
A Novel Quad Harmony Search
Algorithm for Grid-based Path Finding

Regular Paper

Saso Koceski1,*, Stojanche Panov1, Natasa Koceska1,
Pierluigi Beomonte Zobel2 and Francesco Durante2

1 Faculty of Computer Science, University Goce Delcev, Stip, Macedonia
2 Department of Industrial and Information Engineering and Economy, DIIIE, University of L’Aquila, Italy
* Corresponding author E-mail: saso.koceski@ugd.edu.mk

Received 27 Oct 2013; Accepted 14 Jul 2014

DOI: 10.5772/58875

© 2014 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract A novel approach to the problem of grid-based
path finding has been introduced. The method is a block-
based search algorithm, founded on the bases of two
algorithms, namely the quad-tree algorithm, which
offered a great opportunity for decreasing the time
needed to compute the solution, and the harmony search
(HS) algorithm, a meta-heuristic algorithm used to obtain
the optimal solution. This quad HS algorithm uses the
quad-tree decomposition of free space in the grid to mark
the free areas and treat them as a single node, which
greatly improves the execution. The results of the quad
HS algorithm have been compared to other meta-
heuristic algorithms, i.e., ant colony, genetic algorithm,
particle swarm optimization and simulated annealing,
and it was proved to obtain the best results in terms of
time and giving the optimal path.

Keywords Heuristic Algorithms, Artificial Intelligence,
Computational Intelligence, Optimization, Path Planning

1. Introduction

Throughout the past few decades, the global interest of
researchers has been in the grid-based graph

representations and path-planning problems, since they
have been shown to be of great significance for many
practical applications and research studies. Several of
them were utilized in response to problems in the areas of
computer vision, medical informatics, CAD/CAM-design,
gaming and robotics. All these problems and applications
become more challenging if they need to be solved in
real-time. The algorithms employed for grid-based path
finding can fall into two categories: deterministic and
meta-heuristic. Because deterministic algorithms have
many computational drawbacks, such as gradient
information, great dependency on the initial value and
often huge memory requirements, meta-heuristic
algorithms have been considered as a feasible alternative.
Meta-heuristic algorithms can be formulated as an
iterative process, utilizing rules and randomness to
improve the candidate solutions in order to efficiently
find a near-optimal solution. Some of the meta-heuristic
algorithms employed to solve the path-finding problems
are: tabu search (TS), artificial neural network (ANN),
genetic algorithm (GA), particle swarm optimization
(PSO), ant colony optimization (ACO) and simulated
annealing (SA). Although it has not always been possible
to find an optimal path in grid-based environments using
such algorithms, these researches have served as a great

1Saso Koceski, Stojanche Panov, Natasa Koceska, Pierluigi Beomonte Zobel and Francesco Durante:
A Novel Quad Harmony Search Algorithm for Grid-based Path Finding

ARTICLE

Int J Adv Robot Syst, 2014, 11:144 | doi: 10.5772/58875

International Journal of Advanced Robotic Systems

example and a catalyst for finding alternatives to existing
algorithms, thus providing either better time or memory
complexities - key points of exploration to be seriously
considered. Such research proved that these algorithms
obtain poor results and a lack optimality when they have
either very high or very low occupancy with obstacles in
the working environment [1].

A new meta-heuristic algorithm called harmony search
(HS), intended to overcome optimization and search
problems, has been proposed by Geem et al. [2]. This
algorithm utilizes the musician’s experience in jazz
improvisation to obtain an optimal solution through an
iterative process. When HS has been evaluated against
other meta-heuristic algorithms, a conclusion has been
drawn that the HS algorithm performs better in terms of
diversification and intensification concepts [3].

This means that HS has a randomization phase that is
more efficient in exploring the search space, whilst not
moving too far from possible good solutions and
avoiding convergence with local optimal solutions. It is
also noted that the greater the probability of the harmony
memory consideration rate (HMCR) parameter, the faster
the convergence to the best solution will be. The
implementation of the HS is a lot easier and simpler than
that of the other meta-heuristic algorithms, and the
sensitivity to the chosen solutions will not be affected by
fine tuning the parameters of the algorithm to obtain
good solutions. It is also possible to parallelize the
algorithm, which can provide better implementation with
better efficiency [3].

This algorithm has been widely used in many
engineering problems, such as internet routing [4],
robotics [5] and web page clustering [6], but also in other
real-world applications [7], electrical engineering [8], civil
engineering [9], mechanical engineering [10],
bioinformatics [11] and medical applications [12]. It can
be easily adapted to any optimization matters according
to one’s needs. There have been several uses of this
algorithm in motion planning and visual tracking [13],
but to the best of our knowledge none of the previous
researches have applied this algorithm to the grid-based
graph search problem.

In mobile robotics, the path-finding problem in a grid-
based environment could be defined as follows: where
there is a set of vertices V, a set of edges E between these
vertices, a start state and a goal state, an optimal route
ought to be established between the start state and the
goal state in a finite period of time – the planning time.

The edges between the vertices in the environment have a
concrete cost assigned to them. A solution cost is the cost
obtained by traversing the vertices of the computed path

from the initial point to the destination. The algorithm
that will provide this functionality ought to give a
feasible or optimal path between two points in a finite
time, supposing this path exists. To perform in such way,
the hypothesis of safe exploration of the search problems
needs to be established. Concretely, edges have finite
costs; furthermore, where there are states s1, s2 and s3, if
s1 and s2 are connected and s2 and s3 are connected, then
s1 and s3 are connected.

There have been many attempts to obtain acceptable
solutions which perform equally well with reduced time.
Formally, all meta-heuristic algorithms mentioned in this
chapter are applicable to path-finding problems in grid-
based environments. However, they present various
drawbacks depending on the environment structure.
Many of them tend to become stuck in a local optimum of
some sort, so that the result given is not optimal. This is
especially evident in grids with the decreasing of the free
space for robot movement. This fact makes them
impractical for real-time applications as well as for
remote control.

The main aim of this work is to propose a new algorithm
capable of finding the optimal path (if one exists) in a
grid-based environment at reduced time, compared to
other meta-heuristic algorithms. This novel algorithm
will prove its adaptability towards various types of real-
world environments, having various percentages of
obstacles and different sizes, and to prove its speed of
execution and accuracy as well.

The proposed solution first separates the search space
into smaller rectangles using the quad-tree (QT)
algorithm, and then calls itself on these sub-problems
recursively. During the search space division, rectangles
in the search space are marked (coloured) and the fields
with the same number (colour) are furthermore treated as
a single node. This helps to create a reduced graph
together with an adjacency list of the neighbouring
rectangles, on which the HS approach is applied in order
to find the shortest path between two given cells in the
grid. The performances of the proposed algorithm have
been evaluated empirically and using simulations. The
obtained results confirm that the proposed quad
harmony search (QHS) algorithm is superior compared to
known meta-heuristic algorithms applied in the same
environment and conditions.

2. Related work

Many meta-heuristic algorithms have been developed
and applied for solving NP-complete problems such as
the path-finding problem, mainly because they are robust
enough and capable of producing acceptable solutions
very quickly.

2 Int J Adv Robot Syst, 2014, 11:144 | doi: 10.5772/58875

Particle swarm optimization (PSO) [14] is a population-
based meta-heuristic algorithm inspired by the swarm
behaviour of fish and bird schooling in the natural world.
The algorithm explores the space of a fitness function by
regulating the paths of individual searching agents,
commonly known as particles. Besides the original
algorithm, many PSO variants have been recently
developed and applied to the grid-based robot path
planning. For example, in [15], the paper proposes an
approach using PSO in a shortest path-finding problem,
which gave better results than algorithms that used the
genetic algorithm (GA) as an alternative to obtain the
optimal route. This approach also has the advantage of
removing loops in providing the best possible path. The
path-planning algorithm presented in [16], where PSO is
applied in the path-planning problem for a mobile robot,
the MAKLINK graph is firstly constructed to describe the
search space of the robot, then the Dijkstra algorithm is
applied to provide the shortest distance from the start
node to the end node, and finally the PSO is used to give
the optimal path. Results have shown that this approach
is applicable in real-time mobile robot navigation. The
same authors later presented a modified version of the
approach in the previously published paper [17]. In order
to escape the plunging into the local minimum, they
added a mutation operator, which led to greater speed in
performance in the early phase of the algorithm. The
hybrid algorithm described in [18], known as CIPSO,
includes a combination of several techniques, including
artificial immune system (AIS), chaos operator and the
PSO algorithm. This approach has been shown to give
better results than the GA and the PSO in terms of
optimality of route and the time execution of the
algorithm.

Simulated annealing (SA) [19] is a meta-heuristic
algorithm that is often utilized in problems that require
the obtaining of a solution in a certain amount of time,
rather than requiring the optimal solution. The slow
cooling that appears in the process of annealing (a
process known in metallurgy) is implemented in the
algorithm, as it performs a slow decrease, respecting the
probability of accepting worse solutions in the search
space. It has also found its use in several mobile robot
path-planning problems, and it has also been combined
with other techniques. In [20], the SA algorithm is applied
to the robot path-planning problem to boost the artificial
potential field (APF) approach and avoid plunging into
local minima, a method frequently used in real-time
problems. This algorithm has been shown to be greatly
effective in local and global path finding. The paper [21]
describes the same technique and applies this method to
soccer robots’ path planning, and has also proven the
validity of this approach. Also, a simulated annealing
neural network has been introduced in [22], which is used
to describe the obstacles in the robot’s environment. This

path planner has been effectively applied to several kinds
of robots, like flying robots and snake robots.

The ant colony (AC) algorithm‘s probabilistic nature
gives well-approximated solutions and is often used as an
optimization technique [23]. It is mainly based on the
behaviour of ants as they search for food and find a path
from their colony. After finding food, they return to their
colony, leaving pheromone trails. These pheromone trails
tend to evaporate over a given period, which is due to the
concrete time an ant has to travel to the food. Hence, the
shorter the path, the less evaporation will happen and the
pheromone density will increase. This phenomenon is the
reason why this algorithm cannot get stuck in a locally
optimal solution. When one ant finds food by following a
given (shorter) path, the other ants will be more likely to
follow the same path. The paper [24] shows the
application of the AC to the two-dimensional robot path-
planning problem, which solves the problem of the local
optima and increases search speed. In the method
proposed in [25], called SACOdm, the decision-making
process is improved by storing the existing distances in
memory, since the ant colony algorithm itself cannot
remember the visited nodes, which produces a speed-up
of around 10 in several cases [25]. Then, the optimal path
is selected using fuzzy interference systems, applying the
simple tuning algorithm. An improved augmented ant
colony algorithm has been introduced in [26], which
decreases the time for the execution of the initialization
phase by adding the heuristic probability function in this
phase, which solves the precocity of the algorithm.
Results have shown that this technique has better
performance and greater optimization capabilities than
the traditional augmented ant colony algorithm. The AC
algorithm has also been applied to the robot path-
planning problem in a dynamic environment with
dynamically appearing obstacles [27]. This
implementation uses two different re-initialization
schemes.

Another meta-heuristic algorithm which is also used for
search and optimization is the genetic algorithm [28],
which is a search heuristic mirroring process of natural
evolution, such as the processes of crossover, mutation,
selection and inheritance. Here, the evolution is headed
towards better solutions, typically encoded with 0s and
1s, but there can be other types of encodings. This
algorithm finishes when a certain number of iterations is
reached, or a given value of the fitness function is
obtained; hence, the solution to the problem is the finally
generated generation. A knowledge-based genetic
algorithm (GA) applied to the mobile robot path-
planning problem has been introduced in [29], applying
its domain knowledge to its operators. This effective
technique has demonstrated its utility in obtaining the
optimal or near-optimal path of a mobile robot both in

3Saso Koceski, Stojanche Panov, Natasa Koceska, Pierluigi Beomonte Zobel and Francesco Durante:
A Novel Quad Harmony Search Algorithm for Grid-based Path Finding

static and dynamic environments. The global path
planning using neural network and genetic algorithm
presented in [30] uses the neural network to construct the
search space (environment) of the robot in order to
establish a connection between a collision avoidance path
and the output of the neural network, and then this
information, along with the information for obtaining the
optimal route, is fed to the fitness function of the genetic
algorithm. Also, an effective method to obtain the optimal
route of a mobile robot is the chaos genetic algorithm
[31], so that when the chaos operation is added to the
genetic algorithm, it decreases the time needed for
convergence and performs well in avoiding collisions
with obstacles. The paper [32] has described the
implementation of the GA on the path-planning problem
by using four neighbour movements in a grid-based
environment.

3. The harmony search algorithm

Harmony search (HS) is a music-inspired technique
which mimics the process of improvisation of jazz
musicians; it is analogous to the musicians’ examination
of all the possible combinations of musical pitches they
have remembered and their recalling them from memory.
In such a fashion, this algorithm is applied to exploring
such combinations with the aim of solving various
optimization problems. It is a probabilistic technique
which finds the optimal solution in several different
stages.

1. First, the harmony memory (HM) is initialized. This
process is performed by generating random numbers in a
specified range, and this memory would look as follows:





















=

N
n

NN

n

n

xxx

xxx
xxx

HM







21

22
2

2
1

11
2

1
1

 (1)

where n is the dimension of the candidate vectors and N
is the total memory size.

2. Secondly, a new candidate solution is improvised,

namely []''
2

'
1 ... nxxx , based on the harmony

memory consideration rate (HMCR), which is defined as
the probability of the new candidate solution being
chosen from the HM. So, in a similar way, the probability
of the candidate solution to be selected randomly is (1-
HMCR). If a member of the candidate solution is chosen
from the harmony memory, it can be changed further due
to the pitch adjustment rate (PAR), which is the
probability of the candidate being mutated.

3. Thirdly, the new candidate solution is compared to the
other candidate solutions stored in the HM. If the new
candidate solution provides a better result than the worst
candidate solution whilst evaluating the function, it is
stored in the memory and the worst solution is discarded
from the memory. Otherwise, this new candidate solution
is not considered in future, and the previous processes are
repeated. The algorithm stops when a certain termination
criterion is reached, such as number of iterations.

4. Quad harmony search (QHS) algorithm description

In this paper, we introduce a novel approach, based on the
utilization of the HS algorithm, to the problem of graph
search in grid-based environments [1, 33]. The grids that
have been examined are of a rectangular shape, having
square-sized cells of fixed height and width, and the agent
was able to move in four directions, marked as north (N),
east (E), south (S) and west (W). For the purposes of
algorithm optimization, we use a search space reducing
technique in order to speed up the process of finding a
solution, and provide a better convergence in fewer
iterations and with smaller memory size. This technique
has been widely used in geometry-related problems, but
for the main goals of this paper, it proved to raise an
important issue in terms of time and space complexity. It is
commonly known as a quad-tree algorithm.

The quad-tree (QT) algorithm is based on a dividing
technique which separates the search space into four
blocks, i.e., sub-problems, and then calls itself on these
sub-problems recursively. The algorithm stops with the
recursive calls when it meets certain defined criteria. For
the main goals of this research, the QT technique is used
in a way which marks (colours) certain squares in the
search space, and the fields which bear the same number
(colour) are furthermore treated as a single node. The
technique is adapted to this research as follows:

1. Take as input the full grid to be examined.
2. If the size of the grid is 1x1, if it is empty, mark with

number (colour), else mark with -1.
3. Divide the search space into four square-like

subspaces.
4. Check each of the square-like subspaces for existence

of obstacles.
a. If none of the subspaces have obstacles, mark them

all as a single number (colour).
b. If two adjacent square-like subspaces do not have

obstacles, mark them with the same colour. For the
other two, repeat recursively, starting from step 2.

c. If the previous two are not satisfied, check if any
subspace contains obstacles. The ones that do not
contain obstacles mark them with the same number.
For the ones that contain obstacles, repeat
recursively from step 2.

4 Int J Adv Robot Syst, 2014, 11:144 | doi: 10.5772/58875

The running of this algorithm on an example grid and its
result are shown in Figure 1 and Figure 2.

After the grid is labelled with the proper numbers, a
reduced graph is constructed using the previous
separation, and an adjacency list is obtained using the
neighbouring rectangles (squares). This approach is
extremely efficient when it comes to searching through a
maze that has a large amount of free areas and the
percentage of obstacles in the grid is relatively small.

Figure 1. Example of applying QT on a grid. Red colour indicates
start, whereas green colour indicates end. Yellow colour presents
the partitioning of the algorithm for the quadrant of interest and
the blue colour displays the optimal path for that given grid.

Once the adjacency list is constructed, the proper input
data is ready to be fed to the HS algorithm.

Figure 2. The marked grid of the yellow coloured upper-left
quadrant in Figure 1

The memory consideration rate of the algorithm (HMCR),
as defined in the previous section, is the probability for a
candidate solution to be chosen from the harmony
memory (HM). The greater the consideration rate, the
greater the probability for a candidate solution to be
selected from the harmony memory (HM), as in Eq. 2 [2]:

[]






−∈
∈←

)1(..
..

'

21'
'

HMCRpwXx
HMCRpwxxxxx

ii

HMS
iiii

i
 (2)

where Xi is the set of possible values in range [1;
maximumNumberOfRectangles], which means all possible
values are dependent on the number of rectangles
generated by quad-tree, denoted as
maximumNumberOfRectangles. The equation states that,
with a probability of HMCR, a candidate solution xi’ will
be generated from the HM, and with a probability of (1-
HMCR) it will be generated randomly from the set of
possible values Xi.

Since the parameters are set correctly, the fitness function
needs to be defined, which is used to obtain convergence
to a desired and acceptable solution. In a single iteration
of the evaluation, the following process is implemented
(the pseudocode is available in Figure 3):

1. Declare a variable prevRect to track the previously
visited rectangle.

2. Set prevRect to the start node in the candidate vector.
3. For each member in the vector:
a. If we have reached the end node, increase the value

of the fitness function by one and terminate this
iteration.

b. Declare variable now and set it to the value of
prevRect.

c. From all of the neighbours of the current rectangle,
choose the next rectangle for exploration in the
following manner: the next value in the candidate
vector modulus number of the neighbours of the
current rectangle. This number is the index of the
next rectangle in the adjacency list.

d. Increase the fitness function by one and if the end of
the vector is not reached, return to step 3.a.

Thus, given the algorithm previously described, the
formula for the fitness function ready to be minimized
would be simply defined as:


∈

=
Dd

dPathCostf)((.) (3)

where d is a direction the algorithm is taking (a node in
the maze), D is the set of directions (nodes) given by the
random candidate solution (with the destination node as
final element), and PathCost(d) is a predefined cost for
taking the direction d and can be defined as follows:

5Saso Koceski, Stojanche Panov, Natasa Koceska, Pierluigi Beomonte Zobel and Francesco Durante:
A Novel Quad Harmony Search Algorithm for Grid-based Path Finding

Figure 3. Pseudocode for the fitness function of the harmony
search method





=
nodefinalreachingafterd
nodefinalreachingbefored

dPathCost
,0
,1

)((4)

When the end of the HS stage is reached, the path from
the best resulting candidate vector previously obtained is
constructed. This is done by retrieving the positions of
the upper-left corners and dimensions of each of the
rectangles present in the obtained solution, and by simple
calculation of the minimum Manhattan distances between
them, which greatly improves the performance of this
algorithm.

5. Simulation

The developed QHS algorithm has been evaluated for global
path planning in grid environments using simulations.
Under the same conditions it was compared with other
known meta-heuristic approaches: ant colony (ACO),
genetic algorithm (GA), particle swarm optimization (PSO)
and simulated annealing (SA). The simulation environment
has been developed and implemented in Java
programming language. All the evaluated algorithms were
implemented as separate modules. An additional module
was developed for generation of grid environments with a
random filling percentage of obstacles. All the simulations
were executed on a PC with an Intel® Core i5 processor
with a frequency of 2.53 GHz, 4GB of RAM and 64-bit
Windows 7 operating system.

In the simulation experiments, we used the following
values for the QHS parameters: HMCR of 0.9, BW
(bandwidth) of 0.2, PAR of 0.4, size of a candidate vector
set to the number of labelled rectangles (squares), size of
HM set to 10 and number of iterations (the termination
criterion) set to 50.

The planning time, i.e., the time required to find the
optimal path from a given start to a given end position
was considered as a main evaluation parameter.

In the first simulation test, all the algorithms have been
run on the example grid shown in Figure 1. For the given
grid and the same start and goal position (marked with
green and red respectively in Figure 1), the obtained
results are shown in Table 1.

Algorithm Planning Time (ms)
Quad Harmony Search 55

Ant Colony 5513
Genetic Algorithm 41525

Particle Swarm
Optimization

40749

Simulated Annealing 37958

Table 1. Comparison of the planning times of the evaluated
algorithms for the grid given in Figure 1

From the results, one can observe that the QHS algorithm
has given the best results compared to the other
algorithms whilst obtaining the optimal solution, while
the genetic algorithm gave the worst results.

To test the dependency of the planning time on the grid
size and the filling percentage of obstacles, several other
types of grid environments, with sizes of 8 x 8, 16 x 16, 32
x 32, 64 x 64 and 128 x 128, were simulated and examined.
They were clustered with different percentages of
obstacles, starting at 10 % and finishing at 90 %, with a
step of 10 %. For each size and percentage of obstacles, 10
different grid variants were simulated. For all grid
variants Vi (i=1..10) of the size Sj, j ϵ { 8 x 8, 16 x 16, 32 x
32, 64 x 64, 128 x 128} and obstacle percentage Pk, k ϵ {10
%, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 %} for the
same start and goal positions, the planning times
PTi(Sj,Pk) were measured for all the algorithms.

The measured planning times for grids of a specific size
and obstacle percentage were averaged and calculated for
each of the algorithms as:

10,

),(

),(1 ==


= N
N

PkSjPTi
PkSjPT

N

i (5)

The average planning times calculated using Equation 5,
given in milliseconds, are presented on Table 2, Table 3,
Table 4, Table 5 and Table 6 for each algorithm,
respectively. The comparison of the tested algorithms for
the generated grid variants is shown in Figures 4-8.

int prevRect = starting_rectangle;
int fitnessValue = 0;
int const = 1;
foreach number in candidate_vector
begin

if prevRect is ending_rectangle
begin

 fitnessValue+=const;
break;

end
int now = prevRect;
int index =

number%NumberOfNeighbours(now);
 int nextRect = Neighbours[index];
 prevRect = nextRect;
 fitnessValue+=const;
end

6 Int J Adv Robot Syst, 2014, 11:144 | doi: 10.5772/58875

Obstacles
(%)

Grid Sizes
8 x 8 16x16 32x32 64x64 128x128

10 % 12 23 51 367 5398
20 % 14 14 65 659 5101
30 % 15 23 83 930 9655
40 % 13 27 62 710 8732
50 % 14 19 57 108 962
60 % 12 22 38 70 472
70 % 11 23 19 51 389
80 % 9 8 13 28 172
90 % 8 15 14 21 115

Table 2. Planning time on different grid sizes and different
percentage of obstacles using quad harmony search. Results are
shown in milliseconds.

Obstacles
(%)

Grid Sizes
8x8 16x16 32x32 64x64 128x128

10 % 795 2440 9501 16094 30903
20 % 1102 2861 8896 20145 36472
30 % 971 2007 7974 21538 33812
40 % 598 2811 5441 18668 29171
50 % 461 1702 5513 8640 22920
60 % 349 1131 3215 7859 21174
70 % 278 701 2701 7003 21854
80 % 334 818 2150 6634 20801
90 % 374 695 2585 6020 22563

Table 3. Tests on different grid sizes and different percentages of
obstacles using ant colony. Results are shown in milliseconds.

Obstacles
(%)

Grid Sizes
8x8 16x16 32x32 64x64 128x128

10 % 3171 9321 25540 1114136 4254514
20 % 3260 6290 38588 576558 3695286
30 % 3170 11200 33670 1607530 1942007
40 % 3140 9080 31529 1619849 1913206
50 % 2840 20040 41525 428831 1443848
60 % 2930 20996 36724 279093 561349
70 % 2990 13150 45172 267380 571141
80 % 2030 13852 54988 514670 634857
90 % 2820 15814 52294 268741 1616770

Table 4. Planning time on different grid sizes and different
percentages of obstacles using genetic algorithm. Results are
shown in milliseconds.

Obstacles
(%)

Grid Sizes
8x8 16x16 32x32 64x64 128x128

10 % 2983 9757 24874 1073628 4325631
20 % 3142 6381 37736 589736 3716732
30 % 3267 12725 32846 1584763 1734847
40 % 2975 9120 34846 1473904 1489362
50 % 2591 10528 40749 424354 1538727
60 % 2381 21467 37635 256765 572334
70 % 2553 15332 44857 274556 572976
80 % 2147 14398 53874 509264 624558
90 % 2913 16385 52856 278346 998734

Table 5. Planning time on different grid sizes and different
percentages of obstacles using particle swarm optimization.
Results are shown in milliseconds

Obstacles
(%)

Grid Sizes
8x8 16x16 32x32 64x64 128x128

10 % 3072 9843 25843 995469 4486763
20 % 3078 6428 38698 590174 3694576
30 % 3383 13745 30784 1477246 1487987
40 % 2856 10739 31874 1390523 1776724
50 % 2389 11483 37958 409583 1686820
60 % 2294 22857 34896 239974 588290
70 % 2677 14762 45898 298758 557927
80 % 2211 13879 55780 520887 634887
90 % 3141 15898 54872 308548 979375

Table 6. Planning time on different grid sizes and different
percentage of obstacles using simulated annealing. Results are
shown in milliseconds.

Figure 4. Comparison between planning times of quad harmony
search, ant colony, genetic algorithm, particle swarm
optimization and simulated annealing for 8 x 8 grid sizes

7Saso Koceski, Stojanche Panov, Natasa Koceska, Pierluigi Beomonte Zobel and Francesco Durante:
A Novel Quad Harmony Search Algorithm for Grid-based Path Finding

Figure 5. Comparison between planning times of quad harmony
search, ant colony, genetic algorithm, particle swarm
optimization and simulated annealing for 16 x 16 grid sizes

Figure 6. Comparison between planning times of quad harmony
search, ant colony, genetic algorithm, particle swarm
optimization and simulated annealing for 32 x 32 grid sizes

Figure 7. Comparison between planning times of quad harmony
search, ant colony, genetic algorithm, particle swarm
optimization and simulated annealing for 64 x 64 grid sizes

Figure 8. Comparison between planning times of quad harmony
search, ant colony, genetic algorithm, particle swarm
optimization and simulated annealing for 128 x 128 grid sizes

6. Experimental results

The developed algorithm has also been evaluated
experimentally. The main aim of the experimental
evaluation was to confirm the ability to generate an
optimal and collision-free path of the developed
algorithm. For experimental evaluation of the developed
algorithm, a specific laboratory setup for indoor motion
planning was used.

For this purpose, besides the path-planning phase, the
system should also be able to perform robot localization
and motion control. The system consists of three main
components: mobile robot, control workstation and
ceiling-mounted cameras for localization of the robot,
obstacles and the target.

The three-wheel mobile robot used in our study is a
modified version of the ARobot (Figure 9) [34]. The robot
contains one Basic Stamp II controller from Paralax [35], and
two coprocessors: PIC16F84 for motor control. The robot has
the following sensors: sonar, two light sensors, temperature
sensor, whisker sensors, PIR passive infrared motion
detector, digital compass, R283-HOKUYO-LIDAR and
sound output transducer. The robot has two 12-volt DC
drive motors. These motors are regulated independently
using PWM-controlled H-bridges. The robot also has optical
encoders that enable determination of speed and position of
the robot's wheels. All these components are placed in a
lightweight aluminium construction with these dimensions;
10" x 10", 5" tall, with a payload capacity of 3 lbs.

Figure 9. The robot used for experimental evaluation

The mobile robot is connected to the control workstation
via wireless link using RF two-way radio modules. The
workstation is running a program that is responsible for
robot localization, path planning and motion control
planning.

8 Int J Adv Robot Syst, 2014, 11:144 | doi: 10.5772/58875

Considering the dimensions of the working environment
and the necessity for real-time control, a multi-camera-
based system for localization tasks has been employed.
The working environment was virtually split into four
overlapping regions and each of them has been fully
covered by a ceiling-mounted web camera with a 90-
degree field of view, sending 640 x 480 real-time videos to
the command workstation for further processing. This
way, all the obstacles (marked with white or green
colour), the target (marked with blue) and the robot,
marked with QR code, were captured with satisfactory
resolution, and thus became easily detectable (Figure 10).
The image processing task has been performed at the
control workstation by the localization module, which
takes video as input, detects the obstacles and generates
the grid-based map. The obstacles were detected using an
algorithm based on colour filtering and edge detection
with a localization error of less than 2 cm.

Once created, the grid-based map is sent to the path-
planning module, which employs the developed quad-
tree harmony search algorithm to find the path from the
start to the end point. At the end, in order to control the
mobile robot, the control program running on the
workstation sends direct commands to the robot
actuators to perform the actual movement.

Figure 10. Real-world experimental environment (including
obstacles and the robot)

In the experimental evaluation, the planning time is
considered as the time required to find the optimal path
from a given start to a given end position, after obtaining
the grid-based map of the environment until the path
calculation.

For the experiments, two grid sizes, 64 x 64 and 128 x 128,
with 30 %, 40 % and 50 % obstacles were considered. Ten
grid samples of each grid type were generated, and for
each of them two different start and goal positions were
analysed. In all the cases, QHS found the optimal path.
The average planning times obtained experimentally are
shown in Table 7.

Obstacles
(%)

Grid Sizes
64x64 128x128

T STD T STD
30 % 100 5 201 6
40 % 234 7 307 4
50 % 38 3 71 5

Table 7. Planning times and standard deviations (in
milliseconds) obtained with the experimental evaluation of quad
harmony search

All the results were verified for correctness using a
deterministic algorithm, namely the breadth-first search
algorithm. It was easily proved that all of the paths
obtained by QHS have the exact same length with the
paths provided by the breadth-first search algorithm.

7. Discussion

Analysing the simulation results provided by QHS
algorithm, we can easily infer that at a lower percentage
of obstacles (10 %-20 %) we mainly get faster planning
times, because we use the QT algorithm to determine the
free areas in the grid-based graph. This is also the case for
a greater percentage of obstacles (70 %-90 %). However,
in the range of 30 %-60 % of obstacles, we get longer
planning times. This can also be explained in terms of the
greater number of rectangles that have to be examined;
therefore, we get greater memory size (HM), more
possibilities to consider, and all these lead to a longer
period spent exploring the optimal solution.

Comparing the results we have obtained with QHS to ant
colony (ACO), genetic algorithm (GA), particle swarm
optimization (PSO) and simulated annealing (SA), several
crucial conclusions have been drawn. Ant colony proved to
always give the optimal path, though it took longer to
execute than QHS in 100 % of the test cases. Using the GA,
PSO and SA, results show that the algorithm can always
find a feasible solution, but on the examined test cases it
never obtained the optimal solution. This means that GA,
PSO and SA can easily be stuck in a local optima and thus
not give the best possible solution. Also, in terms of time
execution compared to QHS and ant colony, these three
algorithms (GA, PSO and SA) gave poor results.

Thus, one can simply infer that the proposed QHS is the
best fit to the problem of graph search in maze-like
environments.

The results obtained with the experimental evaluation
correspond to the simulated ones. Experimentally
obtained planning times for optimal path calculation
make the QHS suitable for real-time robot control and
applicable to various real-world applications. Relatively
small standard deviations prove the stable behaviour of
the algorithm and its robustness.

9Saso Koceski, Stojanche Panov, Natasa Koceska, Pierluigi Beomonte Zobel and Francesco Durante:
A Novel Quad Harmony Search Algorithm for Grid-based Path Finding

8. Conclusion

In this research, we introduced a technique to find an
optimal solution to a grid-based graph search using
quad-tree decomposition to reduce the search space, and
harmony search to find the optimal route between the
connected areas, finishing by extracting the path using
the Manhattan distance between the maze fields that
belong to these areas. This algorithm was compared to
ant colony, genetic algorithm, particle swarm
optimization and simulated annealing and was proven to
give the best results correlated to obtaining the optimal
path. It has also been shown that our approach gave best
results in mazes with lower percentages of obstacles,
which means that it is suitable to use when one needs
faster performance in these concrete cases. This gives an
open opportunity for further researches and
examinations of the application of this technique in
various graph searches, and for the expansion of this
approach to greater dimensions.

9. References

[1] Panov, S., & Koceski, S. (2013, June). Harmony search
based algorithm for mobile robot global path
planning. In 2nd Mediterranean Conference
Embedded Computing (MECO), 2013 (pp. 168-171).
IEEE.

[2] Yang, X. S. (2009). Harmony search as a
metaheuristic algorithm. In Music-inspired Harmony
Search Algorithm (pp. 1-14). Springer Berlin
Heidelberg.

[3] Geem, Z. W. (2010). Recent Advances in Harmony
Search Algorithm (Vol. 270). Springer Berlin
Heidelberg.

[4] Forsati, R., Haghighat, A. T., & Mahdavi, M. (2008).
Harmony search based algorithms for bandwidth-
delay-constrained least-cost multicast routing.
Computer Communications, 31(10), 2505-2519.

[5] Tangpattanakul, P., & Artrit, P. (2009, May).
Minimum-time trajectory of robot manipulator using
Harmony Search algorithm. In Sixth International
Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information
Technology, 2009. ECTI-CON 2009. (Vol. 1, pp. 354-
357). IEEE.

[6] Forsati, R., Mahdavi, M., Kangavari, M., &
Safarkhani, B. (2008, May). Web page clustering
using harmony search optimization. In Canadian
Conference on Electrical and Computer Engineering,
2008. CCECE 2008. (pp. 001601-001604). IEEE.

[7] Geem, Z. W. (2007). Optimal scheduling of multiple
dam system using harmony search algorithm. In
Computational and Ambient Intelligence (pp. 316-
323). Springer Berlin Heidelberg.

[8] Kim, J. H., Geem, Z. W., & Kim, E. S. (2001).
Parameter estimation of the nonlinear Muskingum
model using harmony search. JAWRA Journal of the
American Water Resources Association, 37(5), 1131-
1138.

[9] Vasebi, A., Fesanghary, M., & Bathaee, S. M. T.
(2007). Combined heat and power economic dispatch
by harmony search algorithm. International Journal
of Electrical Power & Energy Systems, 29(10), 713-
719.

[10] Fesanghary, M., Mahdavi, M., Minary-Jolandan, M.,
& Alizadeh, Y. (2008). Hybridizing harmony search
algorithm with sequential quadratic programming
for engineering optimization problems. Computer
Methods in Applied Mechanics and Engineering,
197(33), 3080-3091.

[11] Mohsen, A. M., Khader, A. T., & Ramachandram, D.
(2010). An optimization algorithm based on harmony
search for RNA secondary structure prediction. In
Recent Advances in Harmony Search Algorithm (pp.
163-174). Springer Berlin Heidelberg.

[12] Moh’d Alia, O., Mandava, R., & Aziz, M. E. (2011). A
hybrid harmony search algorithm for MRI brain
segmentation. Evolutionary Intelligence, 4(1), 31-49.

[13] Fourie, J., Mills, S., & Green, R. (2010). Harmony
filter: a robust visual tracking system using the
improved harmony search algorithm. Image and
Vision Computing, 28(12), 1702-1716.

[14] Kennedy, J., & Eberhart, R. C. (1995). Particle swarm
optimisation. In Proceedings of IEEE International
Conference on Neural Networks, 1995.

[15] Mohemmed, A. W., Sahoo, N. C., & Geok, T. K.
(2008). Solving shortest path problem using particle
swarm optimization. Applied Soft Computing, 8(4),
1643-1653.

[16] Qin, Y. Q., Sun, D. B., Li, N., & Ma, Q. (2004). Path
planning for mobile robot based on particle swarm
optimization. Robot, 26(3), 222-225.

[17] Qin, Y. Q., Sun, D. B., Li, N., & Cen, Y. G. (2004,
August). Path planning for mobile robot using the
particle swarm optimization with mutation operator.
In Proceedings of 2004 International Conference on
Machine Learning and Cybernetics, 2004. (Vol. 4, pp.
2473-2478). IEEE.

[18] Zhang, Y., Jun, Y., Wei, G., & Wu, L. (2010). Find
multi-objective paths in stochastic networks via
chaotic immune PSO. Expert Systems with
Applications, 37(3), 1911-1919.

[19] Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated
annealing (pp. 7-15). Springer Netherlands.

[20] Zhu, Q., Yan, Y., & Xing, Z. (2006, October). Robot
path planning based on artificial potential field
approach with simulated annealing. In Sixth
International Conference on Intelligent Systems
Design and Applications, 2006. ISDA '06. (Vol. 2, pp.
622-627). IEEE.

10 Int J Adv Robot Syst, 2014, 11:144 | doi: 10.5772/58875

[21] Zhang, P. Y., Lü, T. S., & Song, L. B. (2004). Soccer
robot path planning based on the artificial potential
field approach with simulated annealing. Robotica,
22(5), 563-566.

[22] Kroumov, V., Yu, J., & Shibayama, K. (2010). 3D path
planning for mobile robots using simulated
annealing neural network. International Journal of
Innovative Computing, Information and Control,
6(7), 2885-2899.

[23] Dorigo, M., & Di Caro, G. (1999). Ant colony
optimization: a new meta-heuristic. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999
Congress on (Vol. 2). IEEE.

[24] Liu, G., Li, T., Peng, Y., & Hou, X. (2005, July). The
ant algorithm for solving robot path planning
problem. In Third International Conference on
Information Technology and Applications, 2005.
ICITA 2005. (Vol. 2, pp. 25-27). IEEE.

[25] Garcia, M. A., Montiel, O., Castillo, O., Sepúlveda, R.,
& Melin, P. (2009). Path planning for autonomous
mobile robot navigation with ant colony
optimization and fuzzy cost function evaluation.
Applied Soft Computing, 9(3), 1102-1110.

[26] Gao, M., Xu, J., & Tian, J. (2008, September). Mobile
robot global path planning based on improved
augment ant colony algorithm. In Second
International Conference on Genetic and
Evolutionary Computing, 2008. WGEC '08. (pp. 273-
276). IEEE.

[27] Brand, M., Masuda, M., Wehner, N., & Yu, X. H.
(2010, June). Ant colony optimization algorithm for
robot path planning. In 2010 International
Conference on Computer Design and Applications
(ICCDA). (Vol. 3, pp. V3-436). IEEE.

[28] Whitley, D. (1994). A genetic algorithm tutorial.
Statistics and Computing, 4(2), 65-85.

[29] Hu, Y., & Yang, S. X. (2004, April). A knowledge
based genetic algorithm for path planning of a
mobile robot. In Proceedings of 2004 IEEE
International Conference on Robotics and
Automation, 2004. ICRA '04. (Vol. 5, pp. 4350-4355).
IEEE.

[30] Xin, D., Hua-hua, C., & Wei-kang, G. (2005). Neural
network and genetic algorithm based global path
planning in a static environment. Journal of Zhejiang
University Science A, 6(6), 549-554.

[31] Gao, M., Xu, J., Tian, J., & Wu, H. (2008, October).
Path planning for mobile robot based on chaos
genetic algorithm. In Fourth International
Conference on Natural Computation, 2008. ICNC '08.
(Vol. 4, pp. 409-413). IEEE.

[32] Ismail, A. T., Sheta, A., & Al-Weshah, M. (2008). A
mobile robot path planning using genetic algorithm
in static environment. Journal of Computer Science,
4(4), 341.

[33] Panov, S., & Koceska, N. (2014). Global path
planning in grid-based environments using novel
meta-heuristic algorithm. In ICT Innovations 2013
(pp. 121-130). Springer International Publishing.

[34] http://www.arrickrobotics.com/arobot/ Accessed on
October 2013.

[35] http://www.parallax.com Accessed on October 2013.

11Saso Koceski, Stojanche Panov, Natasa Koceska, Pierluigi Beomonte Zobel and Francesco Durante:
A Novel Quad Harmony Search Algorithm for Grid-based Path Finding

