
and 36.

4. Conclusion

In [9, 10], it was shown that the application of the least squares
solutions ofmatrix equations is a very useful tool in the image
deblurring process. Our tendency in the present paper is to
ensure an iterative application of these least squares solutions.
The presented numerical examples and figures illustrate that
both the ISNR and PSNR values increase using successive
applications of the proposed operator 𝐸

1
.
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Figure 29: Lena image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 1; (b) maximal PSNR versus length of blurring
after 40 steps of Algorithm 1.
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Figure 30: Man image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 1; (b) maximal PSNR versus length of blurring
after 40 steps of Algorithm 1.

(a) (b) (c)

Figure 31: (a) Blurred image by uniform linear motion of length 42. Restoration of Lena for (b) LR algorithm and (c) WF.
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(a) (b) (c)

Figure 32: Restoration of Lena for (a) Moore-Penrose, (b) Haar basis (𝜅 = 40), and (c) Fourier basis (𝜅 = 40).

(a) (b) (c)

Figure 33: (a) Blurred image by uniform linear motion of length 76. Restoration of Man for (b) LR algorithm and (c) WF.

(a) (b) (c)

Figure 34: Restoration of Man for (a) Moore-Penrose, (b) Haar basis (𝜅 = 40), and (c) Fourier basis (𝜅 = 40).

It is clear that the proposed application of the least squares
solutions of the matrix equation which models the blurring
process is applicable only in symbiosis with other methods of
image deconvolution. The least squares solution can be used
as an improvement of other image deconvolution methods.

This symbiosis is exploited in Step (3) of Algorithm 1. Iterative
application of the least squares solution 𝐸

1
on blurred and

noisy images is achieved in Algorithm 6 in symbiosis with
other well-known methods for image deconvolution and a
selected filtering process.
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Figure 35: Barbara image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 6; (b) maximal PSNR versus length of
blurring after 40 steps of Algorithm 6.
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Figure 36: Cameraman image: (a) maximal ISNR versus length of blurring after 40 steps of Algorithm 6; (b) maximal PSNR versus length
of blurring after 40 steps of Algorithm 6.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments
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[9] P. S. Stanimirović, S. Chountasis, D. Pappas, and I. Stojanović,
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