
Cryptographic Primitives
with

Quasigroup Transformations

by Aleksandra Mileva

c©Aleksandra Mileva
Dissertation
Typeset using LATEX2e
Printed by
Cover design by Aleksandra Mileva

A catalogue record is available
from the Faculty of Natural Science Library
ISBN:

Preface

This thesis is the final result of three years of research done in the Insti-
tute of Informatics at ”Ss Cyril and Methodius” University in Republic of
Macedonia. First of all, I would like to thank my supervisor, professor Smile
Markovski, for his support, help, tolerance, understanding, and flexibility as
much as a supervisor can give. I am grateful for the trust that was given to
me in the beginning of my research and the freedom to follow my own path
at the later stages. I gained expertise in writing papers under his guidance
and he was always willing to share his experiences and teach me the tricks
of the trade.

I owe a lot to professor Danilo Gligoroski, in whom I always had a in-
teresting and inspirational interlocutor with cryptographic and quasigroup
expertise. His remarks always hit the target and motivated me to put ad-
ditional effort and finish this thesis in the right way. The quality of my
research and my expertise as a researcher would never be on this level if it
were not for him.

Many results presented in this thesis are a product of joint work. Vesna
Dimitrova was involved in most of it as one of my closest co-workers and a
great friend. In the past three years, she always shared her ideas, open to
criticism, and promptly sharing her own considering my inventions as well.

One year ago, Simona Samardziski joined our team. Almost immediately
we began collaborating, which resulted in some interesting research. She did
a lots of programming for our hash function NaSHA.

I would like to thank professor Jasen Markovski, in helping this thesis
to be finished in English language.

Endless amount of gratitude goes to Ile, for his love, understanding,
encouraging and steadfast support. My two children, Iva and Nikola, make
my life interesting, eventful, warm, and full of love and sunshine, even on
the cloudiest of days.

Finally, I want to express my deepest gratitude and appreciation for my
parents Violeta and Nikola, and my brother Kiril, who have always been

iii

iv

there to support me. Without their love, support, compassion, selfless sac-
rifice, and vision I would have never become the person that I am.

Aleksandra Mileva Štip, June 30th, 2009

Summary

Cryptographic Primitives with Quasigroup Transformations

Cryptology is the science of secret communication, which consists of two
complementary disciplines: cryptography and cryptanalysis. Cryptography
is dealing with design and development of new primitives, algorithms and
schemas for data enciphering and deciphering. For many centuries cryp-
tographic technics have been applied in protection of secrecy and authen-
tication in diplomatic, political and military correspondences and commu-
nications. Cryptanalysis is dealing with different attacks on cryptographic
schemas and algorithms, with purpose to retrieve the hidden information
and the same later to use, modify, forge etc. There is a big interconnection
between these two disciplines. Cryptographer who design a new algorithm,
must evaluate its security for all known cryptanalytic attacks and technics,
if he wants its algorithm to be practical and useful. For future users to have
confidence in a new algorithm and to use it, a long-time analysis and eval-
uation of its security from bigger group of cryptanalysts is needed, without
any resulting weakness.

Quasigroups are very suitable for application in cryptography, because
of their structure, features and big number. One of the problems is which
quasigroup is suitable to choose for using, concerning what preconditions
quasigroup must fulfill. Several classification and separations of quasigroups
are made for that purpose, with possibility for more. Quasigroups are used
for definition of a quasigroup transformations. Sequences produced by quasi-
group transformations are also examined and their analysis shows that they
can be used as building elements of different cryptographic primitives.

Cryptology as a science is developing with huge speed, because a new
cryptographic schemas and algorithms, a new design strategies, a new fields
of application, a new requirements and a new attacks are appearing, contin-
uously. Appearance of new successful attacks and discovering weaknesses in
declared standards, as well as requirements for augmented key and blocks

v

vi

lengths, induce the necessity of a new approaches in design and security
evaluation, deployment of new building elements, modification of existing
algorithms and schemas etc.

The thesis investigates several issues: (1) What properties should have
some quasigroup, so it can be used as non-linear building block in cryp-
tographic primitives and it can contributed to the defence of linear and
differential attacks? (2) How to generate and how to compute fast opera-
tion of huge quasigroups? (3) What kind of features have huge quasigroups
obtained by new construction method? (4) In which way to use huge quasi-
groups as building blocks of cryptographic primitives?

The contents of the thesis is as follows. First, we introduce the theory
of quasigroups and quasigroup transformations. We introduce a new way
of computing the number of n-ary quasigroups, with which we obtained the
number of ternary quasigroups of order 4 divided in 12 isotopy classes. We
introduce some new kind of quasigroup transformations and we represent
a prop ratio tables and correlation matrices of quasigroups of small order
and some quasigroup transformations. This induce new classification of
quasigroups according to their prop ratio tables and correlation matrices.
We use the notation of the shapeless quasigroup and we introduce a notation
of a perfect quasigroup. Then, we investigate different ways of producing
huge quasigroups and suggest a new way of computing a huge quasigroup
operation with applying Extended Feistel networks. This approach deploy
Feistel network with special preconditions as an orthomorphism of a group.
We analyze quasigroups obtained by Extended Feistel networks and show in
which cases they are suitable for cryptographic needs. Next, we give a survey
of quasigroup based hash functions, stream and block ciphers, public-key
algorithms etc. We design two new cryptographic primitives which are using
huge quasigroups as building blocks. We introduce NaSHA family of hash
functions, with our implementation that is a candidate for NIST competition
for SHA-3 standard and we show how by using Extended Feistel network
we can apply different huge quasigroups for processing single message block
and even how used quasigroups can depend of processed block. This features
make harder the cryptanalyst job. We introduce Alexsmile family of block
ciphers and give one implementation for 128-bit block size and key size of
128, 192 and 256 bits.

Contents

1 Quasigroups and quasigroup transformations 1
1.1 Quasigroups - mathematical background 1

1.1.1 Quasigroup isotopism, paratopism and isomorphism . 5
1.1.2 n-ary quasigroups . 6

1.2 Quasigroup transformations 11
1.2.1 Existing quasigroup transformations 11
1.2.2 Properties of sequences produced by quasigroup trans-

formations . 14
1.2.3 Left and right quasigroups 15
1.2.4 Some new quasigroup transformations 17

1.3 How to choose a quasigroup 19
1.3.1 Quasigroups as vector valued Boolean functions 20
1.3.2 Quasigroup transformations as vector valued Boolean

functions . 23
1.3.3 Quasigroups correlation matrices and prop ratio tables 24
1.3.4 Correlation matrices and prop ratio tables of quasi-

group transformations 29
1.3.5 Perfect quasigroups 36

1.4 Summary . 37

2 Generation of huge quasigroups 39
2.1 Direct, semidirect and quasidirect product 40
2.2 Generalized singular direct product 41
2.3 Prolongation . 43
2.4 Diagonal method and its modifications 44
2.5 T-functions . 48
2.6 Isotopies . 49
2.7 Permutation polynomials . 51
2.8 Quasigroups over Abelian groups 54
2.9 Permutations in the set of Z∗p 56

vii

viii CONTENTS

2.10 Extended Feistel networks as orthomorphisms 57
2.10.1 Orthogonal extended Feistel networks 63
2.10.2 Huge quasigroups generated by a chain of extended

Feistel networks . 64
2.11 Summary . 70

3 Cryptographic primitives with quasigroup transformations 73
3.1 Hash functions . 75

3.1.1 Cryptographic hash functions with quasigroups 78
3.1.2 MACs with quasigroups 81
3.1.3 Family of cryptographic hash functions NaSHA-(m, k, r) 83

3.2 Pseudo-random number generators 100
3.3 Stream ciphers . 102
3.4 Block ciphers . 107

3.4.1 Block cipher Alex’smile-(B, I, G) 108
3.5 Public-key algorithms . 118
3.6 Some other cryptographic primitives 121
3.7 Summary . 122

4 Conclusions and Future Work 125

Bibliography 127

Curriculum Vitae 139

Chapter 1

Quasigroups and quasigroup

transformations

In this chapter first we present a mathematical background, terminology
and notation of n-ary quasigroups and quasigroup transformations. We
introduce new types of quasigroup transformations, witch are used later
for building cryptographic primitives. Also, we present a new method for
computing the number of n-ary quasigroups of small order. We give analysis
of prop ratio tables and correlation matrices of quasigroups of order 4 and
same for several of their quasigroup transformations on strings of length
2. This analysis have produced some additional and confirmed existing
partitioning of quasigroups of order 4.

We will examine the problem of which quasigroup is suitable to be chosen
for using in cryptographic primitives, concerning what preconditions the
quasigroup must fulfill. We will show that even quasigroups with low order
are very suitable for application in cryptography. This is specially true for
huge quasigroups because of their structure, features and big number. Good
mathematical background for quasigroups you can find in [3, 19, 20, 63, 129].

1.1 Quasigroups - mathematical background

Definition 1 A quasigroup (Q, ◦) is a set Q of elements with a binary
operation ◦ with the following properties:
1. For all a, b ∈ Q, a ◦ b ∈ Q (that is, Q is a groupoid)
2. For all a, b ∈ Q, there exist unique x, y ∈ Q, so that a ◦ x = b and
y ◦ a = b. 2

In other words, the equations a◦x = b and y◦x = b for any given a, b ∈ Q
have unique solutions x, y. So, each element will appear exactly once in each

1

2 Chapter 1. Quasigroups and quasigroup transformations

row and exactly once in each column of the multiplication table of (Q, ◦).
This means that every row and every column is a permutation of Q. To
every finite quasigroup with n elements (Q, ◦), given by its Cayley table, an
equivalent combinatorial structure n by n Latin square can be associated,
consisting of the matrix formed by the interior of the table (an n by n Latin
square is made up of n distinct elements, each of which appears exactly once
in each row and exactly once in each column). Examples of quasigroups are:
(Z,−), (Q\{0},÷), (R\{0},÷) etc.

For all a ∈ Q we can define two mappings Ra and La of Q into itself by

Ra(x) = x ◦ a

La(x) = a ◦ x

Then (Q, ◦) is a quasigroup if and only if Ra and La are bijections for each
a ∈ Q. The mapping Ra is known as right multiplication by a and the
mapping La is known as left multiplication by a.

Definition 2 A groupoid (G, ◦) is a cancellative groupoid, if for every c, x, y ∈
G hold

c ◦ x = c ◦ y ⇒ x = y and x ◦ c = y ◦ c ⇒ x = y

Definition 3 A groupoid (G, ◦) is a solvable groupoid, if for every a, b ∈ G
the equations a ◦ x = b and y ◦ a = b have solutions x, y ∈ Q. 2

Proposition 1 The following statements for a finite groupoid (Q, ◦) are
equivalent:
(a) (Q, ◦) is a quasigroup.
(b) (Q, ◦) is a cancellative groupoid.
(c) (Q, ◦) is a solvable groupoid. 2

Proof The proof follows from the Proposition 2. ¥

From the Definition 1 follows that every group is a quasigroup. Quasigroups
differ from groups, mainly, in which they don’t need to be associative, so they
are sometimes considered to be ”non-associative groups”. A quasigroups
with identity element are called loops.

Definition 4 A subset P of a quasigroup (Q, ◦) is a subquasigroup of Q, if
it is closed under operation ◦. 2

Given a quasigroup (Q, ◦), five operations /, \, ·, //, \\ on the set Q can
be derived by:

1.1. Quasigroups - mathematical background 3

x/y = z ⇐⇒ x = z ◦ y, right division
x\y = z ⇐⇒ x ◦ z = y, left division

x · y = z ⇐⇒ y ◦ x = z, opposite multiplication
x//y = z ⇐⇒ y/x = z ⇐⇒ y = z ◦ x, opposite right division
x\\y = z ⇐⇒ y\x = z ⇐⇒ y ◦ z = x, opposite left division

The set Par(◦) = {◦, /, \, ·, //, \\} is said to be the set of parastrophes of
quasigroup operation ◦. |Par(◦)| 6 6, i.e. some of the parastrophes may
coincide between themselves. For each g ∈ Par(f), (Q, g) is a quasigroup
too, known as the conjugate of Q and Par(f) = Par(g) (see [131], [121]).
Now we can give another definition of quasigroup.

Definition 5 An algebraic quasigroup (Q, ◦, \, /) is a type (2, 2, 2) alge-
bra satisfying the identities:

y = x ◦ (x\y)
y = x\(x ◦ y)
y = (y/x) ◦ x
y = (y ◦ x)/x 2

Since there is no any difference between quasigroups (Q, ◦) and algebraic
quasigroups (Q, ◦, \, /) when Q is finite, and we are dealing mainly with finite
sets, we will use the name quasigroups for both of them.

Example 1 Let Q = Z4 = {0, 1, 2, 3} and let ◦ be as shown in Table 1.1.

◦ 0 1 2 3

0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

/ 0 1 2 3

0 3 2 0 1
1 1 0 3 2
2 0 1 2 3
3 2 3 1 0

\ 0 1 2 3

0 2 1 0 3
1 3 0 1 2
2 1 3 2 0
3 0 2 3 1

· 0 1 2 3

0 2 1 3 0
1 1 2 0 3
2 0 3 2 1
3 3 0 1 2

// 0 1 2 3

0 3 1 0 2
1 2 0 1 3
2 0 3 2 1
3 1 2 3 0

\\ 0 1 2 3

0 2 3 1 0
1 1 0 3 2
2 0 1 2 3
3 3 2 0 1

Table 1.1: Example of quasigroup of order 4 and its conjugates

Then (Q, ◦) is a quasigroup because the interior of its Cayley table is a
Latin square. Notice that (Q, ◦) is non-associative, non-commutative, non-
idempotent and without left nor right identity. Also conjugates of Q are
given. 2

4 Chapter 1. Quasigroups and quasigroup transformations

In the following sequel, we will first explain the terminology which will
be used in this thesis.

A quasigroup (Q, ◦) is said to be idempotent if it satisfies the identity

x ◦ x = x.

A quasigroup (Q, ◦) is said to be a Schroeder quasigroup (see [65]) if it
satisfies the identity

(x ◦ y) ◦ (y ◦ x) = x.

A quasigroup (Q, ◦) is said to be a Stein quasigroup (see [65]) if it satisfies
the identity

x ◦ (x ◦ y) = y ◦ x.

A quasigroup (Q, ◦) is said to be a semisymmetric quasigroup if it satisfies
the identity

(x ◦ y) ◦ x = y.

Commutative and semisymmetric quasigroup is said to be totally sym-
metric and for it x ◦ y = x\y = y/x for all x, y ∈ Q. An idempotent totally
symmetric quasigroups are also referred as a Steiner quasigroups, since each
such quasigroup gives rise to a Steiner triple system and conversely.

A quasigroup (Q, ◦) is said to be a totally anti-symmetric quasigroup if
for all x, y, c ∈ Q the following two equations are true:

(c ◦ x) ◦ y = (c ◦ y) ◦ x ⇒ x = y

x ◦ y = y ◦ x ⇒ x = y

A quasigroup (Q, ◦) is said to be a (r, s, t)-inverse quasigroup if there
exists a permutation J on Q and integers r, s, and t such that, for all
x, y ∈ Q, the following equation is true:

Jr(x ◦ y) ◦ Jsx = J ty.

In the special case when r = t = 0 and s = 1 the quasigroup is crossed
inverse or CI-quasigroup.

A transversal of a Latin square of order n is a set of n cells, one in each
row, one in each column and such that no two of the cells contain the same
symbol.

Definition 6 Two quasigroups (Q, ◦) and (Q, ·) on the same set Q are said
to be orthogonal if for any u and v in Q, there exist a unique pair of
elements x and y of Q such that x ◦ y = u and x · y = v. 2

1.1. Quasigroups - mathematical background 5

In particular, if (Q, ◦) and (Q, ·) are orthogonal and x and y run through
all elements of Q, the ordered pairs (x◦y, x ·y) run through all ordered pairs
of elements of Q. Moreover a set {(Q, ◦i) |i = 1 . . . t, t > 2} of quasigroups
of order n is orthogonal if any two distinct quasigroups are orthogonal.
Such a set of pairwise orthogonal quasigroups is said to be a set of mutually
orthogonal quasigroups, or more familiar when we speak about Latin squares
- a set of mutually orthogonal Latin squares (MOLS). The maximum possible
number of elements of these sets is n−1 and if we have a set of n−1 MOLS
of order n, the set is said to be complete. Good background for MOLS, with
their theory, application and construction, is given in [63].

From a given quasigroup (Q, ◦) with transpose of its multiplication table,
one can form a new quasigroup (Q, ·), called the transpose of (Q, ◦) (x · y =
y ◦ x). If a quasigroup (Q, ◦) is orthogonal to its transpose, than (Q, ◦)
is said to be self orthogonal. Clearly, it is not possible for a commutative
quasigroup to be self orthogonal and for two commutative quasigroups to
be orthogonal. For commutative quasigroups of order n, there are at most
n(n+1)/2 different ordered pairs, and if we have exactly n(n+1)/2 different
ordered pairs, commutative quasigroups (Q, ◦) and (Q, ·) are said to be
perpendicular.

1.1.1 Quasigroup isotopism, paratopism and isomorphism

Definition 7 Let (Q1, ◦) and (Q2, ∗) be two quasigroups. Q1 is homotopic
to Q2 if there are maps α, β, γ : Q1 → Q2 so that α(x ◦ y) = β(x) ∗ γ(y)
for all x, y ∈ Q1. The ordered triple (α, β, γ) is called an homotopism or
homotopy. 2

The homotopy (α, α, α) is called a homomorphism.

Definition 8 Let (Q1, ◦) and (Q2, ∗) be two quasigroups. Q1 is isotopic to
Q2 if there are bijections α, β, γ : Q1 → Q2 so that α(x◦y) = β(x)∗γ(y) for
all x, y ∈ Q1. The ordered triple (α, β, γ) is called an isotopism or isotopy.2

The isotopy (α, α, α) is called an isomorphism. An isotopy (α, β, γ)
with equal domain and codomain Q is called an autotopy. An autotopy
(α, β, γ) is said to be principal if its first component α is the identity map
or idQ on Q. Each isotopy (α, β, γ) factorizes as the product (α, β, γ) =
(idQ, βα−1, γα−1)(α, α, α) of a principal isotopy and an isomorphism. An
autotopy (α, α, α) is called an automorphism.

6 Chapter 1. Quasigroups and quasigroup transformations

Example 2 We examine quasigroup (Q, ◦) from Example 1. Let α, β, γ :
Q → Q be bijection defined by:

α :
(

0123
3210

)
, β :

(
0123
2301

)
, γ :

(
0123
1023

)
. (1.1)

2

Then the quasigroup (Q, ∗) defined by x ∗ y = α−1(β(x) ◦ γ(y)) is isotopic
to (Q, ◦) (Table 1.2).

∗ 0 1 2 3
0 3 0 1 2
1 0 3 2 1
2 2 1 3 0
3 1 2 0 3

Table 1.2: One isotopic quasigroup to (Q, ◦) with isotopy (α, β, γ)

The relation “is isotopic to” is an equivalence relation in the set of all quasi-
groups of order r. The equivalence classes are called classes of isotopism or
isotopy classes.

A combination of a conjugacy and an isotopism is called a paratopism or
paratopy. The relation “is paratopic to” is also an equivalence relation, and
the equivalence classes are called paratopy classes, main classes or species.

1.1.2 n-ary quasigroups

An n-ary groupoid (n > 1) is an algebra (Q, f) on a nonempty set Q as its
universe and with one n-ary operation f : Qn → Q. We use the definition
for n-ary quasigroup from Belousov [4].

Definition 9 An n-ary groupoid (Q, f) is said to be an n-ary quasigroup
(of order |Q|) if any n elements of the a1, a2, . . . , an+1 ∈ Q, satisfying the
equality

f(a1, a2, . . . , an) = an+1,

uniquely specifies the remaining one. 2

2-ary quasigroups, 3-ary quasigroups and 4-ary quasigroups are also
known as binary, ternary and quaternary quasigroups, respectively. When
we say only quasigroups, we mean binary quasigroups.

1.1. Quasigroups - mathematical background 7

Definition 10 An n-ary groupoid is said to be a cancellative n-ary groupoid
if it satisfies the cancellation law

f(a1, . . . , ai, x, ai+2, . . . , an) = f(a1, . . . , ai, y, ai+2, . . . , an) ⇒ x = y

for each i = 0, . . . , n− 1 and every aj ∈ Q. 2

Definition 11 An n-ary groupoid is said to be a solvable n-ary groupoid
if the equation f(a1, . . . , ai, x, ai+2, . . . , an) = an+1 has solution x for each
i = 0, . . . , n− 1 and every aj ∈ Q. 2

The definition of an n-ary quasigroup immediately implies the following.

Lemma 1 Let (Q, f) be a finite n-ary quasigroup and let the mapping
ϕ : Q → Q be defined by ϕ(x) = f(a1, . . . , ai, x, ai+2, . . . , an). Then ϕ is a
permutation on Q. ¤

Here we consider only finite n-ary quasigroups (Q, f), i.e. Q are a finite sets,
and in this case we have the next property.

Proposition 2 The following statements for a finite n-ary groupoid (Q, f)
are equivalent:

(a) (Q, f) is an n-ary quasigroup.
(b) (Q, f) is a cancellative n-ary groupoid.
(c) (Q, f) is a solvable n-ary groupoid.

Proof (a) ⇒ (b) follows immediately by the definitions.
(a) ⇒ (c) follows by Lemma 1.
Clearly, (b) and (c) imply (a).
(b) ⇒ (c): Let (Q, f) be cancellative n-ary groupoid. Then

{f(a1, . . . , ai, x, ai+2, . . . , an)| x ∈ Q} = Q

for any fixed aj ∈ Q.
(c) ⇒ (b): If the groupoid (Q, f) is not cancellative then, for some aj ∈ Q

and i ∈ {0, . . . , n − 1}, the equation f(a1, . . . , ai, x, ai+2, . . . , an) = an+1

has two different solutions x1 6= x2. Then there is an element b ∈ Q
such that b /∈ {f(a1, . . . , ai, x, ai+2, . . . , an)| x ∈ Q}. Hence, the equation
f(a1, . . . , ai, x, ai+2, . . . , an) = b has no solution on x. ¥

8 Chapter 1. Quasigroups and quasigroup transformations

Let Q = {q1, q2, . . . , qr}, r > 1, and let (Q, f) be a n-ary quasigroup of
order r. If we fix a ∈ Q, we define an (a, i)-projected (n− 1)-ary quasigroup
(Q, fa,i) for each i = 1, 2, . . . , n by

fa,i(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xi−1, a, xi+1, . . . , xn).

To every finite n-ary quasigroup of order r, an equivalent combinatorial
structure n-dimensional Latin hypercubes of order r can be associated. Let
Q be the set of r different elements. By n-dimensional Latin hypercubes
of order r H we mean a n-dimensional array of rn cells, where the cell
contains an element of Q and where every set of r cells which coordinates
match between themselves except in one coordinate, contains each of the
elements of Q. Latin hypercubes of dimension 1, 2 and 3 are commonly called
permutations, Latin squares, and Latin cubes, respectively. A hyperplane is
the set of rn−1 cells of H, with one common coordinate. Any hyperplane
in a n-dimensional Latin hypercubes can be considered to be a (n − 1)-
dimensional Latin hypercubes, by dropping the common coordinate. Our
definition of Latin hypercubes is much broader then the one given in [95]. If
we introduce an ordering in Q = {q1, q2, . . . , qr}, then n-dimensional Latin
hypercubes of order r, is reduced if in every dimension k the first elements
(elements with all coordinates, except k coordinate, are 1) keep the ordering
from Q. We define Hn

r to be the set of all n-dimensional Latin hypercubes of
order r and Rn

r to be the set of all reduced n-dimensional Latin hypercubes
of order r.

The number of n-dimensional Latin hypercubes of order r and the num-
ber of reduced n-dimensional Latin hypercubes of order r are connected with
the following formula

| Hn
r |= r!(r − 1)!n−1 | Rn

r | .

The usual notations of homotopism, isotopism, paratopism and isomor-
phism generalize naturally from binary quasigroups to n-ary quasigroups.
Given n-ary quasigroups (Q, f) and (Q,h), we say that (Q, f) is isotopic to
(Q,h) if there are permutations α1, α2, . . . , αn+1 on Q such that for every
aj ∈ Q

αn+1(f(a1, . . . , an)) = h(α1(a1), . . . , αn(an)).

The relation “is isotopic to” is an equivalence relation in the set of all n-
ary quasigroups of order r. The equivalence classes are called the classes of
isotopism or isotopy classes. The equivalence classes for equivalence relation
“is isomorphic to” are called the classes of isomorphism.

1.1. Quasigroups - mathematical background 9

The notation of orthogonality generalize naturally also from binary quasi-
groups to n-ary quasigroups. Two n-ary quasigroups (Q, f) and (Q,h) of
order r are said to be orthogonal if for any u and v in Q, there exist a
unique n tuple of elements x1, . . . , xn of Q such that f(x1, . . . , xn) = u and
h(x1, . . . , xn) = v. A set of pairwise orthogonal n-ary quasigroups is said
to be a set of mutually orthogonal n-ary quasigroups, or in combinatorial
language a set of mutually orthogonal hypercubes (MOHC).

One of the main objective of this section is finding a new method for
enumeration of n-ary quasigroups. The enumeration of binary quasigroups
has a long and fruitful history, that can be found in [94]. During our research,
there were a few research in this field for higher dimensions. Mullen and
Weber [105] counted the numbers of reduced Latin cubes of order 1 to 5 and
their numbers of isomorphism classes. They reported the numbers of isotopy
classes of Latin cubes of order 1 to 4 to be 1, 1, 1, 12. But two decades later,
Jia and Qin [52] reported the same numbers for reduced Latin cubes, but
gave wrong numbers 15 and 479 for the numbers of isotopy classes of Latin
cubes of order 4 and 5, respectively. Our method confirm the results of
Mullen and Weber for the numbers of isotopy classes of Latin cubes of order
1 to 4 [75]. See Table 1.3 for the number of isotopy classes and representative
of each class for Latin cubes of order 4.

Theorem 1 Let Q = {q1, q2, . . . , qr}, r > 1, and let (Q, g) and (Q,h)
be two (n − 1)-ary quasigroups from the same isotopy class. Fix a number
i ∈ {1, 2, . . . , n}. Then the number of n-ary quasigroups having (Q, g) as
its (q1, i)-projected (n − 1)-ary quasigroup is equal to the number of n-ary
quasigroups having (Q,h) as its (q1, i)-projected (n− 1)-ary quasigroup.

In 2006 Potapov and Krotov [115] proved the following asymptotic for the
|Hn

4 |:
3n+122n+1 6 |Hn

4 | 6 (3n+1 + 1)22n+1

Our new method is based on Theorem 1.3, which allows the numbers of
n-ary quasigroups (of small orders) to be computed, if the isotopy classes
of (n − 1)-ary quasigroups of given order are known. Formula for their
computation is given in Corollary 1 and the proof is given in [75].

Corollary 1 Let Q = {q1, q2, . . . , qr}, r > 1, and let the isotopy classes of
the n-ary quasigroups on Q are C1, C2, . . . , Ck. Then the number of n-ary
quasigroups on Q is equal to

b1|C1|+ b2|C2|+ · · ·+ bk|Ck| (1.2)

10 Chapter 1. Quasigroups and quasigroup transformations

where bi denotes the number of n-ary quasigroups having as its (q1, 1)-
projected n-ary quasigroup an (n − 1)-ary quasigroup from the class Ci.

2
Isotopy class Represent of Ci |Ci| bi bi|Ci|

1234|2143|3412|4321||
C1 2143|1234|4321|3412|| 864 2292 1980288

3412|4321|1234|2143||
4321|3412|2143|1234
1234|2143|3421|4312||

C2 2143|1234|4312|3421|| 2592 852 2208384
3421|4312|2143|1234||
4312|3421|1234|2143
1234|2143|3412|4321||

C3 2143|1234|4321|3412|| 2592 876 2270592
3412|4321|2143|1234||
4321|3412|1234|2143
1234|2143|3412|4321||

C4 2143|1234|4321|3412|| 2592 876 2270592
3421|4312|1243|2134||
4312|3421|2134|1243
1234|2143|3412|4321||

C5 2143|1234|4321|3412|| 2592 876 2270592
3421|4312|2134|1243||
4312|3421|1243|2134
1432|3241|4123|2314||

C6 4123|2314|1432|3241|| 2592 876 2270592
3214|4132|2341|1423||
2341|1423|3214|4132
1432|3241|4123|2314||

C7 4123|2314|1432|3241|| 2592 876 2270592
3241|1432|2314|4123||
2314|4123|3241|1432
1432|3241|4123|2314||

C8 4123|2314|1432|3241|| 2592 876 2270592
3214|1423|2341|4132||
2341|4132|3214|1423
1234|2341|3412|4123||

C9 4123|3412|2341|1234|| 5184 144 746496
3412|1234|4123|2341||
2341|4123|1234|3412
1234|2341|3412|4123||

C10 4321|1432|2143|3214|| 5184 144 746496
2413|3124|4231|1342||
3142|4213|1324|2431
1243|2431|3124|4312||

C11 3421|4213|1342|2134|| 5184 144 746496
2314|3142|4231|1423||
4132|1324|2413|3241
1234|2143|3412|4321||

C12 2143|1234|4321|3412|| 20736 816 16920576
3412|4321|1243|2134||
4321|3412|2134|1243

Table 1.3: Isotopy classes of ternary quasigroups of order 4

1.2. Quasigroup transformations 11

By using this Corollary we calculated the cardinalities of Hn
4 for n 6 4,

and they are 24, 576, 55 296, 36 972 288, respectively, and the cardinalities
of Hn

5 for n 6 3, and they are 120, 576, 161 280, 2 781 803 520, respectively
(see [75]). We remark that our result is the same as the result obtained by
Ito [50] and the results obtained by Mullen and Weber [105]. Also in this
paper we have that |Hn

3 | = 3 · 2n.
Recently there was a big progress in this field with results of McKay and

Wanless [95]. Some of the main results here are the cardinalities of Hn
r for

r 6 5 and n 6 5 and of the H3
6. The most important results in this field are

represented in Table 1.4.

1.2 Quasigroup transformations

With the quasigroups one can define different quasigroup transformations.

1.2.1 Existing quasigroup transformations

G = Z2n be an alphabet. Let a quasigroup operation ∗ on G be chosen
randomly and let \ be left division and / be the right division of ∗. Let
denote by G+ = {x1x2 . . . xt | xi ∈ G, t > 1} the set of all finite string
over G. For fixed letter l ∈ G the transformations el : G+ → G+ and
dl : G+ → G+ are defined in Markovski et al. [76], and e′l : G+ → G+ and
d′l : G+ → G+ are defined in Markovski et al. [77].

el(x1 . . . xt) = (z1 . . . zt) ⇔ zj =
{

l ∗ x1, j = 1
zj−1 ∗ xj , 2 6 j 6 t

(1.3)

dl(z1 . . . zt) = (x1 . . . xt) ⇔ xj =
{

l\z1, j = 1
zj−1\zj , 2 6 j 6 t

(1.4)

e′l(x1 . . . xt) = (z1 . . . zt) ⇔ zj =
{

x1 ∗ l, j = 1
xj ∗ zj−1, 2 6 j 6 t

(1.5)

d′l(z1 . . . zt) = (x1 . . . xt) ⇔ xj =
{

z1/l, j = 1
zj/zj−1, 2 6 j 6 t

(1.6)

Every quasigroup transformation that apply on the given string in one
pass we will call elementary quasigroup transformation. el, dl, e′l and d′l
are elementary quasigroup transformations. Composition of elementary
quasigroup transformations we will call composite quasigroup transforma-
tion. For that purpose, let ∗1, ∗2, . . . , ∗s be quasigroup operations on G. Let

12 Chapter 1. Quasigroups and quasigroup transformations

N
o
.

o
f

N
o
.

o
f

N
o
.

o
f

n
r

|R
nr |

|H
nr |

iso
to

p
y

iso
m

o
rp

h
ism

p
a
ra

to
p
y

c
la

sse
s

c
la

sse
s

c
la

sse
s

2
2

1
2

1
1

1
2

3
1

1
2

1
5

1
2

4
4

5
7
6

2
3
5

2
2

5
5
6

1
6
1
2
8
0

2
1
4
1
1

2
2

6
9
4
0
8

8
1
2
8
5
1
2
0
0

2
2

1
1
3
0
5
3
1

1
2

2
7

1
6
9
4
2
0
8
0

6
1
4
7
9
4
1
9
9
0
4
0
0
0

5
6
4

1
2
1
9
8
4
5
5
8
3
5

1
4
7

2
8

5
3
5
2
8
1
4
0
1
8
5
6

1
0
8
7
7
6
0
3
2
4
5
9
0
8
2
9
5
6
8
0
0

1
6
7
6
2
6
7

2
6
9
7
8
1
8
3
3
1
6
8
0
6
6
1

2
8
3
6
5
7

2
9

3
7
7
5
9
7
5
7
0
9
6
4
2
5
8
8
1
6

5
5
2
4
7
5
1
4
9
6
1
5
6
8
9
2
8
4
2
5
3
1
2
2
5
6
0
0

1
1
5
6
1
8
7
2
1
5
3
3

1
5
2
2
4
7
3
4
0
6
1
4
3
8
2
4
7
3
2
1
4
9
7

1
9
2
7
0
8
5
3
5
4
1

2
1
0

7
5
8
0
7
2
1
4
8
3
1
6
0
1
3
2
8
1
1
4
8
9
2
8
0

9
9
8
2
4
3
7
6
5
8
2
1
3
0
3
9
8
7
1
7
2
5
0
6
4
7
5
6
9
2
0
3
2
0
0
0
0

2
0
8
9
0
4
3
7
1
3
5
4
3
6
3
0
0
6
2
7
5
0
8
9
2
2
1
1
8
0
9
1
5
0
4
4
6
9
9
5
7
3
5
5
3
3
5
1
3
3
4
8
1
7
3
9
7
8
9
4
7
4
9
9
3
9

2
1
1
5
3
6
3
9
3
7
7
7
3
2
7
7
3
7
1
2
9
8
1
1
9
6
7
3
5
4
0
7
7
1
8
4
0
7
7
6
9
6
6
8
3
6
1
7
1
7
7
0
1
4
4
1
0
7
4
4
4
3
4
6
7
3
4
2
3
0
6
8
2
3
1
1
0
6
5
6
0
0
0
0
0

-
-

-
3

2
1

2
1

1
1

3
3

1
2
4

1
1
1

1
3

4
6
4

5
5
2
9
6

1
2

2
5
8
9

5
3

5
4
0
2
4
6

2
7
8
1
8
0
3
5
2
0

5
9

2
3
1
9
2
9
2
2

1
5

3
6

9
5
9
0
9
8
9
6
1
5
2

9
9
4
3
9
3
8
0
3
3
0
3
9
3
6
0
0
0

5
6
7
8
3
3
4

1
3
8
1
1
0
5
6
3
6
2
2
6
9
8
0

2
6
4
2
4
8

4
2

1
2

1
1

1
4

3
1

4
8

1
2
1

1
4

4
7
1
3
2

3
6
9
7
2
2
8
8

3
2
8

1
5
6
5
2
4
3

2
6

4
5

3
1
5
0
3
5
5
6

5
2
2
6
0
6
1
8
9
7
7
2
8
0

5
4
6
6

4
3
5
5
0
9
3
5
2
9
3
7

8
6

5
2

1
2

1
1

1
5

3
1

9
6

1
4
3

1
5

4
2
0
1
5
3
8
0
0
0

6
2
6
8
6
3
7
9
5
2
0
0
0

2
1
3
3
5
8
6

2
6
3
3
4
7
9
8
1
1
2
1

4
7
8
5

5
5

5
0
4
9
0
8
1
1
2
5
6

2
0
1
0
1
9
6
7
2
7
4
3
2
4
7
8
7
2
0

1
5
0
1
7
8
6

1
6
7
5
1
6
4
4
8
3
8
6
3
9
3
0
0

3
1
0
2

6
2

1
2

1
1

1
6

3
1

1
9
2

1
8
5

1

T
ab

le
1.4:

N
um

ber
ofreduced

L
atin

hypercubes,L
atin

hypercubes,isotopy
classes

ofL
atin

hypercubes,paratopy
classes

of
L
atin

hypercubes
for

sm
all

order
r

and
dim

ension
d

6
6

1.2. Quasigroup transformations 13

eli , dli , e′li , d′li (i = 1, . . . s) be transformations defined as in (1.3, 1.4, 2.1,
1.6) by choosing fixed elements l1, l2, . . . , ls ∈ G. Let tli be any of previous
eli , dli , e′li , d′li transformations. The following quasigroup E, D, E′, D′

and T transformations can be defined [77]:

E = E
(s)
ls,...,l1

= els ◦ els−1 ◦ · · · ◦ el1 (1.7)

D = D
(s)
ls,...,l1

= dls ◦ dls−1 ◦ · · · ◦ dl1 (1.8)

E′ = E
′(s)
ls,...,l1

= e′ls ◦ e′ls−1
◦ · · · ◦ e′l1 (1.9)

D′ = D
′(s)
ls,...,l1

= d′ls ◦ d′ls−1
◦ · · · ◦ d′l1 (1.10)

T = T
(s)
ls,...,l1

= tls ◦ tls−1 ◦ · · · ◦ tl1 (1.11)

Theorem 2 [77] The transformations E, D, E′, D′ and T are permuta-
tions on G+.

Special kind of E transformation is the quasigroup reverse string trans-
formation R, first introduced in [35], where the leaders are the elements of
the string, taken in reverse order.

Definition 12 Let s be a positive integer, let (Q, ∗) be a quasigroup and
aj ∈ Q, 1 6 j 6 s. Quasigroup reverse string transformation R :
Qs → Qs is defined as composition of e-transformations in following way

R(a1a2 . . . as) = (ea1 ◦ ea2 ◦ · · · ◦ eas)(a1a2 . . . as) (1.12)
2

Another special kind of D transformation is so called Quasigroup method
1 - QM1, defined in [78], and only special in this transformation are the
special defined leaders for internal el-transformations.

All defined quasigroup transformations till now, transform string in other
string with equal length s. The following transformation, presented in [78],
transforms strings of length s into strings of length 2s.

Definition 13 Let s be a positive integer, let (Q, ∗) be a quasigroup and
aj ∈ Q, 1 6 j 6 s. Let (a′1a

′
2 . . . a′s) = dl(a1a2 . . . as), where l = a1 + a2 +

. . . + as (+ is addition modulo 256). We define the mapping ϕ : Qs → Q2s

by
ϕ(a1a2 . . . as) = (a1a

′
1a2a

′
2 . . . asa

′
s).

14 Chapter 1. Quasigroups and quasigroup transformations

Quasigroup method 2 QM2 : Qs → Q2s is defined as

QM2 ◦ ϕ(a1 . . . as) = QM2(x1 . . . x2s) = (z1 . . . z2s) ⇔

zj =
{

x1 + (l ∗ x1), j = 1
xj + (xj−1 ∗ xj), 2 6 j 6 2s

(1.13)
2

1.2.2 Properties of sequences produced by quasigroup trans-
formations

There are extensive theoretical studies and numerical experiments of the
sequences produced by quasigroup transformations E, E′, D and D′ [77, 84,
85]. We present some of the most important.

Theorem 3 Consider an arbitrary string β = b1b2 . . . bt ∈ G+, where bi ∈
G, and let γ = E(s)(β) and γ′ = E

′(s)(β). If n is sufficiently large integer
then, for each l: 1 6 l 6 s the distribution of substrings of γ and γ′ of length
l is uniform. (We note that for l > k the distribution of substrings of γ and
γ′ of length l may not be uniform.)

The Theorem 3 means, that if we apply once E or E′ transformations
on long enough string from alphabet G, every letter from G is appearing
almost equally in the produced string. Generally, if we apply E or E′ trans-
formations l times, for l 6 k, then every substring with length l is appearing
almost equally in the produced string.

Another important properties of obtained sequences by quasigroup string
transformations are concerning their period.

Definition 14 The string β = b1b2 . . . bs ∈ G+, where bi ∈ G, has a pe-
riod p, if p is the smallest integer, for which the following equality is true
ai+1ai+2 . . . ai+p = ai+p+1ai+p+2 . . . ai+2p for every i > 0. 2

Theorem 4 [74] Let α be a sequence of k elements. If the period of E
(1)
l (α)

is p0, then the sequences E
(t)
l (α) are periodical with periods pt−1 corre-

spondingly, all of which are multiples of p0. The periods satisfy the law
ppt−1 > pt−1 for each t > 1. 2

Theorem 4 means that the period of the sequences obtained with con-
secutive application of quasigroup transformations, grows at least linearly.
Let α = q0q1 . . . qp−1q0q1 . . . qp−1 . . . be an enough long string of period p

1.2. Quasigroup transformations 15

over G and let αk = E(n)(α). The following classification can be made on
quasigroups [80]. If the period of the string αk is a linear function of k,
then the quasigroup (G, ∗) is said to be linear. If the period of the string αk

is an exponential function 2ck (where c is some constant), then the quasi-
group (G, ∗) is said to be exponential. The number c is called the period
growth of the exponential quasigroup (G, ∗) and represents how many times
the period has grown (in average) after one application of the quasigroup
transformation. It is obvious that the ideal period growth is at most the
order n of the quasigroup. Thus, ideally, if we apply k times the quasi-
group transformation, the period of obtained sequence will be nk. From
numerical experiments in [25] the percentage of linear quasigroups decreases
when the order of the quasigroup increases and the percentage of the linear
quasigroups and exponential quasigroup with period growth less then 2, is
decreasing exponentially by the order of the quasigroups.

1.2.3 Left and right quasigroups

Definition 15 A groupoid (G, ·) is said to be a left quasigroup (a right
quasigroup) if the equation xa = b (ay = b) have a unique solution x (y)
in G for every a, b ∈ G. 2

In this subsection we define two special kinds of left and right quasigroups.
They are going to be used for definition of quasigroup transformations.

Proposition 3 Let (G,+) be a group and let (G, ∗) be a quasigroup. Then
the operation • defined by x•y = (x+y)∗y defines a left quasigroup (G, •).2

Proof The solution x = (b/a)−a of the equation x •a = b is unique, since
x • y = x′ • y =⇒ x = x′. ¥

Proposition 4 Let (G,+) be a group and let (G, ∗) be a quasigroup. Then
the operation ¦ defined by x ¦ y = x ∗ (x + y) defines a right quasigroup
(G, ¦). 2

Proof The solution y = −a + (a\b) of the equation a ¦ y = b is unique,
since x ¦ y = x ¦ y′ =⇒ y = y′. ¥

Given a groupoid (G, ·), for each a ∈ G the left and the right translations
La and Ra are defined by La(x) = xa and Ra(x) = ax respectfully. If (G, ·)
is a left (right) quasigroup then its left (right) translation is a permutation,
while the right (left) translation can be arbitrary mapping.

16 Chapter 1. Quasigroups and quasigroup transformations

Considering the left and the right quasigroups defined as in Proposition 3
and Proposition 4, the situation is quite different in the case when G = Z2n

and the group operation is addition modulo 2n. Namely, the right translation
of (G, •) and the left translation of (G, ¦) may not be permutations in that
case either. However, the probability of that event is quite small, roughly
speaking, around 2/|G|. To show the last statement we consider the problem
of finding solutions of the equation x ¦ a = b, i.e.,

x ∗ (x + a) = b (1.14)

where a, b ∈ G are given, and x is unknown.

Proposition 5 Let G = Z2n be with group operation addition modulo 2n.
Let a quasigroup operation ∗ on G be chosen randomly. Then the probability
the right quasigroup (G, ¦) to have two different solutions x1 6= x2 of the

equation (1.14) is less or equal to
2

2n − 1
. 2

Proof Let x1 and x2 be two different solutions of the equation x∗(x+a) =
b. Then
{

x1 ∗ (x1 + a) = b
x2 ∗ (x2 + a) = b

⇒
{

x1 \ b− x1 = a
x2 \ b− x2 = a

⇒ x1 \ b− x2 \ b = x1 − x2 6= 0.

At first, we find the probability a random quasigroup to satisfy the event
x1 \ b− x2 \ b = x1 − x2 6= 0.

The difference x1 − x2 can take any value r ∈ G, where r 6= 0. Fix an
r 6= 0. Then there are

(
2n

2

)
pairs of different elements of G, and exactly 2n

of them satisfy the equation x1 − x2 = r. Hence, we have this probability
for any fixed r 6= 0 : Pr{x1, x2 ∈ G, x1 − x2 = r} = 2

2n−1 .
Consider now the equation x1\b − x2\b = s, where s 6= 0 ∈ G is

given. Denote by K the set of all quasigroups on G and let fix a solu-
tion (x1, x2) of x1\b − x2\b = s. Denote by Ks = Ks(x1, x2) the set of all
quasigroups on G with the property x1\b − x2\b = s. Then |Ks| = |Kt|
for each s and t. Namely, if (G, \1) ∈ Ks, then we can construct a quasi-
group (G, \2) ∈ Kt as follows. At first choose x1\2b and x2\2b such that
x1\2b−x2\2b = t and let π be the permutation generated by the two transpo-
sitions (x1\1b, x1\2b), (x2\1b, x2\2b). Then define the operation \2 for each
u, v ∈ G by u\2v = π(u\1v). (Note that we have obtained (G, \2) from
(G, \1) in such a way that we have only replaced in the multiplication table
of (G, \1) all appearances of x1\1b (x2\1b) by x1\2b (x2\2b).) Now, for given
x1, x2 ∈ G and randomly chosen quasigroup (Q, \), we have the probability
Ps{Q ∈ K, x1\b− x2\b = s is true in Q} = |Ks|

|K| = 1
2n−1 .

1.2. Quasigroup transformations 17

Consequently, the probability a random quasigroup (G, ∗) to satisfy the
event x1 \ b− x2 \ b = x1 − x2 6= 0 is

P{x1 − x2 = r, x1\b− x2\b = r, r > 0} =
q−1∑

r=1

P{x1 − x2 = r, x1\b− x2\b = r} =

2n−1∑

r=1

P{x1\b− x2\b = r| x1 − x2 = r}P{x1 − x2 = r} =

2n−1∑

r=1

Ps{Q ∈ K,x1\b− x2\b = r}Pr{x1, x2 ∈ G, x1 − x2 = r} =
2

2n − 1
.

Finally, if we additionally take the condition x1\b−x1 = a, we conclude
that the probability a right quasigroup (G, ¦) to have two different solutions
x1 6= x2 of the equation (1.14) is less or equal than 2

2n−1 . ¥

In similar way one can prove the same property for left quasigroup (G, •).
Proposition 6 Let G = Z2n be with group operation addition modulo 2n.
Let a quasigroup operation ∗ on G be chosen randomly. Then the probability
the left quasigroup (G, •) to have two different solutions x1 6= x2 of the
equation

(a + x) ∗ x = b (1.16)
2

is less or equal to
2

2n − 1
. ¤

Remark 1 In the set of all 576 quasigroups of order 4, each equation of
kind x∗(x+a) = b (or (a+x)∗x = b) has two (or more) solutions in exactly
168 quasigroups.

1.2.4 Some new quasigroup transformations

If we allow G = Z2n to be with group operation addition modulo 2n, with
previous defined left and right quasigroups we can define several new quasi-
group transformations.

Definition 16 Quasigroup additive string transformation Al : G+ →
G+ with leader l is the transformation defined by

Al(x1 . . . xt) = (z1 . . . zt) ⇔ zj =
{

(l + x1) ∗ x1, j = 1
(zj−1 + xj) ∗ xj , 2 6 j 6 t

(1.17)

where xi, zi ∈ G, t > 1. 2

18 Chapter 1. Quasigroups and quasigroup transformations

Definition 17 Quasigroup reverse additive string transformation
RAl : G+ → G+ with leader l is the transformation defined by

RAl(x1 . . . xt) = (z1 . . . zt) ⇔ zj =
{

xj ∗ (xj + zj+1), 1 6 j 6 t− 1
xt ∗ (xt + l), j = t

(1.18)
where xi, zi ∈ G, t > 1. 2

These transformations are not bijective mappings. Let Ali and RAli(i =
1, . . . s) be transformations defined by choosing fixed elements l1, l2, . . . , ls ∈
G. Let mli be any of previous Ali ,RAli transformations. We can define M
transformations as

M = ml1 ◦ml2 ◦ · · · ◦mln (1.19)

For an element z ∈ G = Z2n denote by ρ(z, bn
2 c) the element in G

obtained by rotating left for bn
2 c bits the n-bit representation of z. Given a

string Z = (z1 . . . zt) ∈ Gt, we denote by ρ(Z) the string

ρ(Z) =
(
ρ(z1, bn2 c) . . . ρ(zt, bn2 c)

) ∈ (Z2n)t.

For a function f = f(Z) we define a new function ρ(f) = ρ(f)(Z) by
ρ(f)(Z) = f(ρ(Z)).

Definition 18 Quasigroup main transformation MT : G+ → G+

with complexity k is defined as composition of transformations of kind Ali

followed by ρ(RAlj), for suitable choices of the leaders li and lj as functions
depending on variables x1, x2, . . . , xt, as follows. For every xλ ∈ G

MT (x1 . . . xt) = ρ(RAl1)(Al2(. . . (ρ(RAlk−1
)(Alk(x1 . . . xt))) . . .)), (1.20)

i.e.,MT = ρ(RAl1)◦Al2◦· · ·◦ρ(RAlk−1
)◦Alk , where ◦ denotes a composition

of functions. 2

The main transformation is special kind of M transformation, which will
be used later for cryptographic purposes.

In [101], another new quasigroup transformation is given. Let Q be
endowed with two orthogonal quasigroup operations ∗1 and ∗2. Then we
define so called orthogonal quasigroup string transformation OT :
Q+ → Q+ by the following iterative procedure.

OT (x1) = x1, OT (x1, x2) = (x1∗1x2, x1∗2x2), and if OT (x1, x2, . . . , xt−2,
xt−1) = (z1, z2, . . . , zt−1) is defined for t > 2, then

OT (x1, x2, . . . , xt−1, xt) = (z1, z2, . . . , zt−1 ∗1 xt, zt−1 ∗2 xt), (1.21)

where xi ∈ Q.

1.3. How to choose a quasigroup 19

Figure 1: Schematic representation of the orthogonal quasigroup string
transformation OT

Schematic representation of OT is given on Fig. 1. Note that the re-
striction OTn of OT on the set Qn is a mapping OTn : Qn → Qn and so
OT = OT1 ∪ OT2 ∪ OT3 ∪ . . ., i.e., OT is a disjoint union of the mappings
OTn. OT1 is the identity mapping on Q, so it is a permutation. OT2 is a per-
mutation of Q2 since (x1∗1x2, x1∗2x2) = (y1∗1y2, y1∗2y2) implies (x1, x2) =
(y1, y2) by the orthogonality of the quasigroup operations ∗1 and ∗2. Sup-
pose that OTt−1 is a permutation for t > 2, and let OTt(x1, x2, . . . , xt) =
OTt(y1, y2, . . . , yt) = (z1, z2, . . . , zt). Let OTt−1(x1, x2, . . . , xt−1) = (u1, u2,
. . . , ut−1) and OTt−1(y1, y2, . . . , yt−1) = (v1, v2, . . . , vt−1). Then z1 = u1 =
v1, z2 = u2 = v2, . . ., zt−2 = ut−2 = vt−2 and (zt−1, zt) = (ut−1 ∗1 xt, ut−1 ∗2

xt) = (vt−1 ∗1 yt, vt−1 ∗2 yt), that implies (ut−1, xt) = (vt−1, yt) by or-
thogonality of ∗1 and ∗2. We have xt = yt and OTt−1(x1, x2, . . . , xt−1) =
OTt−1(y1, y2, . . . , yt−1) = (z1, z2, . . . , zt−2, ut−1 = vt−1). Thus we have proved
the following.

Theorem 5 The orthogonal quasigroup string transformation OT is a per-
mutation on Q+, and its restriction OTn is a permutation on Qn for each
positive integer n. 2

Note that if quasigroup operations are not orthogonal, the transformation
defined by 1.21 is not necessarily a permutation.

1.3 How to choose a quasigroup

Quasigroups and quasigroup transformations have many applications in
cryptography, coding theory, design theory and others. Our interest is spe-

20 Chapter 1. Quasigroups and quasigroup transformations

cially application of quasigroups in cryptography. Quasigroups are very
suitable for that purpose, because of their structure, features and big num-
ber. Effects of quasigroup transformations depend at most from the choice
of a quasigroup. So, one of the problems is which quasigroup is suitable to be
chosen for using, concerning what preconditions the quasigroup must fulfill.
Several classifications are existing today and helping us in our choices.

Three main classifications are obtained by using the algebraic properties
of the quasigroups to classes of isotopic quasigroups, classes of isomorphic
quasigroups and classes of paratopic quasigroups. Quasigroups are classified
on varieties according to identities they satisfy, like Schroeder quasigroups,
totally anti-symmetric quasigroups, Stein quasigroups, Moufang quasigroups
etc. There are some special classifications on quasigroups of small orders
such as by random walk on torus (Markovski et al. [81]), by period of pro-
duced sequences (Markovski et al. [80], dividing to linear and exponential
quasigroups) or by graphical presentation of sequences obtained by quasi-
group transformations (Dimitrova [24], dividing to fractal and non-fractal
quasigroups on quasigroups of order 4).

Specially, we are interesting in classification obtained from Gligoroski et
al. [36], by examining the quasigroups as vector valued Boolean functions.

1.3.1 Quasigroups as vector valued Boolean functions

We denote by F2 the Galois field with two elements. A Boolean function of
s variables or s−ary Boolean function is a function

b : Fs
2 → F2.

A vector valued Boolean function is a map

B : Fs
2 → Ft

2, (t > 1)

Every vector valued Boolean function B can be represented by t s−ary
Boolean functions bi : F2

s → F2 as follows:

B(x1, . . . , xs) = (b1(x1, . . . , xs), b2(x1, . . . xs), . . . , bt(x1, . . . , xs)),

where

b1(x1, . . . , xs) = y1, . . . , bt(x1, . . . , xs) = yt ⇐⇒ B(x1, . . . , xs) = (y1, . . . , yt).

Each s−ary Boolean function bi can be represented in Algebraic Normal
Form as

bi(x1, x2, . . . , xs) =
∑

I⊆{1,2,...,s}
αI(

∏

i∈I

xi) (1.22)

1.3. How to choose a quasigroup 21

where αI ∈ F2, the sum is for the Boolean function XOR and the product
is for the Boolean function conjunction. The right-hand side of (1.22) can
be interpreted as a polynomial in the field (F2, +, ·) and the degree of bi is
taken to be the degree of the polynomial. The algebraic degree of a vector
valued Boolean function B is defined as the maximum of the degrees of its
component polynomials (b1, b2, . . . , bs):

deg(B) = max{deg(bi) | i ∈ {1, 2, . . . , s}}.

If deg(B) = 1, then B is said to be linear. In the sequel, another defini-
tion of linear and affine function is given.

Definition 19 Let (G,+) be a group and let f : G → G be a function. f is
an affine function if f(x+y) = f(x)+f(y)−f(0) for each x, y ∈ G, where
0 ∈ G is the identity element. A linear function is an affine function f
with f(0) = 0. 2

Now, every quasigroup (Q, ◦) of order 2n can be represented as vector
valued Boolean function B : {0, 1}2n → {0, 1}n and every x ∈ Q, can be
represented as n-dimensional binary vector x = (x1, x2, . . . , xn) ∈ {0, 1}n.
We have:

x ◦ y = (x1, x2, . . . , xn) ◦ (y1, y2, . . . , yn) = B(x1, x2, . . . , xn, y1, y2, . . . , yn) =

(b1(x1, x2, . . . , xn, y1, y2, . . . , yn), . . . , bn(x1, x2, . . . , xn, y1, y2, . . . , yn))

where bi are 2n−ary Boolean functions of B. We can represent B by true
table or by ANF. In the second case we say that B is represented by n-tuple
of polynomials (b1, . . . , bn) and algebraic degree of B is the maximum of the
degrees of its component polynomials.

In [41, 47] one can find definition of the so called multivariate quadratic
quasigroups.

Definition 20 A quasigroup (Q, ∗) of order 2n is called Multivariate Quadra-
tic Quasigroup (MQQ) of type Quadn−kLink if exactly n− k of the polyno-
mials bi are of degree 2 (i.e., are quadratic) and k of them are of degree 1
(i.e., are linear), where 0 6 k < n. 2

It can be observed that the degrees of the 2n−ary Boolean functions rise
with the order of the quasigroup. About the opposite problem, if the given
family of 2n−ary Boolean functions b1, . . . , bn determines a quasigroup, the
following Theorem is true.

22 Chapter 1. Quasigroups and quasigroup transformations

Theorem 6 [107] A family of n Boolean functions b1, . . . , bn in 2n variables
determines a quasigroup iff the following holds:

– if one takes any product bi1 , . . . , bik 1 6 i1 < . . . < ik 6 n, then its alge-
braic normal form does not contain terms including either x1x2 . . . xn

or y1y2 . . . yn.

– the product b1 . . . bn contains both these terms and no other term con-
taining either of them. 2

By classification in [36], quasigroups are divided in linear and non-linear
quasigroups. Linear quasigroups are the quasigroups with all linear compo-
nent Boolean functions. If one component Boolean function is non-linear,
than the appropriate quasigroup is non-linear. But for building non-linear
cryptographic primitives it is not good to have any linear component Boolean
function. So, we introduce an augmentation to this classification, by dividing
non-linear quasigroups to weak non-linear and pure non-linear quasigroups:
1. linear quasigroups - when all component Boolean functions are linear
2. weak non-linear quasigroups - when there exist one component Boolean
function that is linear and one component Boolean function that is non-
linear
3. pure non-linear quasigroups - when all component Boolean functions are
non-linear.

Remark 2 From 576 quasigroup of order 4, 144 are linear (G0), 288 are
weak non-linear (G1) and 144 are pure non-linear quasigroups (G2).
G0 = {1, 4, 11, 14, 21, 24, 26, 27, 37, 40, 43, 46, 51, 54, 57, 60, 70, 71, 77, 80, 82, 83, 92, 93, 100, 101, 110,
111, 113, 116, 126, 127, 132, 133, 138, 139, 146, 147, 157, 160, 163, 166, 169, 172, 179, 182, 189, 192, 196,
197, 203, 206, 212, 213, 222, 223, 228, 229, 234, 235, 243, 246, 252, 253, 259, 262, 269, 272, 274, 275, 284,
285, 292, 293, 302, 303, 305, 308, 315, 318, 324, 325, 331, 334, 342, 343, 348, 349, 354, 355, 364, 365, 371,
374, 380, 381, 385, 388, 395, 398, 405, 408, 411, 414, 417, 420, 430, 431, 438, 439, 444, 445, 450, 451, 461,
464, 466, 467, 476, 477, 484, 485, 494, 495, 497, 500, 506, 507, 517, 520, 523, 526, 531, 534, 537, 540, 550,
551, 553, 556, 563, 566, 573, 576}
G1 = {2, 3, 5, 6, 12, 13, 15, 16, 17, 18, 19, 20, 25, 28, 29, 30, 35, 36, 38, 39, 41, 42, 47, 48, 52, 53, 55, 56, 58,
59, 61, 62, 65, 66, 67, 68, 75, 76, 78, 79, 81, 84, 85, 86, 89, 90, 95, 96, 97, 98, 99, 102, 105, 106, 109, 112, 117,
118, 119, 120, 121, 122, 125, 128, 129, 130, 131, 134, 141, 142, 143, 144, 145, 148, 151, 152, 153, 154, 155,
156, 164, 165, 167, 168, 170, 171, 175, 176, 177, 178, 183, 184, 187, 188, 190, 191, 193, 194, 195, 198, 201,
202, 207, 208, 211, 214, 215, 216, 217, 218, 221, 224, 225, 226, 231, 232, 233, 236, 239, 240, 244, 245, 247,
248, 249, 250, 255, 256, 257, 258, 260, 261, 267, 268, 270, 271, 277, 278, 279, 280, 281, 282, 283, 286, 291,
294, 295, 296, 297, 298, 299, 300, 306, 307, 309, 310, 316, 317, 319, 320, 321, 322, 327, 328, 329, 330, 332,
333, 337, 338, 341, 344, 345, 346, 351, 352, 353, 356, 359, 360, 361, 362, 363, 366, 369, 370, 375, 376, 379,
382, 383, 384, 386, 387, 389, 390, 393, 394, 399, 400, 401, 402, 406, 407, 409, 410, 412, 413, 421, 422, 423,
424, 425, 426, 429, 432, 433, 434, 435, 436, 443, 446, 447, 448, 449, 452, 455, 456, 457, 458, 459, 460, 465,
468, 471, 472, 475, 478, 479, 480, 481, 482, 487, 488, 491, 492, 493, 496, 498, 499, 501, 502, 509, 510, 511,
512, 515, 516, 518, 519, 521, 522, 524, 525, 529, 530, 535, 536, 538, 539, 541, 542, 547, 548, 549, 552, 557,
558, 559, 560, 561, 562, 564, 565, 571, 572, 574, 575}
G2 = {7, 8, 9, 10, 22, 23, 31, 32, 33, 34, 44, 45, 49, 50, 63, 64, 69, 72, 73, 74, 87, 88, 91, 94, 103, 104, 107,
108, 114, 115, 123, 124, 135, 136, 137, 140, 149, 150, 158, 159, 161, 162, 173, 174, 180, 181, 185, 186, 199,

1.3. How to choose a quasigroup 23

200, 204, 205, 209, 210, 219, 220, 227, 230, 237, 238, 241, 242, 251, 254, 263, 264, 265, 266, 273, 276, 287,
288, 289, 290, 301, 304, 311, 312, 313, 314, 323, 326, 335, 336, 339, 340, 347, 350, 357, 358, 367, 368, 372,
373, 377, 378, 391, 392, 396, 397, 403, 404, 415, 416, 418, 419, 427, 428, 437, 440, 441, 442, 453, 454, 462,
463, 469, 470, 473, 474, 483, 486, 489, 490, 503, 504, 505, 508, 513, 514, 527, 528, 532, 533, 543, 544, 545,
546, 554, 555, 567, 568, 569, 570} 2

1.3.2 Quasigroup transformations as vector valued Boolean
functions

Let QTL,s,t : Qt → Qt be a family of quasigroup transformations defined
by the quasigroup (Q, ∗), |Q| = 2n, that are composition of s elementary
quasigroup transformations, with leader string L of length s, s > 1. The
transformation QTL,s,t can be represented as vector valued Boolean function
BQTL,s,t : {0, 1}tn → {0, 1}tn.

Example 3 For the quasigroup of order 4 with lexicographic order 231
(given in Table 1.5), the elementary quasigroup transformations e1, d1,A1

and RA1 (s = 1 and L = 1) of strings of length t = 2, can be represented
as vector valued Boolean functions {0, 1}4 → {0, 1}4 (see Table 1.6), using
integer representation.

◦ 0 1 2 3
0 1 2 3 0
1 2 3 0 1
2 0 1 2 3
3 3 0 1 2

Table 1.5: Quasigroup 231

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e1(x) 8 9 10 11 15 12 13 14 1 2 3 0 6 7 8 9
d1(x) 9 10 11 8 14 15 12 13 0 1 2 3 7 4 5 6
A1(x) 8 8 11 9 6 5 5 4 6 5 5 4 1 3 2 2
RA1(x)14 4 3 3 6 12 11 11 2 8 7 7 2 8 7 7

Table 1.6: Transformations e1, d1,A1 andRA1 represented as vector valued
Boolean functions

We can take the leader string L to be consider as a string of vari-
ables and in such a way we obtain a family of transformations QTs,t :
Qs×Qt → Qt, where the elements of Qs are considered as leaders. Then, the
transformation QTs,t can be represented as vector valued Boolean functions
BQTs,t : {0, 1}sn × {0, 1}tn → {0, 1}tn. For example, the transformation
E = el1 ◦ el2 ◦ el3 obtained by a quasigroup of order 23 (n = 3), for strings
with length t = 4, can be represented as BE : {0, 1}9 × {0, 1}12 → {0, 1}12.

24 Chapter 1. Quasigroups and quasigroup transformations

Example 4 For the same quasigroup 231, the elementary quasigroup trans-
formation el of strings of length 2, can be represented as vector valued
Boolean functions {0, 1}2 × {0, 1}4 → {0, 1}4 (see Table 1.7), using integer
representation.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
l = 0 6 7 4 5 8 9 10 11 15 12 13 14 1 2 3 0
l = 1 8 9 10 11 15 12 13 14 1 2 3 0 6 7 4 5
l = 2 1 2 3 0 6 7 4 5 8 9 10 11 15 12 13 14
l = 315 12 13 14 1 2 3 0 6 7 4 5 8 9 10 11

Table 1.7: The transformation el as vector valued Boolean function

1.3.3 Quasigroups correlation matrices and prop ratio tables

The correlation matrix of vector valued Boolean functions is an useful con-
cept, introduced by Daemen et al. [14], in demonstrating and proving their
properties. This is useful because most components of cryptographic prim-
itives are vector valued Boolean functions. The elements of the correla-
tion matrices consist of the correlation coefficients associated with linear
combinations of input bits and linear combinations of output bits. Linear
cryptanalysis (introduced by Matsui [91]) can be seen as the exploitation
of correlations between linear combinations of bits of different intermediate
encryption values in a block cipher calculation, so correlation matrices are
therefore the natural representation for the description and understanding
of the mechanisms of the linear cryptanalysis.

Definition 21 The correlation coefficient associated with a pair of Boo-
lean functions f(a) and g(a) is denoted by C(f, g) and is given by

C(f, g) = 2P [f(a) = g(a)]− 1

The correlation coefficient ranges between -1 and 1 and if it is different
from 0, the functions are said to be correlated.

A selection vector w is a binary vector that selects all components i of a
vector that have wi = 1. By wT a can be represented the linear combination
of the components of a vector a selected by w.

Let f̂(a) be a real-valued function defined by f̂(a) = (−1)f(a), so in
regards of a linear Boolean function, wT a becomes (−1)wT a. The bitwise
sum of two Boolean functions corresponds to the bitwise product of their
real-valued counterparts, i.e., f(a)+̂g(a) = f̂(a)ĝ(a).

1.3. How to choose a quasigroup 25

The inner product of real-valued functions is defined by,

〈f̂(a), ĝ(a)〉 =
∑

a

f̂(a)ĝ(a)

It is shown in [14] that

C(f, g) = 2−n〈f̂(a), ĝ(a)〉 = 2−n
∑

a

(−1)f(a)(−1)g(a).

If C(f, g) = 1, then f(a) = g(a) = 0 for every a. If C(f, g) = −1, then
f(a)⊕ g(a) = 1 for every a.

The real-valued functions corresponding to the linear Boolean functions
form an orthogonal basis with respect to the defined inner product:

〈(−1)uT a, (−1)vT a〉 = 2nδ(u + v)

where δ(w) is the real-valued function equal to 1 if w is the zero vector and
0 otherwise.

All correlation coefficients between linear combinations of input bits and
that of output bits of the mapping h can be arranged in a correlation 2m×2n-
matrix Ch. The element Cuw in the row u and the column w is equal to
C(uT h(a), wT a). The rows in this matrix can be interpreted as

(−1)uT h(a) =
∑
w

Ch
uw(−1)wT a.

In words, this means that the real-valued function corresponding to a linear
combination of output bits can be written as a linear combination of the
real-valued functions corresponding to a linear combination of input bits.
One can see that if the correlation coefficient Cuw = 1 (Cuw = −1), then
linear (affine) combination of output bits selected by u can be written as
linear (affine) combination of input bits selected by w. This means that if
u = 2i, i = 0, . . . n−1 and Cuw = 1 (Cuw = −1), component polynomial for
(n− i)−th bit is linear (affine) function and can be read from its correlation
matrix.

Correlation matrices can be applied to express correlations in iterated
transformations, such as most block ciphers, hash functions etc. Linear
cryptanalysis are possible if there are predictable input-output correlations
over all but a few rounds significantly larger than 2n/2, where n is the block
length of the block ciphers (see Daemen [13]). An input-output correlation
is composed of linear trails and, in order a cryptographic primitive to be

26 Chapter 1. Quasigroups and quasigroup transformations

resistant against this attack, a necessary condition is that there are no linear
trails with correlation coefficients higher than 2n/2.

Differential cryptanalysis (introduced by Biham and Shamir [7]) exploits
difference propagation and so, as a tool for its examination, one can uses
2m × 2n prop ratio tables (see Daemen [13]).

Let a and a∗ be n-dimensional vectors with bitwise difference a⊕a∗ = a′.
Let b = h(a), b∗ = h(a∗) and b′ = b⊕ b∗. Hence, the difference a′ propagates
to the difference b′ through mapping h and this can be represented by (a′ a
h ` b′).

Definition 22 The prop ratio Rp of a difference propagation (a′ a h ` b′)
is given by

Rp(a′ a h ` b′) = 2−n
∑

a

δ(b′ ⊕ h(a⊕ a′)⊕ h(a)).

The prop ratio ranges between 0 and 1 and if a pair is chosen uniformly from
the set of all pairs (a, a∗) with a⊕ a∗ = a′, the equality h(a)⊕ h(a∗) = b′ is
true with some probability. It can be easily seen that

∑
b Rp(a′ a h ` b′) = 1.

If Rp(a′ a h ` b′) = 0, the difference propagation (a′ a h ` b′) is called
invalid. The input difference a′ and the output difference b′ are said to be
incompatible through h. Difference propagation is composed of differential
trails.

Definition 23 The restriction weight of a valid difference propagation
(a′ a h ` b′) is the negative of the binary logarithm of the prop ratio, i.e.,

wr(a′ a h ` b′) = −log2Rp(a′ a h ` b′)

The restriction weight ranges between 0 and n − 1 and can be seen as the
amount of information (in bits) that is restricted by (a′ a h ` b′) on a. If h is
linear, wr(a′ a h ` b′) = 0, so it can be seen that this difference propagation
does not restrict or gives away information on a.

The correlation matrix and the prop ratio table of a mapping h are
connected through the following Theorem from Daemen [13].

Theorem 7 The table of prop ratios and the table containing the squared
elements of the correlation matrix of a vector valued Boolean function h are
linked by,

Rp(a′ a h ` b′) = 2−m
∑
u,w

(−1)wT a′+uT b′C2
uw

1.3. How to choose a quasigroup 27

and, dually, by

C2
uw = 2−n

∑

a′,b′
(−1)wT a′+uT b′Rp(a′ a h ` b′)

Differential cryptanalysis attacks are possible if there are predictable differ-
ence propagations over all but a few rounds that have prop ratio significantly
larger than 21−n, where n is the block length in the block ciphers [13]. To
be resistant against this attack, necessary condition is that there are no
differential trails with predicted prop ratio higher than 21−n.

Example 5 The quasigroup of order 4 with lexicographic order 211 (given
in Table 1.8) can be represented as a vector valued Boolean function h :
{0, 1}4 → {0, 1}2 and h(x0, x1, x2, x3) = (y0, y1), where y0 = y0(x0, x1, x2, x3)
and y1 = y1(x0, x1, x2, x3). Below we will show that the functions y0 and y1

can be found from the correlation matrix, in the case when they are linear.

◦ 0 1 2 3
0 1 2 0 3
1 3 0 2 1
2 0 1 3 2
3 2 3 1 0

The correlation matrix and prop ratio table of h are given in Table 1.8
and Table 1.9.

h 0000000100100011010001010110011110001001101010111100110111101111
00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
10 0 0 0 0 0 1

2
1
2

0 0 0 0 0 0 1
2

− 1
2

0

11 0 0 0 0 0 1
2

− 1
2

0 0 0 0 0 0 − 1
2
− 1

2
0

Table 1.8: Correlation matrix of quasigroup with lexicographic order 211

h 0000000100100011010001010110011110001001101010111100110111101111

00 1 0 0 0 0 0 0 1 0 1
2

1
2

0 0 1
2

1
2

0

01 0 1
2

1
2

0 0 1
2

1
2

0 1
2

0 0 1
2

1
2

0 0 1
2

10 0 0 0 1 1 0 0 0 0 1
2

1
2

0 0 1
2

1
2

0

11 0 1
2

1
2

0 0 1
2

1
2

0 1
2

0 0 1
2

1
2

0 0 1
2

Table 1.9: Prop ratio table of quasigroup with lexicographic order 211

28 Chapter 1. Quasigroups and quasigroup transformations

One can see that there exists a nonzero output selection vector (01) that
is correlated only to one input selection vector (1011) with correlation -1.
This means that the second bit y1 of the output can be represented by affine
function from the input bits, i.e., y1 = 1⊕x0⊕x2⊕x3. So, every correlation
of 1 or -1 give us immediately the appropriate component Boolean function
of quasigroup, if appropriate output selection vector selects only one bit.

In the prop ratio table there are 3 nontrivial difference propagations
with prop ratio 1 and restriction weight of 0. The input difference 0011
always propagates to output difference 10, 0100 always propagates to output
difference 10 and the input difference 0111 always propagates to output
difference 00. For example, the input difference 0011 is for the pairs: 0*0 =
1 and 0*3 = 3; 0*1 = 2 and 0*2 = 0; 1*0 = 3 and 1*3 = 1; 1*1 = 0 and
1*2 = 2; 2*0 = 0 and 2*3 = 2; 2*1 = 1 and 2*2 = 3; 3*0 = 2 and 3*3 = 0;
and 3*1 = 3 and 3*2 = 1. Their output difference is 10. 2

We examined correlation matrices and prop ratio tables of quasigroup
of order 4 in Mileva and Markovski [100]. There are 144 out of 576 quasi-
groups of order 4 that have a prop ratio table with all nontrivial difference
propagations with prop ratio 1 and restriction weight of 0, and correlation
matrix with every nonzero output selection vector correlated only to one
input selection vector with correlation 1. Clearly, they correspond to the set
of linear quasigroups from classification of [36].

According to obtained correlation matrices, quasigroups can be divided
to:
1. totally correlated quasigroups - when every nonzero output selection vec-
tor is correlated to only one input selection vector with correlation coefficient
1 or -1
2. correlated quasigroups - when at least one nonzero output selection vector
is correlated to only one input selection vector with correlation coefficient 1
or -1
3. non-correlated quasigroups - when every nonzero output selection vector
is correlated to more than one input selection vector.

Remark 3 From 576 quasigroup of order 4, 144 are totally correlated quasi-
groups (the same as linear quasigroups) and 432 are correlated quasigroups.2

According to obtained prop ratio tables, quasigroups can be divided to:
1. non-restricted quasigroups - when all nontrivial difference propagations
are of prop ratio 1
2. weak restricted quasigroups - when at least one nontrivial difference prop-
agation is of prop ratio 1

1.3. How to choose a quasigroup 29

3. restricted quasigroups - when there is no nontrivial difference propaga-
tions of prop ratio 1.

Remark 4 From 576 quasigroup of order 4, 144 are non-restricted quasi-
groups (the same as linear quasigroups) and 432 are weak restricted quasi-
groups. 2

From the previous considerations, it follows that the linear quasigroups
are totally correlated and non-restricted quasigroups and vice versa.

1.3.4 Correlation matrices and prop ratio tables of quasi-
group transformations

First, we proof the following proposition.

Proposition 7 The transformations el, dl, e′l and d′l produced by a linear
quasigroup are linear functions. 2

Proof Let (Q, ◦) be a linear quasigroup [36] of order r = 2n. Then for all
x, y, z ∈ Q, with binary representations (x1, . . . , xn) of x and (y1, . . . yn) of
y we have

z = x ◦ y = (
∑

α
(1)
i xi +

∑
β

(1)
i yi, . . . ,

∑
α

(n)
i xi +

∑
β

(n)
i yi)

where α
(k)
i and β

(k)
i are 1 or 0 for each i, k ∈ {1, 2, . . . , n}. For l, a1, . . . , as ∈

Q we have

el(a1 . . . as) = z1 . . . zs, dl(a1 . . . as) = u1 . . . us.

Let α
(k)
ri β

(k)
ri , δ

(k)
ri and λ

(k)
ri be 1 or 0 for each i, k ∈ {1, 2, . . . , n} and each

r ∈ {1, 2, . . . , s}. For each j ∈ {2, . . . s} we have

z1 = l ◦ a1 = (
∑

α
(1)
1i li +

∑
β

(1)
1i a1

i , . . . ,
∑

α
(n)
1i li +

∑
β

(n)
1i a1

i) =

(z1
1 , . . . , z

1
n),

zj = zj−1 ◦ aj = (
∑

α
(1)
ji zj−1

i +
∑

β
(1)
ji aj

i , . . . ,
∑

α
(n)
ji zj−1

i +
∑

β
(n)
ji aj

i) =

(zj
1, . . . , z

j
n),

30 Chapter 1. Quasigroups and quasigroup transformations

u1 = l ◦ a1 = (
∑

δ
(1)
1i li +

∑
λ

(1)
1i a1

i , . . . ,
∑

δ
(n)
1i li +

∑
λ

(n)
1i a1

i) =

(u1
1, . . . , u

1
n),

uj = aj−1 ◦ aj = (
∑

δ
(1)
ji aj−1

i +
∑

λ
(1)
ji aj

i , . . . ,
∑

δ
(n)
ji aj−1

i +
∑

λ
(n)
ji aj

i) =

(uj
1, . . . , u

j
n)

So, inductively we have that every bit in el(a1 . . . as) and dl(a1 . . . as) is
obtained by linear Boolean function, therefore el and dl are linear vector
valued Boolean functions. Similarly, we can proof that e′l and d′l are linear
vector valued Boolean functions. ¥

Composition of linear functions is also a linear function, so the following
corollary is true.

Corollary 2 The transformations E, D, E′, D′ and T produced by a linear
quasigroup are linear functions. 2

We investigate the behavior of transformations E, D, Al and RAl pro-
duced by all quasigroups of order 4, on strings of length t = 2 and t = 3.
The transformations E and D are compositions of s elementary quasigroup
transformations, where 1 6 s 6 100. We use fixed leader l for all compos-
ite transformations, which is the worst case. All of these transformations
can be represented as vector valued Boolean functions {0, 1}4 → {0, 1}4 for
t = 2 and {0, 1}6 → {0, 1}6 for t = 3. As a tools we use the prop ratio
tables and correlation matrices of quasigroup transformations. The results
are summarized in [98].

Example 6 The representation of the transformation El=2,s=5,t=2, produced
by quasigroup 231, as vector valued Boolean function is given in Table 1.10,
where integer representation is used.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BEl=2,s=5,t=2(x) 1 2 3 0 6 7 4 5 8 9 10 11 15 12 13 14

Table 1.10: Vector valued Boolean representation of El=2,s=5,t=2

The correlation matrix and prop ratio table for El=2,s=5,t=2 are given in
Table 1.11 and Table 1.12, respectfully.

1.3. How to choose a quasigroup 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
2 0 0 0 0 0 0 1

2
1
2

0 0 − 1
2

1
2

0 0 0 0

3 0 0 0 0 0 0 − 1
2

1
2

0 0 − 1
2

− 1
2

0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
6 0 0 1

2
1
2

0 0 0 0 0 0 0 0 0 0 − 1
2

1
2

7 0 0 − 1
2

1
2

0 0 0 0 0 0 0 0 0 0 − 1
2
− 1

2
8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
9 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
10 0 0 − 1

2
1
2

0 0 0 0 0 0 0 0 0 0 1
2

1
2

11 0 0 − 1
2

− 1
2

0 0 0 0 0 0 0 0 0 0 − 1
2

1
2

12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
13 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 − 1

2
1
2

0 0 1
2

1
2

0 0 0 0

15 0 0 0 0 0 0 − 1
2

− 1
2

0 0 − 1
2

1
2

0 0 0 0

Table 1.11: Correlation matrix of transformation El=2,s=5,t=2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1

2
0 1

2
0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1

2
0 1

2
0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 0 0

5 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 0 0

7 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 1
2

0 1
2

0 0 0 0

9 0 0 0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1
2

0 1
2

0 0 0 0

11 0 0 0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 1

2
14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 1

2

Table 1.12: Prop ratio table of the transformation El=2,s=5,t=2

One can see from the correlation matrix that there exist 7 nonzero out-
put selection vectors that are correlated only to one input selection vectors.
Output selection vectors 0001 = 1, 0100 = 4 and 1000 = 8 are correlated
with input selection vectors 1101, 0100 and 1000, respectfully, with corre-
lation coefficient -1, 1 and 1. This means that this transformation has 2
linear and 1 affine component Boolean functions, i.e., y1 = x1, y0 = x0 and
y3 = 1⊕ x0 ⊕ x1 ⊕ x3. 2

32 Chapter 1. Quasigroups and quasigroup transformations

We obtain several interesting results from our numerical experiments.
First, we can divide quasigroups of order 4 in 5 classes according to linear-
ity of produced El,s,2 transformations on strings with length 2, s 6 100. We
already see that linear quasigroups produce linear E and D transformations,
so the class G0 consists of those quasigroups. Our experiments show us that
all quasigroups of order 4 can produce linear El,s,2 transformations, but for
some choices of the leader l. There are 48 quasigroups that form the class G1,
with property to produce linear El,s,2-transformations, independently from
chosen leader and for every s = 2k and another 16 quasigroups that form the
class G2, with same property but for s = 4k. Classes G0 and G1 together
form the set of fractal quasigroups [24]. Class G3 consist of 80 quasigroups,
with property to produce linear El,s,2-transformations for at least one leader
and for every s = 2k. The last class G4 of 288 quasigroups, has the property
to produce linear El,s,2 transformations, independently from chosen leader
for some s = {6k, 8k, 9k, 12k, 24k} and with only 3 nonzero output selection
vectors that are correlated only to one input selection vectors. 240 quasi-
groups from this class produce El,s,2 transformations with maximal prop
ratio of 1

2 or 3
4 for most of the leaders. Other quasigroups produce El,s,2

transformations with maximal prop ratio of 1.
G1 = {2, 3, 5, 7, 9, 18, 25, 28, 49, 63, 121, 144, 145, 148, 170, 171, 174, 176, 178, 185, 218, 232, 242, 263,
314, 335, 345, 359, 392, 399, 401, 403, 406, 407, 429, 432, 433, 456, 514, 528, 549, 552, 559, 568, 570, 572,
574, 575}
G2 = {8, 10, 15, 19, 173, 183, 186, 187, 390, 391, 394, 404, 558, 562, 567, 569}
G3 = {6, 12, 13, 16, 17, 20, 22, 23, 35, 36, 47, 48, 50, 64, 69, 72, 122, 131, 134, 143, 155, 156, 167, 168, 175,
177, 180, 181, 184, 188, 190, 191, 217, 231, 233, 236, 241, 251, 254, 264, 313, 323, 326, 336, 341, 344, 346,
360, 386, 387, 389, 393, 396, 397, 400, 402, 409, 410, 421, 422, 434, 443, 446, 455, 505, 508, 513, 527, 529,
530, 541, 542, 554, 555, 557, 560, 561, 564, 565, 571}
G4 = {29, 30, 31, 32, 33, 34, 38, 39, 41, 42, 44, 45, 52, 53, 55, 56, 58, 59, 61, 62, 65, 66, 67, 68, 73, 74, 75,
76, 78, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109,
112, 114, 115, 117, 118, 119, 120, 123, 124, 125, 128, 129, 130, 135, 136, 137, 140, 141, 142, 149, 150, 151,
152, 153, 154, 158, 159, 161, 162, 164, 165, 193, 194, 195, 198, 199, 200, 201, 202, 204, 205, 207, 208, 209,
210, 211, 214, 215, 216, 219, 220, 221, 224, 225, 226, 227, 230, 237, 238, 239, 240, 244, 245, 247, 248, 249,
250, 255, 256, 257, 258, 260, 261, 265, 266, 267, 268, 270, 271, 273, 276, 277, 278, 279, 280, 281, 282, 283,
286, 287, 288, 289, 290, 291, 294, 295, 296, 297, 298, 299, 300, 301, 304, 306, 307, 309, 310, 311, 312, 316,
317, 319, 320, 321, 322, 327, 328, 329, 330, 332, 333, 337, 338, 339, 340, 347, 350, 351, 352, 353, 356, 357,
358, 361, 362, 363, 366, 367, 368, 369, 370, 372, 373, 375, 376, 377, 378, 379, 382, 383, 384, 412, 413, 415,
416, 418, 419, 423, 424, 425, 426, 427, 428, 435, 436, 437, 440, 441, 442, 447, 448, 449, 452, 453, 454, 457,
458, 459, 460, 462, 463, 465, 468, 469, 470, 471, 472, 473, 474, 475, 478, 479, 480, 481, 482, 483, 486, 487,
488, 489, 490, 491, 492, 493, 496, 498, 499, 501, 502, 503, 504, 509, 510, 511, 512, 515, 516, 518, 519, 521,
522, 524, 525, 532, 533, 535, 536, 538, 539, 543, 544, 545, 546, 547, 548}

Quasigroups of class G1 produce linear El,s,3 transformations on strings
with length 3, for every s = 4k, s 6 100, independently from chosen leader.
Quasigroups of classes G2 and G3 produce linear El,s,3 transformations for
every s = 8k, independently from chosen leader. Quasigroups of class G4

produce linear El,s,2 transformations for some s = {24k, 27k, 48k, 54k, 72k},
independently from chosen leader. This class is the only class that produce

1.3. How to choose a quasigroup 33

El,s,3 transformations with maximal prop ratio not equal always to 1 (the
least value is 3

8).
For Dl,s,2 and Dl,s,3 transformations, s 6 100, we do not obtain any linear

transformation for any choice of the leader and any nonlinear quasigroups
of order 4. They all produce correlation matrices with 7 (t = 2) and 15
(t = 3) nonzero output selection vectors that are correlated only to one
input selection vectors and prop ratio tables with maximal prop ratio of 1.

All produced non-linear Dl,s,2, Dl,s,3, El,s,2 and El,s,3 transformations
by quasigroups of order 4 have at least one linear component polynomial in
their ANF.

These experiments and Proposition 1 are enough to conclude that E and
D transformations preserve the linearity of used quasigroups. Even more,
for small strings and for some choices of the leader string, the transforma-
tion E increases the linearity in the sense that beside the fact that used
quasigroup is nonlinear, the produced transformation can be linear. This is
not the case with D transformation. We can conclude also that non-linear
E transformations have better propagation characteristics (smaller maxi-
mal prop ratio), with less correlation between their input and output, then
D transformations from the same quasigroups. Note that we have investi-
gated the worst case - when the leader is fixed for all composite quasigroup
transformations.

We also take the shapeless quasigroup of order 8 from [100] and inves-
tigate El,s,2 and Dl,s,2 transformations, for s 6 100, on strings with length
2, for different choices of the fixed leader. Obtained El,s,2 transformations
have the least maximal absolute correlation coefficient of 0.5, and the least
maximal prop ratio of 7

32 . All obtained Dl,s,2 transformations have maximal
absolute correlation coefficient of 1 and the maximal prop ratio of 5

16 . In this
set of El,s,2 and Dl,s,2 transformations, there are functions without any lin-
ear component polynomial in their ANF. Number of composite quasigroup
transformations do not influences the correlation coefficients and the prop
ratios in a sense that they do not decrease with it, but they vary in some
range of values.

From this, one can see, that even for smaller strings, taking shapeless
quasigroups with higher order decrease the maximal absolute correlation
coefficient and maximal prop ratio table of produced E transformation, re-
gardless the number of composite quasigroup transformations. Length of
the string additionally put bigger confusion and diffusion property on the
same transformations.

Example 7 The correlation matrix and prop ratio table for elementary

34 Chapter 1. Quasigroups and quasigroup transformations

A1-transformation from Example 1 are given in Table 1.13 and Table 1.14.
2

A1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1

2
0 0 1

2
0 0 0 1

2
0 0 0 0 − 1

2
2 0− 1

4
0 0 1

4
− 1

4
0 0 1

4
− 1

4
0 0 − 1

4
1
4

1
2

1
2

3 0− 1
4

0 0 1
4

1
4

0 0 1
4

1
4

0 0 1
4

1
4

1
2
− 1

2
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
5 0 0 0 − 1

2
0 0 1

2
0 0 0 1

2
0 0 0 0 1

2
6 0 1

4
1
2

1
2

1
4

− 1
4

0 0 1
4

− 1
4

0 0 1
4

− 1
4

0 0

7 0 1
4

1
2

− 1
2

1
4

1
4

0 0 1
4

1
4

0 0 − 1
4

− 1
4

0 0

8 0 0 0 0 − 1
2

0 0 0 − 1
2

0 0 0 − 1
2

0 0 0

9 0 0 − 1
2

1
2

0 0 0 0 0 0 0 0 0 0 − 1
2
− 1

2
10 0 0 − 1

4
− 1

4
0 0 − 1

4
− 1

4
0 0 − 1

4
− 1

4
− 1

2
1
2

1
4

1
4

11 0− 1
2

− 1
4

1
4

0 0 − 1
4

1
4

0 0 − 1
4

1
4

0 0 1
4
− 1

4
12 0 0 0 0 − 1

2
0 0 0 − 1

2
0 0 0 1

2
0 0 0

13 0 0 − 1
2

− 1
2

0 0 0 0 0 0 0 0 0 0 − 1
2

1
2

14 0 1
2

1
4

1
4

0 0 − 1
4

− 1
4

0 0 − 1
4

− 1
4

0 0 − 1
4
− 1

4
15 0 0 1

4
− 1

4
0 0 − 1

4
1
4

0 0 − 1
4

1
4

1
4

− 1
2

− 1
4

1
4

Table 1.13: Correlation matrix of A1 transformation for quasigroup 231

A1 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1
4

0 1
4

0 0 0 0 0 0 0 0 1
2

0 0 1
4

1 0 1
4

1
2

1
4

0 0 0 0 0 0 0 0 0 1
4

1
4

0

2 0 1
4

0 1
4

0 0 0 0 0 0 0 0 0 0 0 1
4

3 0 1
4

1
2

1
4

0 0 0 0 0 0 0 0 0 1
4

1
4

0

4 00 0 0 0 1
8

1
4

1
8

0 1
8

1
4

1
8

0 0 0 0

5 00 0 0 0 1
8

0 1
8

0 1
8

0 1
8

0 0 0 0

6 00 0 0 1
4

1
8

0 1
8

1
4

1
8

0 1
8

0 0 0 0

7 00 0 0 1
4

1
8

1
4

1
8

1
4

1
8

1
4

1
8

0 0 0 0

8 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4

9 00 0 0 0 0 0 0 0 0 0 0 1
4

1
4

0 0

10 00 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
4

11 00 0 0 0 0 0 0 0 0 0 0 1
4

1
4

0 0

12 00 0 0 0 1
8

1
4

1
8

0 1
8

1
4

1
8

0 0 0 0

13 00 0 0 1
4

1
8

1
4

1
8

1
4

1
8

1
4

1
8

0 0 0 0

14 00 0 0 1
4

1
8

0 1
8

1
4

1
8

0 1
8

0 0 0 0

15 00 0 0 0 1
8

0 1
8

0 1
8

0 1
8

0 0 0 0

Table 1.14: Prop ratio table of A1 transformation for quasigroup 231

With numerical experiments for Al and RAl transformations on strings
of length 2, we obtain very interesting results. Because these transforma-
tions are not bijections, first, we investigate the case of producing constant
functions. 24 quasigroups of order 4 produce constant functions with Al and

1.3. How to choose a quasigroup 35

RAl transformations, independently from the chosen leader. These quasi-
groups have the structure - every next row is obtained from the previous one
by rotating to the right by one position. In addition, it is not important the
quasigroup to be linear, with or without some component linear polynomial
in its ANF (8 quasigroups are without any linear component polynomial).
We examine also Al andRAl transformations with this group of quasigroups
on bigger strings, with length up to 10, and obtain again constant functions.
We take several quasigroups of order 8 with this kind of structure and they
produce constant Al and RAl transformations on strings of length 2 and 3.

Another 88 quasigroups produce constant functions for some choice of
the leader.

24 non-linear quasigroups produce linear Al and RAl transformations,
independently from the chosen leader (again 8 quasigroups are without any
linear component polynomial). They also have some structure - every next
row is obtained from the previous one by rotating to the left by one position.
We examine also Al andRAl transformations with this group of quasigroups
on strings with length 3 and 4, and obtain again linear functions.

Another two sets of 86 quasigroups produce only linear Al transforma-
tions or only linear RAl transformations, independently from the chosen
leader. Another 78 quasigroups produce linear Al and RAl transformations
for some choice of the leader.

At the end, 120 quasigroups produce nonlinear Al and RAl transforma-
tions, independently from the chosen leader, and here structure of quasi-
groups is again different (7 are linear and 38 quasigroups are without any
linear component polynomial). All these transformations have maximal ab-
solute value of the correlation coefficient of 1 and dependently of the leader,
maximal prop ratio is 1 for the linear, and 1

2 for nonlinear quasigroups.

For the nonlinearity of Al and RAl transformations, nonlinearity of
quasigroup is not important, but some other structural properties of quasi-
groups must be investigate. Linear quasigroups can produce nonlinear Al

and RAl transformations, and vice versa, linear Al and RAl transforma-
tions can be produced by nonlinear quasigroups. Secondly, we can make a
hypothesis that quasigroups with structure - next row to be the previous
one, rotated to the right by one position, produce constant functions, inde-
pendently of the choice of the leader, length of the string or order of the
quasigroup. Also, quasigroups of order 4 with structure - next row to be the
previous one, rotated to the left by one position produce linear Al and RAl

transformations.

36 Chapter 1. Quasigroups and quasigroup transformations

1.3.5 Perfect quasigroups

In a quasigroup based cryptography you can find that different authors seek
quasigroups with different properties. One needs CI−quasigroups, other
needs multivariate quadratic quasigroups, third needs quasigroups with less
possible structure, fourth need exponential quasigroups, fifth need orthogo-
nal quasigroups etc. There are special cryptosystems build on some partic-
ular subsets of quasigroups. Our interest is to find what properties should
have a quasigroup, so that it can be used as non-linear building block in
cryptographic primitives and it can contribute to the defence against linear
and differential attacks. When we try to find quasigroups suitable for cryp-
tography in this sense, we started from shapeless quasigroups, defined by
Gligoroski et al. [43].

Definition 24 [43] A quasigroup (Q, ∗) of order r is said to be shapeless
iff it is non-idempotent, non-commutative, non-associative, it does not have
neither left nor right unit, it does not contain proper sub-quasigroups, and
there is no k < 2r for which identities of the kinds are satisfied:

x(... ∗ (x︸ ︷︷ ︸
k

∗y)) = y, y = ((y ∗ x) ∗ ...) ∗ x︸ ︷︷ ︸
k

(1.23)
2

Shapeless quasigroups are good choice, but sometimes even a quasigroup
with some structure is preferable (when structure does not affect the secu-
rity). In other cases quasigroups with additional restriction to the structure
may be needed, for example, not to be either semisymmetric or Stein quasi-
group or Schroeder quasigroup, etc. In the light of the recent linear and
differential attacks we are going to extend the notation of shapeless quasi-
groups to perfect quasigroups.

Definition 25 A quasigroup (Q, ∗) of order r is said to be perfect if it is
pure non-linear, non-correlated and restricted shapeless. 2

The quasigroup of Example 1 is shapeless, but is not perfect, because it
is correlated, weak-restricted and weak non-linear.

Example 8 The quasigroup isotopic to the group (Z8, +) with isotopism

(idZ8 , β, γ), where β :
(

01234567
31652740

)
and γ :

(
01234567
03571624

)
is a perfect

quasigroup. 2

About the question what kind of quasigroups to use for quasigroup trans-
formations, it is very important how we want to apply them and where we

1.4. Summary 37

want to apply them. Most often quasigroups are used for creating quasi-
group transformations, and for them, usually it is enough quasigroup to be
shapeless. Stronger requirement is the quasigroup to be perfect and this
is needed especially in the cases when we use quasigroup alone (not for
quasigroup transformation). Some quasigroup transformations, like A and
RA, even defined by linear quasigroups, can produce non-linear Boolean
functions. Some quasigroup transformation, like E transformation, preserve
linearity of used quasigroup. At the end, it is important quasigroup string
transformations to be non-linear vector valued Boolean functions without
any linear component Boolean function, without nontrivial difference propa-
gations with prop ratio 1 and restriction weight of 0 and with every nonzero
output selection vector correlated to more than one input selection vector.
We showed by examples, that even the quasigroups of order 4 can produce
this kind of quasigroup transformations.

Some cryptographic primitives need special kind of quasigroups. For ex-
ample, when the period of produced sequences is important, like for PRNGs
and stream ciphers, quasigroup must be exponential.

1.4 Summary

This chapter has been devoted to quasigroups and quasigroup transforma-
tions. Our own contributions in this chapter are:

– new method for enumeration of n-ary quasigroups of small order and
revision of number of isotopy classes for ternary quasigroups of order
4

– examination of prop ratio tables and correlation matrices for quasi-
groups of order 4

– augmentation of existing classification of quasigroups as a vector val-
ued Boolean functions

– new classifications of quasigroups according to their correlation matri-
ces and prop ratio tables

– notation of elementary and composite quasigroup transformations

– new A,RA,M,MT and OT quasigroup transformations

– examination of prop ratio tables and correlation matrices of E, D, A
and RA quasigroup transformations for quasigroups of order 4 and for
small strings

38 Chapter 1. Quasigroups and quasigroup transformations

– notation of perfect quasigroups.

There are several open problems, that remain to be solved, like, how to
represent quasigroups of order r 6= 2n as vector valued Boolean functions,
examination on their prop ratio tables and correlation matrices, etc.

Chapter 2

Generation of huge quasigroups

In this chapter, we examine several well-known ways and one new way of
constructing quasigroups, specially huge quasigroups. First, we consider
several methods of producing larger quasigroups from smaller ones. Than
we consider several methods that incorporate permutations, polynomials, T -
functions etc. to In what follows therefore we are going to introduce the so
called extended Feistel networks, which are Feistel networks with additional
properties, to define huge quasigroups. A Feistel network [32] takes any
function and transforms it into a bijection, so it is commonly used technique
for creating a non-linear cryptographic function [142], [69]. Using a Feistel
network for creating a huge quasigroup is not a novel approach. Kristen [97]
presents several different constructions using one or two Feistel networks
and isotopies of quasigroups. Complete mappings, introduced by Mann
[72] (the equivalent concept of orthomorphism was introduced explicitly in
[27]), are also useful for creation of huge quasigroups. In [97] complete
mappings with non-affine functions represented by Cayley tables or with
affine functions represented by binary transformations, are used for that
aim. The main disadvantages of the previously mentioned constructions are
the lack of efficiency in one case and the lack of security in the other case.
Namely, the Cayley table representations need a lot of memory, and also the
affine functions don’t have good cryptographic properties.

Our approach use the extended Feistel networks as orthomorphisms, to
generate huge quasigroups of order r = 2s2t

. We only need to store small per-
mutations of order 2s, s = 4, 8, 16. We show that the quasigroups obtained
by our construction can have different properties, and on some of them we
can influent by choosing bijection or parameters. We examine quasigroups
obtained by this method on a group (Zn,⊕n) and we prove that they can
not be perfect quasigroups, but only shapeless. Quasigroups, produced by

39

40 Chapter 2. Generation of huge quasigroups

the extended Feistel networks FA,B,C defined on Abelian group (Zn,⊕n),
are weak-restricted, correlated and weak non-linear, but those produced by
F 2

A,B,C are much better. They are non-correlated and pure non-linear, but
still weak-restricted.

2.1 Direct, semidirect and quasidirect product

One way of producing larger quasigroups from smaller ones, is the direct
product of quasigroups. Let (Q1, ◦) and (Q2, ·) be two quasigroups of order
r1 and r2, respectively. The direct product (Q1×Q2,⊗) of these quasigroups,
defined by

(a1, b1)⊗ (a2, b2) = (a1 ◦ a2, b1 · b2)

where a1, a2 ∈ Q1 and b1, b2 ∈ Q2, is a quasigroup of order r1r2. One
way of representing the direct product is this - each element (a, b) of Q1 ×
Q2 can be mapped with integer representation of concatenation of binary
representations of a and b.

Example 1. Let Q1 = {0, 1, 2, 3} and Q2 = {0, 1}. On the following
Table one can see two quasigroups (Q1, ◦) and (Q2, ·) with order 4 and 2
respectively, and quasigroup of order 8, obtained from their direct prod-
uct (Q1 × Q2,⊗), with previous representation. This correlated and weak
restricted quasigroup is not shapeless, because has left unit 0, also has a
proper subquasigroup and the pair (4, 12) satisfy 1.23.

◦ 0 1 2 3
0 0 1 2 3
1 1 3 0 2
2 3 2 1 0
3 2 0 3 1

· 0 1
0 0 1
1 1 0

⊗ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 6 7 0 1 4 5
3 3 2 7 6 1 0 5 4
4 6 7 4 5 2 3 0 1
5 7 6 5 4 3 2 1 0
6 4 5 0 1 6 7 2 3
7 5 4 1 0 7 6 3 2

Table 2.1: The integer representation of direct product (Q1 ×Q2,⊗)

There are several generalizations of this approach, as semidirect product
and quasidirect product of quasigroups. The semidirect product (Q1×Q2,⊗)

2.2. Generalized singular direct product 41

of two quasigroups (Q1, ◦) and (Q2, ·), is defined by

(a1, b1)⊗ (a2, b2) = (fb1,b2(a1 ◦ a2), b1 · b2)

where a1, a2 ∈ Q1, b1, b2 ∈ Q2 and fb1,b2 are permutations on set Q1.
Example 2. Let (Q1, ◦) and (Q2, ·) be quasigroups from previous exam-

ple. Let fb1,b2(x) = (b1 + 3b2 + x) (mod 4) be permutations on Q1. On the
Table 2.2 is given the semidirect product (Q1 ×Q2,⊗) (with a previous bi-
nary representation). This quasigroup is shapeless, but correlated and weak
restricted.

⊗ 0 1 2 3 4 5 6 7
0 2 1 4 3 6 5 0 7
1 5 2 7 4 1 6 3 0
2 4 3 0 7 2 1 6 5
3 7 4 3 0 5 2 1 6
4 0 7 6 5 4 3 2 1
5 3 0 1 6 7 4 5 2
6 6 5 2 1 0 7 4 3
7 1 6 5 2 3 0 7 4

Table 2.2: The integer representation of semidirect product (Q1 ×Q2,⊗)

A more general approach given by Bruck [8] and named by Wilson [141]
as quasidirect product of quasigroups is defined as

(a1, b1)⊗ (a2, b2) = (a1∇b1,b2a2, b1 · b2)

where (Q1,∇b1,b2) are quasigroups for all b1, b2 ∈ Q1.
Example 3. We use quasigroups (Q1, ◦) and (Q2, ·) from Example 1

again. Quasigroup operations are defined by a1∇b1,b2a2 = (−a1 + a2 − b1 +
3bj) (mod 4). The quasidirect product (Q1 × Q2,⊗) is given on the Table
2.3 (with previous binary representation). This quasigroup is correlated and
weak restricted, and it is not shapeless only because the pair (8, 8) satisfy
1.23.

2.2 Generalized singular direct product

Let (Q, ◦) be a quasigroup with a subquasigroup (S, ◦) and let (I,∇) be
an idempotent quasigroup. Furthermore let P = Q\S and (P,⊗v,w) be

42 Chapter 2. Generation of huge quasigroups

⊗ 0 1 2 3 4 5 6 7
0 0 7 2 1 4 3 6 5
1 7 4 1 6 3 0 5 2
2 6 5 0 7 2 1 4 3
3 5 2 7 4 1 6 3 0
4 4 3 6 5 0 7 2 1
5 3 0 5 2 7 4 1 6
6 2 1 4 3 6 5 0 7
7 1 6 3 0 5 2 7 4

Table 2.3: The integer representation of quasidirect product (Q1 ×Q2,⊗)

quasigroups for all ordered pairs (v, w) ∈ I × I, v 6= w. Sade [122] and
Lindner [64] define generalized singular direct product (S ∪ (P × I), ·) as:

x · y = x ◦ y

x · (r, v) = (x ◦ r, v)

(r, v) · y = (r ◦ y, v)

(r, v) · (s, v) = r ◦ s, if r ◦ s ∈ S

(r, v) · (s, v) = (r ◦ s, v), if r ◦ s ∈ P

(r, v) · (s, w) = (r ⊗v,w s, v∇w), if v 6= w

where x, y ∈ S, r, s ∈ P and v, w ∈ I. By this construction, new Steiner
quasigroups are found which are self-orthogonal. If |Q| = n, |I| = k and
|S| = m, then |S ∪ (P × I)| = k(n−m) + m.

Example 4. Let Q = {0, 1, 2, 3}, S = {0}, I = {0, 1, 2}, r ⊗v,w s =
(−r + s− i + 3j) (mod 3) + 1 and (Q, ◦) and (I,∇) be defined by

◦ 0 1 2 3
0 0 1 2 3
1 1 3 0 2
2 3 2 1 0
3 2 0 3 1

∇ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

The obtained general singular direct product (S ∪ (P × I), ·) is given on
Table 2.4. This quasigroup is non-shapeless, because it has the left identity

2.3. Prolongation 43

element 0, the proper subquasigroup (Q, ◦) and also the pair (8, 8) satisfy
1.23.

If ⊗v,w is the same operation for all v, w ∈ I, v 6= w, the operation · is
the singular direct product, and if additionally S = ∅ and ⊗v,w = ◦, we have
the usual direct product.

· 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 3 0 2 7 8 9 4 5 6
2 3 2 1 0 9 7 8 6 4 5
3 2 0 3 1 8 9 7 5 6 4
4 4 9 7 8 6 0 5 3 1 2
5 6 8 9 7 5 4 0 2 3 1
6 5 7 8 9 0 6 4 1 2 3
7 7 5 6 4 2 3 1 9 0 8
8 9 4 5 6 1 2 3 8 7 0
9 8 6 4 5 3 1 2 0 9 7

Table 2.4: The general singular direct product (S ∪ (P × I), ·)

2.3 Prolongation

One can construct a quasigroup of order n+1 from existing quasigroup (Q, ◦)
of order n, where the multiplication table of (Q, ◦) possesses a transversal.
This method is known as insertion construction or prolongation (first con-
struction is given by Bruck [9], who considered only the case of idempotent
quasigroups).

The classical construction was given by Belousov [3] and is made by
adding new element e to Q and adding additional row and column to the
Cayley table of a given quasigroup. For each cell in the transversal, the
element in the cell is moved in the new column and same row as the cell,
and also placed in the new row and same column as the cell. The empty
cells of the transversal as well as the empty cell in the right lower corner are
filled with e.

Example 5. On Table 2.6 are given quasigroup (Q, ◦) and one of its
prolongation, where Q = {0, 1, 2}.

There is another construction of prolongation of admissible quasigroups
given by Belyavskaya [5], and generally, these obtained prolongations are not

44 Chapter 2. Generation of huge quasigroups

◦ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2 3
0 0 3 2 1
1 1 2 3 0
2 3 0 1 2
3 2 1 0 3

Table 2.5: Prolongation of quasigroup (Q, ◦) by classical construction

isotopic to prolongations from the previous method. Deriyenko and Dudek
[23] gave another construction of prolongation for any quasigroups of order
n with property that their multiplication tables have partial transversals of
size n − 1, which is generalisation of the previous two constructions. The
Brualdi conjecture [19] says that each Latin square of order n has a partial
transversal of size n − 1. If this conjecture is true, then with this method,
the prolongation can be constructed from every quasigroup. Let a be the
element from partial transversal which occurs two times and let d be the
missing element. This construction is made by adding new element e to
Q and adding additional row and column to the Cayley table of a given
quasigroup. For each cell in the partial transversal except the cell with first
occurrence of a, the element in the cell is moved in new column and same
row as the cell, and also placed in new row and same column as the cell.
The empty cells of the partial transversal as well as the empty cell in the
row of the first occurrence of a and the new column, and the empty cell in
the new row and the column of the first occurrence of a, are filled with e.
The empty cell in the right lower corner is filled with d.

Example 6. On Table 2.6 is given quasigroup (Q, ◦) and one of its prolon-
gation by Deriyenko and Dudek method, where Q = {0, 1, 2, 3, 4, 5}, a = 1
and d = 4.

2.4 Diagonal method and its modifications

Sade [120] proposed the following construction which is known as diagonal
method. On (Zn, +) let θ be a permutation of the set Zn, such that φ(x) =
x− θ(x) is also a permutation. Let Q = Zn. Define an operation ◦ on Q by:

x ◦ y = θ(x− y) + y (2.1)

where x, y ∈ Q. Then (Q, ◦) is a quasigroup. (Then we say that (Q, ◦) is
derived by θ).

Quasigroups which are constructed with the diagonal method possess a
decomposition in the disjoint transversals and therefore an orthogonal mate.

2.4. Diagonal method and its modifications 45

◦ 0 1 2 3 4 5
0 0 1 5 2 4 3
1 1 2 0 3 5 4
2 5 0 4 1 3 2
3 2 3 1 4 0 5
4 4 5 3 0 2 1
5 3 4 2 5 1 0

· 0 1 2 3 4 5 6
0 0 1 5 6 4 3 2
1 1 2 6 3 5 4 0
2 6 0 4 1 3 2 5
3 2 6 1 4 0 5 3
4 4 5 3 0 2 1 6
5 3 4 2 5 6 0 1
6 5 3 0 2 1 6 4

Table 2.6: Prolongation of quasigroup (Q, ◦) by Deriyenko and Dudek
method

Also for these quasigroups, every translation σh, given by σh : x → x + h is
an automorphism. Note that if θ works for this method, than the mappings
that map x in x−θ(x), θ−1, −θ(−x), x+θ(−x), θ(x)+h and θ(x+h) for any
h also works. Kristen [97] generalized this construction method for every
group (G,+). She incorrectly named those permutations as complete map-
pings which is different with generally accepted Definition 26 for complete
mappings (Paige, Hall, Dénes, Keedwell). These permutations are complete
mappings in some special cases, when group (Zn

2 ,⊕n) is used. She uses these
complete mappings with non-affine functions represented by Cayley tables
or with affine functions represented by binary transformations for creat-
ing quasigroups. Correct definition of complete mappings follows. In some
papers this definition of complete mappings is used for defining orthomor-
phisms (Johnson et al [53], Mittenthal [102]). In Mittenthal [102] you can
find construction of such linear orthomorphisms of the group (Zn

2 ,⊕n), and
in [48] you can find construction of linear and non-linear orthomorphisms in
the finite field F2n .

Definition 26 [20] A complete mapping of a quasigroup (group) (G, +)
is a permutation φ : G → G such that the mapping θ : G → G defined by
θ(x) = x + φ(x) (θ = I + φ, where I is the identity mapping) is again a
permutation of G. The mapping θ is said to be the orthomorphism asso-
ciated to the complete mapping φ. A quasigroup (group) G is admissible
if there is a complete mapping φ : G → G.

It is very easy to generalize this method to the complete mappings and the
orthomorphisms. The following theorem is very easy to prove.

46 Chapter 2. Generation of huge quasigroups

Theorem 8 Let φ be a complete mapping of the admissible group (G,+)
and let θ be an orthomorphism associated to φ. Define an operations ◦ and
• on G by:

x ◦ y = φ(y − x) + y (2.2)

x • y = θ(x− y) + y (2.3)

where x, y ∈ G. Then (G, ◦) and (G, •) are quasigroups. 2

Question about whether or not a group G is admissible, is a subject
that has been extensively studied [111, 112, 103]. It is well-known fact
that inverse of the complete mapping (orthomorphism) is also a complete
mapping (orthomorphism) of Abelian group (G,+) [30].

With each orthomorphism θ one can associate a quasigroup (G, ◦θ) de-
fined as x ◦θ y = x + θ(y). Two orthomorphisms θ1 and θ2 are orthogonal if
they produce orthogonal quasigroups (G, ◦θ1) and (G, ◦θ2). This is fulfilled
if and only if the mapping α : x → θ1(x)− θ2(x) is a permutation of G (see
[31]). Orthogonality is a symmetric property. Mutually orthogonal ortho-
morphisms can be used to construct mutually orthogonal quasigroups (or
MOLS) from groups. One can notice that, if θ is any orthomorphism then
θ is orthogonal to I.

In the sequel, we will consider orthomorphisms (complete mappings) of
the Abelian groups (Zn

2 ,⊕n). The results of Paige [111] implies that the
groups (Zn

2 ,⊕n) are admissible. Then the equation (2.3) gets this form:

x ◦ y = θ(x⊕n y)⊕n y. (2.4)

Example 7. Let Q = Z2
2 = {0, 1, 2, 3}, where we use the integer notation

0 ≡ 〈0, 0〉, 1 ≡ 〈0, 1〉, 2 ≡ 〈1, 0〉, 3 ≡ 〈1, 1〉. Define θ : Q → Q by θ(〈x0, x1〉) =
〈x0 ⊕ x1, x0 ⊕ 1〉, where x1, x0 are bits. Table 2.7 demonstrates that both θ
and I ⊕2 θ are bijections, and the quasigroup (Q, ◦) is defined by (2.4).

x θ(x) φ(x) = x⊕2 θ(x)
〈0, 0〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈1, 1〉 〈1, 0〉
〈1, 0〉 〈1, 0〉 〈0, 0〉
〈1, 1〉 〈0, 0〉 〈1, 1〉

◦ 0 1 2 3
0 1 2 0 3
1 3 0 2 1
2 2 1 3 0
3 0 3 1 2

Table 2.7: The complete mapping (orthomorphism) θ of the group Z2
2 and

the derived quasigroup (Q, ◦)

2.4. Diagonal method and its modifications 47

The next theorem shows that if a quasigroup (Zn
2 , ◦) derives from diago-

nal method or its modifications, then all of its parastrophes can be derived
by orthomorphisms (complete mappings) too. This fact can be especially
useful for encoding and decoding purposes.

Theorem 9 Let θ : Zn
2 → Zn

2 be an orthomorphism (complete mapping)
of the group (Zn

2 ,⊕n) and let (Zn
2 , ◦) be the quasigroup, which derives from

x ◦ y = θ(x⊕n y)⊕n y. Then the following statements are true.
a) The quasigroup (Q, /) derives from the orthomorphism (complete map-

ping) δ = θ−1.
b) The quasigroup (Q, \) derives from the orthomorphism (complete map-

ping) λ = (I ⊕n θ−1)−1.
c) The quasigroup (Q, //) derives from the orthomorphism (complete

mapping) ρ = I ⊕n θ−1.
d) The quasigroup (Q, \\) derives from by the orthomorphism (complete

mapping) τ = (I ⊕n θ)−1.
e) The quasigroup (Q, ·) derives from the orthomorphism (complete map-

ping) ϕ = I ⊕n θ. 2

Proof a) x/y = z ⇔ z ◦ y = x ⇔
θ(z ⊕n y)⊕n y = x ⇔ z ⊕n y = θ−1(x⊕n y) ⇔
z = θ−1(x⊕n y)⊕n y,
and that implies x/y = δ(x⊕n y)⊕n y.

b) x\y = z ⇔ x ◦ z = y ⇔
θ(x⊕n z)⊕n z = y ⇔ x⊕n z = θ−1(y ⊕n z) ⇔
x = θ−1(y ⊕n z)⊕n z ⊕n y ⊕n y ⇔ x⊕n y = θ−1(y ⊕n z)⊕n y ⊕n z ⇔
x⊕n y = (I ⊕ θ−1)(y ⊕n z) ⇔ (I ⊕n θ−1)−1(x⊕n y) = y ⊕n z ⇔
(I ⊕n θ−1)−1(x⊕n y)⊕n y = z,
and that implies x\y = λ(x⊕n y)⊕n y.

c) x//y = z ⇔ y/x = z ⇔ z ◦ x = y ⇔
θ(z ⊕n x)⊕n x = y ⇔ z ⊕n x = θ−1(x⊕n y) ⇔
z = θ−1(x⊕n y)⊕n x⊕n y ⊕n y ⇔
z = (I ⊕n θ−1)(x⊕n y)⊕n y,
and that implies x//y = ρ(x⊕n y)⊕n y.

d) x\\y = z ⇔ y\x = z ⇔ y ◦ z = x ⇔
θ(y ⊕n z)⊕n z = x ⇔ z ⊕n y ⊕n θ(z ⊕n y) = x⊕n y ⇔
(I ⊕n θ)(z ⊕n y) = x⊕n y ⇔ z ⊕n y = (I ⊕n θ)−1(x⊕n y) ⇔
z = (I ⊕n θ)−1(x⊕n y)⊕n y,
and that implies x\\y = τ(x⊕n y)⊕n y.

e) x · y = z ⇔ y ◦ x = z ⇔
θ(y ⊕n x)⊕n x = z ⇔ θ(x⊕n y)⊕n x⊕n y ⊕n y = z ⇔

48 Chapter 2. Generation of huge quasigroups

(I ⊕n θ)(x⊕n y)⊕n y = z,
and that implies x · y = ϕ(x⊕n y)⊕n y. ¥

2.5 T-functions

A T-function (T is short for triangular) is a mapping from n bit input
to n bit output, in which the ith bit of the output can depend only on
bits 0, 1, . . . , i of the input (Klimov and Shamir [59]). This definition can be
naturally extended to functions that map several n-bit inputs to several n-bit
outputs. All the boolean operations and most of the arithmetical operations
available on modern processors are T-functions, and also their compositions
are T-functions. Circular rotations and right shifts are not T-functions.

In [58], Klimov and Shamir noted that in order to use T-function f to
define a quasigroup operation, f needs to be invertible. Also in [59], they
showed that if f is a T-function, the mappings v : x → x + 2 · f(x) mod 2n

and u : x → x + (x2 ∨ 1) mod 2n are invertible T-functions.
One way of creating a quasigroup based on a T-function is given in [97]

and quasigroups obtained by this way, have the structure such as entries in
each row and each column alternate between even and odd numbers.

Proposition 8 Let Q = Zn
2 and let f : Q×Q → Q be a T-function. Define

an operation ◦ on Q by:

x ◦ y = c + x + y + 2f(x, y) mod 2n (2.5)
2

where c ∈ Q. Then (Q, ◦) is a quasigroup. ¤

Example 8. Let Q = Z3
2 and let f : Q×Q → Q be given by

f(x, y) = 6(ex ∨ y) + y2

where addition and multiplication are computed modulo 8, e is negation, ∨
is Boolean or. Let c = 7. We define quasigroup operation (see Table 2.8) as

x ◦ y = 7 + x + y + 2(6(ex ∨ y) + y2) mod 23.

This quasigroup is non-correlated and weak restricted, and it is not
shapeless only because the pair (4, 8) satisfy 1.23. But one can see that
every row can be obtained by rotation of every other row.

2.6. Isotopies 49

◦ 0 1 2 3 4 5 6 7
0 3 2 5 4 7 6 1 0
1 4 7 6 1 0 3 2 5
2 5 4 7 6 1 0 3 2
7 6 1 0 3 2 5 4 7
4 7 6 1 0 3 2 5 4
5 0 3 2 5 4 7 6 1
6 1 0 3 2 5 4 7 6
7 2 5 4 7 6 1 0 3

Table 2.8: Quasigroup obtained by T-function

2.6 Isotopies

Isotopies are one common way of creating quasigroups, regardless the or-
der of the quasigroup. You can find nice use of isotopies for creating a
quasigroups with order 2m, where m ∈ {224, 256, 384, 512} in hash function
Edon-R [46].

For creating huge quasigroups one can use non-linear functions, which are
used in cryptography, such as the Feistel networks, the LFSRs and the pre-
vious T-functions. Kristen [97] presents several different constructions using
two Feistel networks or one Feistel network and odd permutation. She pro-
poses another way of creating odd non-linear permutation by modification
of any linear feedback shift functions obtained from irreducible polynomial.
Kristen proved also the following two propositions:

Proposition 9 Let (Q, ◦) be a quasigroup created from an abelian group
(Q,+) by

x ◦ y = f(x) + g(x)

for x, y ∈ Q, where f, g : Q → Q are bijections. Then

a ◦ c = x
a ◦ d = x + z
b ◦ c = y



 ⇒ b ◦ d = y + z (2.6)

2

Proposition 10 Let (Q, ◦) be a quasigroup created from an abelian group
(Zk

2,⊕) by
x ◦ y = f(x)⊕ g(x)

50 Chapter 2. Generation of huge quasigroups

for x, y ∈ Q, where f, g : Zk
2 → Zk

2 are bijections. Then for a, b, c, d ∈ Q

a ◦ c = b ◦ d ⇔ a ◦ d = b ◦ c (2.7)
2

There are some ”pairing” properties for quasigroup (Q, •) constructed
by affine isotopies of a group (Q,+), defined and proved in [97]. First
”pairing” property tells us that every row in multiplication table of (Q, •)
is the reversal of another row, and every column of (Q, •) is the reversal of
another column. Another ”pairing” property tells us that every element has
its ”pair” element that appears next to it in every row and every column in
the multiplication table of (Q, •).

Here, we are going to examine the use of one or two T-functions as
isotopies for generating huge quasigroups.

If we use construction v : x → x + 2 · f(x) mod 2n for invertible T-
functions for both isotopies, quasigroup operation can be defined by

x ◦ y = v(x) + u(y) = x + 2 · f(x) + y + 2 · g(y)

Then it is easy to see that if x ◦ y is even, then x ◦ (y + 1) and (x + 1) ◦ y
will be odd and vice versa.

x ◦ (y + 1) = v(x) + u(y + 1) = x + 2 · f(x) + y + 1 + 2 · g(y + 1)

(x + 1) ◦ y = v(x + 1) + u(y) = x + 1 + 2 · f(x + 1) + y + 2 · g(y)

Because 2 · f(·) and 2 · g(·) are always even, so the parity of x ◦ (y + 1) and
(x + 1) ◦ y will be different than the parity of x ◦ y.

Example 9. Let Q = Z3
2 and let quasigroup operation be addition modulo

23 = 8. Let f, g : Q → Q be two invertible T-functions given by

f(x) = x + 2((2x + 3x2) ∨ x)

g(x) = x + 2(x ∨ (3 + x2))

where addition and multiplication are computed modulo 8 and ∨ is Boolean
or. Let c = 6. We define quasigroup operation as (see Table 2.9)

x ◦ y = f(x) + g(y).

This quasigroup is correlated and weak restricted, and is not shapeless
only because the pair (4, 4) satisfy the identity 1.23. One can see that each
column in this quasigroup can be obtained by rotation of every other column.

2.7. Permutation polynomials 51

◦ 0 1 2 3 4 5 6 7
0 6 3 0 1 2 7 4 5
1 1 6 3 4 5 2 7 0
2 4 1 6 7 0 5 2 3
3 7 4 1 2 3 0 5 6
4 2 7 4 5 6 3 0 1
5 5 2 7 0 1 6 3 4
6 0 5 2 3 4 1 6 7
7 3 0 5 6 7 4 1 2

Table 2.9: Quasigroup obtained by isotopies of two T-functions

2.7 Permutation polynomials

A polynomial P (x) = a0 + a1x + . . . + adx
d is said to be a permutation

polynomial over a finite ring R if P permutes the elements of R. Rivest
[119] gives the following two Theorems, important for the constructing quasi-
groups from permutation polynomials.

Theorem 10 Let P (x) = a0 +a1x+ . . .+adx
d be a polynomial with integral

coefficients. Then P (x) is a permutation polynomial modulo n = 2w, w > 2,
if and only if a1 is odd, (a2 + a4 + a6 + . . .) is even, and (a3 + a5 + a7 + . . .)
is even. 2

Theorem 11 A bivariate polynomial P (x, y) =
∑

ij aijx
iyj represents a

latin square modulo n = 2w, w > 2, if and only if the four univariate polyno-
mials P (x, 0), P (x, 1), P (0, y), and P (1, y) are all permutation polynomials
modulo n. 2

Example 10. Here is the third-degree polynomial, representing a quasi-
group modulo n = 2w:

P (x, y) = 2x2y + 2xy2 + x + y

For w = 3 we obtain the following quasigroup, which is associative, com-
mutative, correlated and weak restricted, with unit 0 and without proper
subquasigroup.

Markovski et al [83] use polynomial functions of the set Qn = {1, 3, . . . , 2n−
1}, which is group of units on Z2n , for constructing huge n-ary quasigroups.

52 Chapter 2. Generation of huge quasigroups

◦ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 6 7 4 5 2 3 0
2 2 7 4 1 6 3 0 5
3 3 4 1 2 7 0 5 6
4 4 5 6 7 0 1 2 3
5 5 2 3 0 1 6 7 4
6 6 3 0 5 2 7 4 1
7 7 0 5 6 3 4 1 2

Table 2.10: Quasigroup obtained by permutation polynomial modulo 8

Every polynomial P (x) from the polynomial ring Z2n [x] induces a polyno-
mial function p : Z2n → Z2n by the evaluation map. Denote by Pn the set
of polynomials in Z2n [x] that induce polynomial function on Qn, denote by
PFn the set of corresponding polynomial functions on Qn, denote by PPFn

the set of permutational polynomial functions on Qn and denote by PPn

the set of polynomials inducing such functions. Markovski et al [83] give the
following propositions and theorems:

Proposition 11 Let P (x) = a0+a1x+. . .+adx
d be a polynomial in Z2n [x].

Then P (x) is in Pn if and only if the sum of the coefficients a0+a1+ · · ·+ad

is odd. 2

Proposition 12 Let P (x) = a0 + a1x + . . . + adx
d be a polynomial in Pn.

Then P (x) is in PPn if and only if the sum of the odd indexed coefficients
a1 + a3 + a5 . . . is an odd number. 2

Theorem 12 Let p1, p2, . . . pk be permutations in PPFn. Define a k-ary
operation f on Qn by

f(a1, a2, . . . , ak) = p1(a1)p2(a2) . . . pk(ak) (mod 2n) (2.8)

Then the k-groupoid (Qn, f) is a k-ary quasigroup. 2

Theorem 13 Let p1, p2, . . . pk be permutations in PPFn. Define a k-ary
operation f on Z2n by

f(a1, a2, . . . , ak) = p̂1(a1) + p̂2(a2) + . . . + p̂k(ak) (mod 2n) (2.9)

2.7. Permutation polynomials 53

where

p̂i(a) =
{

pi(x), x ∈ Qn

pi(x + 1)− 1, x ∈ Z2n\Qn
(2.10)

Then the k-groupoid (Qn, f) is a k-ary quasigroup. 2

Theorem 14 Let p1, p2, . . . pk and h1, h2, . . . hk be permutations in PPFn.
Define a k-ary operation f on Z2n by

f(a1, a2, . . . , ak) = fp1,h1(a1)+fp2,h2(a2)+ . . .+fpk,hk
(ak) (mod 2n) (2.11)

where

fpi,hi(a) =
{

p(x), x ∈ Qn

hi(x + 1)− 1, x ∈ Z2n\Qn
(2.12)

Then the k-groupoid (Qn, f) is a k-ary quasigroup. 2

Example 11. Let p1(x) = x + 4x2 + 12x3 and p2(x) = 11 + x + 3x2 be
permutations in PPF4. Quasigroup defined by

f(x, y) = p1(x)p2(y) (mod 24)

and given on Table 2.11 is correlated and weak restricted, and not shapeless
only because the pair (8, 4) satisfy the identity 1.23.

f(x, y) 1 3 5 7 9 11 13 15
1 15 9 11 5 7 1 3 13
3 5 3 9 7 13 11 1 15
5 11 13 7 9 3 5 15 1
7 1 7 5 11 9 15 13 3
9 7 1 3 13 15 9 11 5
11 13 11 1 15 5 3 9 7
13 3 5 15 1 11 13 7 9
15 9 15 13 3 1 7 5 11

Table 2.11: Quasigroup obtained by Theorem 12

Quasigroup defined by

f(x, y) = p̂1(x) + p̂2(y) (mod 24)

and given on Table 2.12 is correlated and weak restricted, not shapeless
quasigroup with the pair (16, 16) satisfy the identity 1.23.

54 Chapter 2. Generation of huge quasigroups

f 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 15 8 9 10 11 4 5 6 7 0 1 2 3 12 13
1 15 0 9 10 11 12 5 6 7 8 1 2 3 4 13 14
2 8 9 2 3 4 5 14 15 0 1 10 11 12 13 6 7
3 9 10 3 4 5 6 15 0 1 2 11 12 13 14 7 8
4 2 3 12 13 14 15 8 9 10 11 4 5 6 7 0 1
5 3 4 13 14 15 0 9 10 11 12 5 6 7 8 1 2
6 12 13 6 7 8 9 2 3 4 5 14 15 0 1 10 11
7 13 14 7 8 9 10 3 4 5 6 15 0 1 2 11 12
8 6 7 0 1 2 3 12 13 14 15 8 9 10 11 4 5
9 7 8 1 2 3 4 13 14 15 0 9 10 11 12 5 6
10 0 1 10 11 12 13 6 7 8 9 2 3 4 5 14 15
11 1 2 11 12 13 14 7 8 9 10 3 4 5 6 15 0
1210 11 4 5 6 7 0 1 2 3 12 13 14 15 8 9
1311 12 5 6 7 8 1 2 3 4 13 14 15 0 9 10
14 4 5 14 15 0 1 10 11 12 13 6 7 8 9 2 3
15 5 6 15 0 1 2 11 12 13 14 7 8 9 10 3 4

Table 2.12: Quasigroup obtained by Theorem 13

It is easy to see that for quasigroup operation defined with Theorem 13
if f(a1, a2, . . . , ak) is even, then f(a1+1, a2, . . . , ak), . . . , f(a1, a2, . . . , ak +1)
are odd and vise versa. The last values differ from f(a1, a2, . . . , ak) in only
one component p̂i(ai) and p̂i(ai + 1) which have different parity.

2.8 Quasigroups over Abelian groups

One way of constructing quasigroups is the method given by Nosov et
al. [108], for construction of the parametric families of quasigroups (Latin
squares) over the Abelian groups (this is general case, Nosov in [107] use
similar method for constructing quasigroups over a set of Boolean n-tuples).

Let (G, +) be a finite Abelian group and Q = Gn be a direct product of
n groups G. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be elements of

2.8. Quasigroups over Abelian groups 55

H. Define the x ◦ y = (z1, z2, . . . , zn) by the formulas

z1 = x1 + y1 + f1(p1(x1, y1), . . . , pn(xn, yn))
z2 = x2 + y2 + f2(p1(x1, y1), . . . , pn(xn, yn))
...
zn = xn + yn + fn(p1(x1, y1), . . . , pn(xn, yn))

(2.13)

where p1, p2, . . . , pn are functions G2 → G and f1, f2, . . . , fn are functions
Gn → G.

The functions f1, f2, . . . , fn of variables p1, p2, . . . , pn form a proper fam-
ily if, for any distinct n-tuples p′ = (p′1, p

′
2, . . . , p

′
n) and p′′ = (p′′1, p

′′
2, . . . , p

′′
n),

there is an index α, 1 6 α 6 n, such as p′α 6= p′α, while fα(p′) = fα(p′′). Even
for small dimensions, the number of proper families (up to permutation of
indices) is unknown. In [108] are given some examinations of properness
and some examples of proper families and the most important thing is that
the following Theorem is proved.

Theorem 15 Let (G, +) be a finite Abelian group and Q = Gn be a direct
product of n groups G. Operation ◦ defined by formulas 2.13 is quasigroup
operation on the set Q for any functions p1, p2, . . . , pn if and only if the
family of functions (f1, f2, . . . , fn) is proper. 2

Example 12. Take f1 = const, f2 = f2(p1), f3 = f3(p1, p2), . . . , fn =
fn(p1, p2, . . . , pn−1). Then these functions, being considered as functions of
n variables p1, p2, . . . , pn, form a proper family. Such families of functions
are called triangular families. Let we use finite Abelian group (Z2,⊕), then
Q = Zn

2 . Let pi(xi, yi) = xi ∧ yi for 1 6 i 6 n. Let f1 = 1 and fi =
p1(x1, y1) ⊕ . . . ⊕ pi−1(xi−1, yi−1) for 2 6 i 6 n. Because defined family
(f1, f2, . . . , fn) is proper, operation ◦ defined by 2.14 is quasigroup operation.

z1 = x1 ⊕ y1 ⊕ 1
z2 = x2 ⊕ y2 ⊕ (x1 ∧ y1)
z3 = x3 ⊕ y3 ⊕ (x1 ∧ y1)⊕ (x2 ∧ y2)
...
zn = xn ⊕ yn ⊕ (x1 ∧ y1)⊕ (x2 ∧ y2)⊕ . . .⊕ (xn−1 ∧ yn−1)

(2.14)

For n = 3, quasigroup (Q, ◦) is given on Table 2.13 and is non-correlated
and weak restricted, commutative, with the pair (4, 4) satisfy the identity
1.23.

56 Chapter 2. Generation of huge quasigroups

◦ 0 1 2 3 4 5 6 7
0 4 5 6 7 0 1 2 3
1 5 4 7 6 1 0 3 2
2 6 7 5 4 2 3 1 0
3 7 6 4 5 3 2 0 1
4 0 1 2 3 7 6 5 4
5 1 0 3 2 6 7 4 5
6 2 3 1 0 5 4 6 7
7 3 2 0 1 4 5 7 6

Table 2.13: The integer representation of (Q, ◦)

2.9 Permutations in the set of Z∗p

Marnas et al [90] proposed a new way for generating a quasigroups of order
p− 1 where p is a prime, by knowing only the first row in the multiplication
table of the quasigroup, which is permutation in the set of Z∗p = Zp\{0}.
Let the first row is (a1, . . . , an). The quasigroup operation ◦ is defined as
i ◦ j = i · aj mod p, for i 6= 1, where · is multiplication modulo p.

Example 13. Let p = 7, Q = {1, 2, . . . , 7} and let first row of (Q, ◦)
is (2, 4, 1, 5, 3, 6). (Q, ◦) is given by following Table 2.14 and it has right
identity 3.

◦ 1 2 3 4 5 6
1 2 4 1 5 3 6
2 4(= 2 ∗ 2 mod 7) 1(= 2 ∗ 4 mod 7) 2 3 6 5
3 6(= 3 ∗ 2 mod 7) 5(= 3 ∗ 4 mod 7) 3 1 2 4
4 1(= 4 ∗ 2 mod 7) 2(= 4 ∗ 4 mod 7) 4 6 5 3
5 3(= 5 ∗ 2 mod 7) 6(= 5 ∗ 4 mod 7) 5 4 1 2
6 5(= 6 ∗ 2 mod 7) 3(= 6 ∗ 4 mod 7) 6 2 4 1

Table 2.14: The integer representation of (Q, ◦)

Quasigroups generated in this way, have some structure, which can be
presented with following proposition.

Proposition 13 Let (a1, . . . , an) be a permutation in the set Q = Z∗p and

let ◦ is quasigroup operation defined by i◦ j =
{

aj , i = 1
i · aj mod p, i 6= 1

. Then

(Q, ◦) has right unit. 2

2.10. Extended Feistel networks as orthomorphisms 57

Proof Because (a1, . . . , an) is permutation, ak = 1, for some k. Because of
the way how quasigroup is defined, k-th column in the multiplication table
of (Q, ◦) will be the same as the main column, so, k is the right unit. ¥

2.10 Extended Feistel networks as orthomorphisms

Generally, a group with affine complete mapping or orthomorphism does not
produce quasigroup that satisfies the needs of the cryptography. Non-affine
orthomorphisms and complete mappings are more promising. It is very easy
to create a table-driven non-affine orthomorphism or complete mappings as
long as we don’t care about the order of the quasigroup. Considering huge
quasigroups, it is not practically possible to store table-driven bijections. It
is much more difficult to create a non-affine bijection that is not table-driven
and, additionally, that is an orthomorphism or complete mapping. One way
of constructing orthomorphisms of the group (Zn

2 ,⊕n) is given by Mittenthal
[102]. In the paper [87], by using extended Feistel network, we create a huge
non-affine complete mappings in the Kirsten sense, from a small table-driven
non-affine bijections, but here we will create orthomorphisms in the sense of
Definition 26. In the group (Zn

2 ,⊕n) they are exactly the same.

Definition 27 Let (G,+) be an Abelian group, let f : G → G be a mapping
and let a, b, c ∈ G are constants. The extended Feistel network Fa,b,c :
G2 → G2 created by f is defined for every l, r ∈ G by

Fa,b,c(l, r) = (r + a, l + b + f(r + c)).

Figure 2: Extended Feistel network Fa,b,c

58 Chapter 2. Generation of huge quasigroups

The extended Feistel network Fa,b,c is a bijection with inverse

F−1
a,b,c(l, r) = (r − b− f(l + c− a), l − a).

A Feistel network can be obtained from an extended Feistel network if we
take constants a = b = c = 0.

One of the main results of the paper, that we will frequently use, is the
following one.

Theorem 16 Let (G,+) be an Abelian group and a, b, c ∈ G. If Fa,b,c :
G2 → G2 is an extended Feistel network created by a bijection f : G → G,
then Fa,b,c is an orthomorphism of the group (G2,+). 2

Proof Let Φ = Fa,b,c − I, i.e.,

Φ(l, r) = F (l, r)− (l, r) = (r − l + a, l − r + b + f(r + c))

for every l, r ∈ G. Define the function Ω : G2 → G2 by

Ω(l, r) = (f−1(l + r − a− b)− l + a− c, f−1(l + r − a− b)− c).

We have Ω ◦ Φ = Φ ◦ Ω = I, i.e., Φ and Ω = Φ−1 are bijections. ¥

In the sequel we will consider only extended Feistel networks of the
Abelian groups (Zn

2 ,⊕n). One can notice that for those groups, every or-
thomorphism is complete mapping and vice versa.

Proposition 14 Let a, b, c ∈ Zk
2 and let Fa,b,c : Z2k

2 → Z2k
2 be an extended

Feistel network of the group (Z2k
2 ,⊕2k) created by a mapping f : Zk

2 → Zk
2.

Then Fa,b,c is affine iff f is affine. 2

Proof Let l1, l2, r1, r2 ∈ Zk
2 and let f be affine. Then, since f(r1 ⊕k r2 ⊕k

c) = f(r1 ⊕k c)⊕k f(r2 ⊕k c)⊕k f(c), we have that Fa,b,c is affine as well:
Fa,b,c((l1, r1)⊕2k (l2, r2))
= ((r1 ⊕k r2 ⊕k a), (l1 ⊕k l2 ⊕k b⊕k f(r1 ⊕k r2 ⊕k c)))
= [(r1 ⊕k a), (l1 ⊕k b ⊕k f(r1 ⊕k c))] ⊕2k [(r2 ⊕k a), (l2 ⊕k b ⊕k f(r2 ⊕k

c))]⊕2k [(0⊕k a), (0⊕k b⊕k f(0⊕k c))]
= Fa,b,c(l1, r1)⊕2k Fa,b,c(l2, r2)⊕2k Fa,b,c(0, 0),
Let now Fa,b,c be an affine function. Then we have
Fa,b,c((l1, r1)⊕2k (l2, r2)) = Fa,b,c(l1, r1)⊕2k Fa,b,c(l2, r2)⊕2k Fa,b,c(0, 0)

and that implies
f(r1 ⊕k r2 ⊕k c) = f(r1)⊕k f(r2)⊕k f(c)

2.10. Extended Feistel networks as orthomorphisms 59

for each r1, r2 ∈ Zk
2. We infer from the last equality that f is affine too:

f(r1 ⊕k r2) = f(r1 ⊕k (r2 ⊕k c)⊕k c) = f(r1)⊕k f(r2 ⊕k c)⊕k f(c) =
f(r1)⊕k f(0⊕k r2 ⊕k c)⊕k f(c) = f(r1)⊕k f(0)⊕k f(r2)⊕k f(c)⊕k f(c) =
f(r1)⊕k f(r2)⊕k f(0). ¥

So, if as orthomorphism a non-affine extended Feistel network Fa,b,c cre-
ated by f is needed, it is enough to take f to be a non-affine bijection.

Proposition 15 Let f, g : Zk
2 → Zk

2 be bijections, a, b, c, a′, b′, c′ ∈ Zk
2 and

let Fa,b,c, Fa′,b′,c′ : Z2k
2 → Z2k

2 be extended Feistel networks of the group
(Z2k

2 ,⊕2k), created by f and g respectfully. Then the composite function
Fa,b,c ◦ Fa′,b′,c′ is a complete mapping and orthomorphism on Z2k

2 too. 2

Proof Let Φ = I ⊕2k Fa,b,c ◦ Fa′,b′,c′ . Then, for every l, r ∈ Zk
2, we have

Φ(l, r) = ((g(r ⊕k c′)⊕k a⊕k b′), (a′ ⊕k b⊕k f(l ⊕k b′ ⊕k g(r ⊕k c′)⊕k c))).

Define the function Ω : Z2k
2 → Z2k

2 by

Ω(l, r) = ((f−1(r ⊕k a′ ⊕k b)⊕k l ⊕k a⊕k c), (g−1(l ⊕k a⊕k b′)⊕k c′)).

It can be checked that Ω◦Φ = Φ◦Ω = I, i.e., Φ and Ω = Φ−1 are bijections.¥

Corollary 3 If Fa,b,c is an extended Feistel network of the group (Z2k
2 ,⊕2k)

created by bijection f , then F 2
a,b,c is a complete mapping and orthomorphism

too. ¤

In general, if θ is a orthomorphism on a group G, θ2 may not be an
orthomorphism on G, as Example 2 shows.

Example 14. We have in Table 2.15 an orthomorphism θ(x) on (Z4
2,⊕4)

(given in integer representation) such that θ2(x) is not an orthomorphism,
as it is shown in Table 2.16.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ(x) 12 6 3 14 2 13 5 9 8 11 15 1 7 4 10 0

x⊕4 θ(x) 12 7 1 13 6 8 3 14 0 2 5 10 11 9 4 15

Table 2.15: Integer representation of an orthomorphism θ(x)

Example 15. In Table 2.17 we have an example of an extended Feistel
network F = F0,0,0 that is an orthomorphism created by a bijection f such

60 Chapter 2. Generation of huge quasigroups

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ2(x) 7 5 14 10 3 4 13 11 8 1 0 6 9 2 15 12

x⊕4 θ2(x) 7 4 12 9 7 1 11 12 0 8 10 13 5 15 1 3

Table 2.16: Integer representation of a non-orthomorphism θ2(x)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(x) 3 2 1 0

F (x) 3 6 9 12 2 7 8 13 1 4 11 14 0 5 10 15

x⊕4 F (x) 3 7 11 15 6 2 14 10 9 13 1 5 12 8 4 0

Table 2.17: Integer representation of an extended Feistel network F (x)

as F 3 is not an orthomorphism. Namely, F 3 is the identical mapping, so
I ⊕4 F 3 = I ⊕4 I is the constant zero mapping, that maps each x ∈ Z4

2 into
0.

Theorem 17 Let f : Zk
2 → Zk

2 be a bijection of algebraic degree deg(f) >
1 and let Fa,b,c : Z2k

2 → Z2k
2 be an extended Feistel network of the group

(Z2k
2 ,⊕2k), created by f . Then deg(Fa,b,c) = deg(f). 2

Proof Let (a1, . . . , ak), (b1, . . . , bk) and (c1, . . . , ck) be the binary repre-
sentations of the constants a, b, c ∈ Zk

2. The mappings f : Zk
2 → Zk

2

and Fa,b,c : Z2k
2 → Z2k

2 are v.v.b.f. and so there are Boolean polynomi-
als q1, q2, . . . , qk and p1, p2, . . . , p2k such that

f(x1, . . . , xk) = (q1(x1, . . . , xk), q2(x1, . . . , xk), . . . , qk(x1, . . . , xk)),

Fa,b,c(x1, . . . , x2k) = (p1(x1, . . . , x2k), p2(x1, . . . , x2k), . . . , p2k(x1, . . . , x2k)).

Let deg(f) = max{deg(qi) | i ∈ {1, 2, . . . , k}} > 1. Then there is a t ∈
{1, 2, . . . , k} such that deg(f) = deg(qt).

We have Fa,b,c(x1, . . . , x2k) = (xk+1⊕a1, . . . , x2k⊕ak, x1⊕b1⊕q1(xk+1⊕
c1, . . . , x2k⊕ ck), . . . , xk⊕ bk⊕ qk(xk+1⊕ c1, . . . , x2k⊕ ck)). This implies that
pi(x1, . . . , x2k) = xi+k ⊕ ai and pi+k(x1, . . . , x2k) = xi ⊕ bi ⊕ qi(xk+1 ⊕
c1, . . . , x2k ⊕ ck) for each i ∈ {1, 2, . . . , k}. Then, for each i ∈ {1, 2, . . . , k},
deg(pi) = 1 and

deg(pi+k) =
{

0, when qi(xk+1 ⊕ c1, . . . , x2k ⊕ ck) = xi ⊕ bi for each i
deg(qi), otherwise.

(2.15)
So, deg(Fa,b,c) = deg(f). ¥

2.10. Extended Feistel networks as orthomorphisms 61

Example 16. A bijection f : Z4
2 → Z4

2 of deg(f) = 3 is given in Table 2.18.
The representation of f as v.v.b.f. is f(x1, x2, x3, x4) = (q1, q2, q3, q4), where

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(x) 1 12 15 6 4 9 3 2 10 8 13 11 14 5 7 0

Table 2.18: A bijection f of deg(f) = 3

q1(x1, x2, x3, x4) = x1 +x3 +x4 +x1x3 +x1x4 +x2x3 +x1x2x4 +x2x3x4,
q2(x1, x2, x3, x4) = x2 + x3 + x4 + x1x4 + x3x4 + x1x2x3,
q3(x1, x2, x3, x4) = x1 + x3 + x1x4 + x1x2x3,
q4(x1, x2, x3, x4) = 1 + x1 + x2 + x4 + x1x2 + x1x3 + x1x4 + x2x3 + x1x2x3 +
x1x2x4.

The Theorem 17 implies that we can make non-affine orthomorphisms
Fa,b,c of different non-linearity. Namely, it is enough to choose a non-affine
bijection f of desired degree. An effective construction of bijection f of
predefined higher degree is an open problem. Note that the maximum degree
of a mapping f : Zk

2 → Zk
2 is less or equal than k.

The orthomorphism Fa,b,c has the property that the first k polynomials
are of degree 1. On the other side, the orthomorphism F 2

a,b,c is with better
performances, since F 2

a,b,c(x1, . . . , x2k) = (A,B), where
A = (x1⊕b1⊕q1(xk+1⊕c1, . . . , x2k⊕ck), . . . , xk⊕bk⊕qk(xk+1⊕c1, . . . , x2k⊕
ck)),
B = (xk+1 ⊕ a1 ⊕ q1(x1 ⊕ b1 ⊕ q1(xk+1 ⊕ c1, . . . , x2k ⊕ ck), . . . , xk ⊕ bk ⊕
qk(xk+1⊕c1, . . . , x2k⊕ck)), . . . , x2k⊕ak⊕qk(x1⊕b1⊕q1(xk+1⊕c1, . . . , x2k⊕
ck), . . . , xk ⊕ bk ⊕ qk(xk+1 ⊕ c1, . . . , x2k ⊕ ck)).

Theorem 18 Let f : Zk
2 → Zk

2 be bijection, and let FA,B,C : Z2k
2 → Z2k

2

be an extended Feistel network of the group (Z2k
2 ,⊕2k), created by f . For

0, x ∈ Zk
2 we have Rp(a′ a FA,B,C ` b′) = 1 if and only if a′ = (x, 0) and

b′ = (0, x). 2

Proof Let b′ = (b′1, b
′
2), a′ = (a′1, a

′
2), where b′1, b

′
2, a

′
1, a

′
2 ∈ Zk

2.
Rp(a′ a FA,B,C ` b′) = 1 ⇔
2−2k

∑
a δ(b′ ⊕2k FA,B,C(a⊕2k a′)⊕2k FA,B,C(a)) = 1 ⇔∑

a δ(b′ ⊕2k FA,B,C(a⊕2k a′)⊕2k FA,B,C(a)) = 22k ⇔
δ(b′ ⊕2k FA,B,C(a⊕2k a′)⊕2k FA,B,C(a)) = 1 (∀a ∈ Z2k

2) ⇔
b′ ⊕2k FA,B,C(a⊕2k a′)⊕2k FA,B,C(a) = 0 (∀a ∈ Z2k

2) ⇔
(b′1, b

′
2) ⊕2k FA,B,C((a1, a2) ⊕2k (a′1, a

′
2)) ⊕2k FA,B,C(a1, a2) = 0 (∀(a1, a2) ∈

Z2k
2) ⇔

62 Chapter 2. Generation of huge quasigroups

(b′1, b
′
2) ⊕2k FA,B,C(a1 ⊕k a′1, a2 ⊕k a′2) ⊕2k FA,B,C(a1, a2) = 0 (∀(a1, a2) ∈

Z2k
2) ⇔ b′1⊕k a2⊕k a′2⊕k A⊕k a2⊕k A = 0∧ b′2⊕k a1⊕k a′1⊕k B⊕k f(a′2⊕k

a2 ⊕k C)⊕k a1 ⊕k B ⊕k f(a2 ⊕k C) = 0 (∀a1, a2 ∈ Zk
2) ⇔

b′1 = a′2 ∧ b′2 ⊕k a′1 = f(a′2 ⊕k a2 ⊕k C) ⊕k f(a2 ⊕k C) (∀a2 ∈ Zk
2) ⇔ (f is

bijection) b′1 = a′2 = 0 and b′2 = a′1. ¥

Corollary 4 The prop ratio table of an extended Feistel network Fa,b,c :
Z2k

2 → Z2k
2 of the group (Z2k

2 ,⊕2k), created by the bijection f : Zk
2 → Zk

2 on
the group has exactly 2k+1 ones. 2

From the definition of the extended Feistel networks we have that at
least first k component 2k-ary Boolean functions are linear functions, so
their correlation matrices have at least k values 1 or −1.

Theorem 19 Let f : Zk
2 → Zk

2 be bijection, and let FA,B,C : Z2k
2 → Z2k

2 be
an extended Feistel network of the group (Z2k

2 ,⊕2k), created by f . Rp(a′ a
F 2

A,B,C ` b′) = 1 if and only if a′ = b′ = (0, 0). 2

Proof Let b′ = (b′1, b
′
2), a′ = (a′1, a

′
2), where b′1, b

′
2, a

′
1, a

′
2 ∈ Zk

2.
Rp(a′ a F 2

A,B,C ` b′) = 1 ⇔
2−2k

∑
a δ(b′ ⊕2k F 2

A,B,C(a⊕2k a′)⊕2k F 2
A,B,C(a)) = 1 ⇔∑

a δ(b′ ⊕2k F 2
A,B,C(a⊕2k a′)⊕2k F 2

A,B,C(a)) = 22k ⇔
δ(b′ ⊕2k F 2

A,B,C(a⊕2k a′)⊕2k F 2
A,B,C(a)) = 1 (∀a ∈ Z2k

2) ⇔
b′ ⊕2k F 2

A,B,C(a⊕2k a′)⊕2k F 2
A,B,C(a) = 0 (∀a ∈ Z2k

2) ⇔
(b′1, b

′
2) ⊕2k F 2

A,B,C((a1, a2) ⊕2k (a′1, a
′
2)) ⊕2k F 2

A,B,C(a1, a2) = 0 (∀(a1, a2) ∈
Z2k

2) ⇔ (b′1, b
′
2)⊕2kF

2
A,B,C(a1⊕ka

′
1, a2⊕ka

′
2)⊕2kF

2
A,B,C(a1, a2) = 0 (∀(a1, a2) ∈

Z2k
2) ⇔

b′1⊕k a1⊕k a′1⊕k A⊕k B⊕k f(a′2⊕k a2⊕k C)⊕k a1⊕k A⊕k B⊕k f(a2⊕k C) =
0∧ b′2⊕k a2⊕k a′2⊕k A⊕k B⊕k f(a1⊕k a′1⊕k B⊕k C⊕k f(a2⊕k a′2⊕k C))⊕k

a2 ⊕k A⊕k B ⊕k f(a1 ⊕k B ⊕k C ⊕k f(a2 ⊕k C)) = 0 (∀a1, a2 ∈ Zk
2) ⇔

b′1 ⊕k a′1 = f(a′2 ⊕k a2 ⊕k C)⊕k f(a2 ⊕k C) ∧
b′2⊕k a′2 = f(a1⊕k a′1⊕k B⊕k C ⊕k f(a2⊕k a′2⊕k C))⊕k f(a1⊕k B⊕k C ⊕k

f(a2 ⊕k C)) (∀a1, a2 ∈ Zk
2) ⇔

From first equality, because f is bijection, we have a′2 = 0 and b′1 = a′1.
For second equality we have
b′2 = f(a1 ⊕k a′1 ⊕k B ⊕k C ⊕k f(a2 ⊕k C)) ⊕k f(a1 ⊕k B ⊕k C ⊕k f(a2 ⊕k

C)) (∀a1, a2 ∈ Zk
2) and again because f is bijection, we have a′1 = 0 and

b′2 = 0. ¥

2.10. Extended Feistel networks as orthomorphisms 63

2.10.1 Orthogonal extended Feistel networks

The following propositions shows that the given extended Feistel network
Fa,b,c has at least two orthogonal orthomorphisms, its inverse F−1

a,b,c and
F 2

a,b,c. In general, F−1
a,b,c and F 2

a,b,c are not orthogonal.

Proposition 16 Let Fa,b,c : G2 → G2 be an extended Feistel network of
Abelian group (G2, +) created by a bijection f : G → G. Fa,b,c and F−1

a,b,c are
orthogonal orthomorphisms. 2

Proof Let conditions of the theorem be fulfilled. Let Φ = Fa,b,c − F−1
a,b,c.

Then, for every l, r ∈ G, we have

Φ(l, r) = (a + b + f(l + c− a), a + b + f(r + c)).

Define the function Ω : G2 → G2 by

Ω(l, r) = (f−1(l − a− b)− c + a, f−1(r − a− b)− c).

It can be checked that Ω◦Φ = Φ◦Ω = I, i.e., Φ and Ω = Φ−1 are bijections.¥

Proposition 17 Let Fa,b,c : G2 → G2 be an extended Feistel network of
Abelian group (G2, +) created by a bijection f : G → G. Fa,b,c and F 2

a,b,c are
orthogonal orthomorphisms. 2

Proof Let conditions of the theorem be fulfilled. Let Φ = F 2
a,b,c − Fa,b,c.

Then, for every l, r ∈ G, we have

Φ(l, r) = (l− r + b + f(r + c), r− l + a + f(l + b + c + f(r + c))− f(r + c)).

Define the function Ω : G2 → G2 by

Ω(l, r) = (−f(f−1(l+r−a−b)−l)+f−1(l+r−a−b)−b−c, f−1(l+r−a−b)−l−c).

It can be checked that Ω◦Φ = Φ◦Ω = I, i.e., Φ and Ω = Φ−1 are bijections.¥

Example 17. Let the group is (Z2
2,⊕2). This is an example of extended

Feistel network F = F1,2,3 : Z4
2 → Z4

2, created by the bijection f : Z2
2 → Z2

2

with two orthogonal mates, which are not orthogonal between themselves.

64 Chapter 2. Generation of huge quasigroups

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F (x) 5 0 14 11 4 1 15 10 7 2 12 9 6 3 13 8

F−1(x) 1 5 9 13 4 0 12 8 15 11 7 3 10 14 2 6
F (x)⊕4 F−1(x) 4 5 7 6 0 1 3 2 8 9 11 10 12 13 15 14

F 2(x) 1 5 13 9 4 0 8 12 10 14 6 2 15 11 3 7
F (x)⊕4 F 2(x) 4 5 3 2 0 1 7 6 13 12 10 11 9 8 14 15

F−1(x)⊕4 F 2(x) 0 0 4 4 0 0 4 4 5 5 1 1 5 5 1 1

Table 2.19: F = F1,2,3 : Z4
2 → Z4

2, F−1(x) and F 2(x)

2.10.2 Huge quasigroups generated by a chain of extended
Feistel networks

Recall that an extended Feistel network Fa,b,c (a, b, c ∈ Z2
s) created by a bi-

jection f : Z2
s → Z2

s is an orthomorphism, so Fa,b,c is a bijection on Z2
2s as

well. Define F
(1)

a(1),b(1),c(1)
= Fa,b,c and let F (n)

a(n),b(n),c(n) , n > 1, be defined.

Then, for some a(n+1), b(n+1), c(n+1) ∈ Z2
s2n+1

, define F
(n+1)

a(n+1),b(n+1),c(n+1) to

be the extended Feistel network created by the bijection F
(n)

a(n),b(n),c(n) . Note

that F
(n)

a(n),b(n),c(n) is an orthomorphism of the group Z2
s2n

for each n > 1,

hence we have defined inductively a chain of orthomorphisms {F (n)

a(n),b(n),c(n) | n =
1, 2, 3, . . . } in the corresponding groups. Now, by using (1), one can define
a quasigroup of order 2s2n

on the set Z2
s2n

for each n > 1.
In applications one needs effectively constructed quasigroups of order

2256, 2512, 21024, A huge quasigroup of order 22k
can now be designed

as it follows. Take a suitable non-affine bijection of desired algebraic degree
f : Z2

2t → Z2
2t

, where t < k is a small positive integer (t = 2, 3, 4).
Choose suitable constants a(i), b(i), c(i) ∈ Z2

2t+i
, 1 6 i 6 k−t, and construct

iteratively the orthomorphisms F = F
(k−t)

a(k−t),b(k−t),c(k−t) : Z2
2k → Z2

2k
. Define

a quasigroup operation ◦ on the set Z2
2k

by (1), i.e.,

x ◦ y = F (x⊕ y)⊕ y, for every x, y ∈ Z2
2k

.

Note that we need only k− t iterations for getting F and a small amount of
memory for storing the bijection f . Hence, the complexity of our algorithm
for construction of quasigroups of order 22k

is O(log(logk)).

Example 17. As starting bijection we can use the bijection f : Z4
2 → Z4

2

from Example 16. So, t = 2. We choose constants (a(i), b(i), c(i)) = (i, 0, 0) ∈

2.10. Extended Feistel networks as orthomorphisms 65

Z2
2t+i

, i = 1, 2, . . . , 7. Now we can construct the following orthomorphisms,
where li, ri ∈ Zi

2, i = 4, 8, 16, . . . :
F

(1)
1,0,0 : Z8

2 → Z8
2 as F

(1)
1,0,0(l4, r4) = ((r4 ⊕4 1), (l4 ⊕4 f(r4))),

F
(2)
2,0,0 : Z16

2 → Z16
2 as F

(2)
2,0,0(l8, r8) = ((r8 ⊕8 2), (l8 ⊕8 F

(1)
1,0,0(r8))),

F
(3)
3,0,0 : Z32

2 → Z32
2 as F

(3)
3,0,0(l16, r16) = ((r16 ⊕16 3), (l16 ⊕16 F

(2)
2,0,0(r16))),

F
(4)
4,0,0 : Z64

2 → Z64
2 as F

(4)
4,0,0(l32, r32) = ((r32 ⊕32 4), (l32 ⊕32 F

(3)
3,0,0(r32))),

F
(5)
5,0,0 : Z128

2 → Z128
2 as F

(5)
5,0,0(l64, r64) = ((r64 ⊕64 5), (l64 ⊕64 F

(4)
4,0,0(r64))),

F
(6)
6,0,0 : Z256

2 → Z256
2 as F

(6)
6,0,0(l128, r128) = ((r128⊕1286), (l128⊕128F

(5)
5,0,0(r128))),

F
(7)
7,0,0 : Z512

2 → Z512
2 as F

(7)
7,0,0(l256, r256) = ((r256⊕2567), (l256⊕256F

(6)
6,0,0(r256))).

So we need 7 = 9− 2 iterations for getting F
(7)
7,0,0 : Z512

2 → Z512
2 .

Further on in this section we consider the algebraic properties of the
quasigroups obtained by the above mentioned algorithm. For that aim we
take a somewhat simplified situation when f : Zk

2 → Zk
2 is a bijection and

Fa,b,c : Z2k
2 → Z2k

2 is an extended Feistel network created by f . We denote
by (Q, ◦) the quasigroup on the set Q = Z2k

2 derived by the orthomorphism
Fa,b,c.

Proposition 18 The quasigroup (Q, ◦) is non-idempotent iff f(c) 6= b or
a 6= 0. 2

Proof Let (Q, ◦) be idempotent. Then for all x ∈ Q we have

x ◦ x = x ⇐⇒ Fa,b,c(x⊕2k x)⊕2k x = x ⇐⇒ Fa,b,c(0, 0) = (0, 0) ⇐⇒
Fa,b,c(a, b⊕k f(c)) = (0, 0) ⇐⇒ a = 0 ∧ f(c) = b.

Proposition 19 The quasigroup (Q, ◦) has neither left nor right unit. 2

Proof Let e be the right unit of (Q, ◦). Then, for all x ∈ Q, we have

x ◦ e = x =⇒ Fa,b,c(x⊕2k e)⊕2k e = x =⇒ Fa,b,c(x⊕2k e) = x⊕2k e.

This means that Fa,b,c = I is the identity mapping. We have now, for every
l, r ∈ Q, that (r ⊕k a, l ⊕k b ⊕k f(r ⊕k c)) = (l, r) and this implies that
f(r ⊕k c) = a ⊕k b for each r. The last equality contradicts the bijectivity
of f .

Let e be the left unit of (Q, ◦). Then, for all x ∈ Q, we have

e ◦ x = x =⇒ Fa,b,c(e⊕2k x)⊕2k x = x =⇒ Fa,b,c(e⊕2k x) = 0.

This contradicts the fact that Fa,b,c is a bijection. ¥

66 Chapter 2. Generation of huge quasigroups

Proposition 20 The equality

(x ◦ y) ◦ (y ◦ x) = x (2.16)

is an identity in (Q, ◦), i.e. (Q, ◦) is a Schroeder quasigroup. 2

Proof (x ◦ y) ◦ (y ◦ x) = Fa,b,c((x ◦ y)⊕n (y ◦ x))⊕n (y ◦ x)) =
Fa,b,c(Fa,b,c(x⊕n y)⊕n y ⊕n Fa,b,c(y ⊕n x)⊕n x)⊕n Fa,b,c(y ⊕n x)⊕n x = x

Corollary 5 The quasigroup (Q, ◦) is non-commutative and, much more,
no different elements of Q commutes. 2

Proof Let x, y ∈ Q and let x ◦ y = y ◦ x.
By (2.16), we have x = (x ◦ y) ◦ (y ◦ x) = (y ◦ x) ◦ (x ◦ y) = y. ¥

Lemma 2 Let φ = I ⊕2k Fa,b,c. Then φ ◦ Fa,b,c = Fa,b,c ◦ φ iff a = 0 and
f(r⊕k c)⊕k f(l⊕k b⊕k c⊕k f(r⊕k c)) = b⊕k f(l⊕k r⊕k b⊕k c⊕k f(r⊕k c))
for each l, r ∈ Q. 2

Proof Let l, r ∈ Q. Then
φ(l, r) = ((l ⊕k r ⊕k a), (l ⊕k r ⊕k b⊕k f(r ⊕k c))),
(φ ◦Fa,b,c)(l, r) = ((r⊕k l⊕k b⊕k f(r⊕k c)), (r⊕k a⊕k l⊕k f(r⊕k c)⊕k

f(l ⊕k b⊕k f(r ⊕k c)⊕k c))),
(Fa,b,c ◦ φ)(l, r) = ((l ⊕k r ⊕k b ⊕k f(r ⊕k c) ⊕k a), (l ⊕k r ⊕k a ⊕k b ⊕k

f(l ⊕k r ⊕k b⊕k f(r ⊕k c)⊕k c))).
Hence, we have:
(φ◦Fa,b,c)(l, r) = (Fa,b,c◦φ)(l, r) ⇐⇒ a = 0 ∧ f(r⊕k c)⊕k f(l⊕k

b⊕k c⊕k f(r ⊕k c)) = b⊕k f(l ⊕k r ⊕k b⊕k c⊕k f(r ⊕k c)). ¥

Lemma 3 For the quasigroup (Q, ◦) we have

x ◦ (y ◦ x) = (x ◦ y) ◦ x ⇐⇒ (φ ◦ Fa,b,c)(x⊕2k y) = (Fa,b,c ◦ φ)(x⊕2k y)

for any x, y ∈ Q, x 6= y, where φ = I ⊕2k Fa,b,c. 2

Proof x ◦ (y ◦ x) = (x ◦ y) ◦ x ⇐⇒
Fa,b,c(x⊕2k Fa,b,c(y ⊕2k x)⊕2k x)⊕2k Fa,b,c(y ⊕2k x)⊕2k x =

= Fa,b,c(Fa,b,c(x⊕2k y)⊕2k y ⊕2k x)⊕2k x ⇐⇒
Fa,b,c(Fa,b,c(y ⊕2k x))⊕2k Fa,b,c(y ⊕2k x) =

= Fa,b,c(Fa,b,c(x⊕2k y)⊕2k x⊕2k y) ⇐⇒
φ(Fa,b,c(x⊕2k y)) = Fa,b,c(φ(x⊕2k y)) ¥

2.10. Extended Feistel networks as orthomorphisms 67

An immediate consequence of Lemma 2 and Lemma 3 is that

x ◦ (x ◦ x) = (x ◦ x) ◦ x ⇐⇒ a = 0 ∧ f(c) = b.

Now we have the following sufficient conditions for non-associativity of
the quasigroup (Q, ◦).
Proposition 21 If a 6= 0, or f(c) 6= b, or φ ◦ Fa,b,c(x) 6= Fa,b,c ◦ φ(x) for
some x 6= 0 ∈ Q, then the quasigroup (Q, ◦) is non-associative. ¤

It can be checked that the quasigroup (Q, ◦) is associative iff the following
equalities are identities in (Zk

2,⊕k), where t, xl, xr, yl, yr, zl, zr are variables:

t = xl ⊕k xr ⊕k zl ⊕k zr ⊕k f(yr ⊕k zr ⊕k c),
t = a⊕k f(xr ⊕k yr ⊕k c),
t = b⊕k f(xl ⊕k yl ⊕k yr ⊕k zr ⊕k a⊕k b⊕k c⊕k t)⊕k

⊕k f(xl ⊕k yl ⊕k b⊕k c⊕k t).

(2.17)

Namely, we can represent x, y, z ∈ Q by x = (xl, xr), y = (yl, yr), z =
(zl, zr), where xl, xr, yl, yr, zl, zr ∈ Zk

2, and then (x ◦ y) ◦ z = x ◦ (y ◦ z)
iff (2.17) holds true. This shows that the quasigroup (Q, ◦) is highly non-
associative, since a bijection f can hardly satisfies the equations (2.17) for
the given elements x, y, z ∈ Q.

Note that if θ is an orthomorphism of a group (Zn
2 ,⊕n), we have

y ◦ x = θ(y ⊕n x)⊕n x

(y ◦ x) ◦ x = θ(θ(y ⊕n x)⊕n x⊕n x)⊕n x = θ2(y ⊕n x)⊕n x

and, by induction,

((y ◦ x) ◦ . . .) ◦ x︸ ︷︷ ︸
l

= θl(y ⊕n x)⊕n x.

We have also

x ◦ y = θ(x⊕n y)⊕n y ⊕n x⊕n x = φ(x⊕n y)⊕n x,

x ◦ (x ◦ y) = θ(x⊕n φ(x⊕n y)⊕n x)⊕n φ(x⊕n y)⊕n x = φ2(x⊕n y)⊕n x

and, by induction,

x ◦ (· · · ◦ (x︸ ︷︷ ︸
l

◦y)) = φl(x⊕n y)⊕n x.

68 Chapter 2. Generation of huge quasigroups

Proposition 22 a) The identity

y = ((y ◦ x) ◦ . . .) ◦ x︸ ︷︷ ︸
l

holds true in (Q, ◦) iff θl = I.
b) The identity

x ◦ (· · · ◦ (x︸ ︷︷ ︸
l

◦y)) = y

holds true in (Q, ◦) iff φl = I, where φ = I ⊕2k θ. ¤

Regarding the subquasigroups of the quasigroup (Q, ◦), we notice the
following property, where < A > denotes the subquasigroup generated by
the subset A of Q.

Proposition 23 < 0 >=< {θi(0)| i = 1, 2, . . . } > . 2

Proof 0 ◦ 0 = θ(0), θ(0) ◦ 0 = θ2(0), θ2(0) ◦ 0 = θ3(0), ¥

Theorem 20 Let QFA,B,C
: Z4k

2 → Z2k
2 be a quasigroup generated by the

extended Feistel network FA,B,C : Z2k
2 → Z2k

2 of the group (Z2k
2 ,⊕2k), created

by the bijection f : Zk
2 → Zk

2. For x, y, z ∈ Zk
2 and we have Rp(a′ a QFA,B,C

`
b′) = 1 if and only if a′ = (x, y, z, y⊕kC) and b′ = (z⊕kC, x⊕ky⊕kz⊕kC).2

Proof Let b′ = (b′1, b
′
2), a′ = (a′1, a

′
2, a

′
3, a

′
4), where b′1, b

′
2, a

′
1, a

′
2, a

′
3, a

′
4 ∈ Zk

2.
Rp(a′ a QFA,B,C

` b′) = 1 ⇔
2−4k

∑
a δ(b′ ⊕2k QFA,B,C

(a⊕4k a′)⊕2k QFA,B,C
(a)) = 1 ⇔∑

a δ(b′ ⊕2k QFA,B,C
(a⊕4k a′)⊕2k QFA,B,C

(a)) = 24k ⇔
δ(b′ ⊕2k QFA,B,C

(a⊕4k a′)⊕2k QFA,B,C
(a)) = 1 (∀a ∈ Z4k

2) ⇔
b′ ⊕2k QFA,B,C

(a⊕4k a′)⊕2k QFA,B,C
(a) = 0 (∀a ∈ Z4k

2) ⇔
(b′1, b

′
2)⊕2kQFA,B,C

(a1⊕ka
′
1, a2⊕ka

′
2, a3⊕ka

′
3, a4⊕ka

′
4)⊕2kQFA,B,C

(a1, a2, a3, a4) =
0 (∀a1, a2, a3, a4 ∈ Zk

2) ⇔
b′1 ⊕k a2 ⊕k a′2 ⊕k a3 ⊕k a′3 ⊕k a4 ⊕k a′4 ⊕k A ⊕k a2 ⊕k a3 ⊕k a4 ⊕k A =
0∧ b′2⊕k a1⊕k a′1⊕k a3⊕k a′3⊕k a4⊕k a′4⊕k B⊕k f(a′2⊕k a2⊕k a′4⊕k a4⊕k

C)⊕k a1 ⊕k a3 ⊕k a4 ⊕k B ⊕k f(a2 ⊕k a4 ⊕k C) = 0 (∀a1, a2, a3, a4 ∈ Zk
2) ⇔

b′1 = a′2 ⊕k a′3 ⊕k a′4 ∧
b′2⊕ka′1⊕ka′3⊕ka′4 = f(a′2⊕ka2⊕ka′4⊕ka4⊕kC)⊕kf(a2⊕ka4⊕kC) (∀a2, a4 ∈
Zk

2) ⇔
From the second equation, because f is a bijection, we have that a′4 = a′2⊕kC
(b′1 = a′3 ⊕k C for first equation) and b′2 ⊕k a′1 ⊕k a′3 ⊕k a′4 = 0. The last
equation can be written also as b′2 = a′1 ⊕k a′2 ⊕k a′3 ⊕k C. This means that
a′ = (x, y, z, y⊕kC) and b′ = (z⊕kC, x⊕ky⊕kz⊕kC) for some x, y, z ∈ Zk

2.¥

2.10. Extended Feistel networks as orthomorphisms 69

Corollary 6 Extended Feistel network FA,B,C : Z2k
2 → Z2k

2 of the group
(Z2k

2 ,⊕2k), created by the bijection f : Zk
2 → Zk

2 produces weak-restricted
quasigroups and even more, its prop ratio table has 23k ones. 2

Remark 5 If we analyze quasigroup QFA,B,C
(x1, x2, y1, y2) = (x2 ⊕k y1 ⊕k

y2⊕k A, x1⊕k y1⊕k y2⊕k B ⊕k f(x2⊕k y2⊕k C)), where x1, x2, y1, y2 ∈ Zk
2,

obtained by FA,B,C , it is easy to see that first k component 4k-ary Boolean
functions are linear, so the following statement is true. Extended Feistel
network FA,B,C : Z2k

2 → Z2k
2 of the group (Z2k

2 ,⊕2k) created by the bijection
f : Zk

2 → Zk
2 produces weak non-linear and correlated quasigroups. 2

Theorem 21 Let QFA,B,C
: Z4k

2 → Z2k
2 be a quasigroup generated by the

extended Feistel network FA,B,C : Z2k
2 → Z2k

2 of the group (Z2k
2 ,⊕2k), created

by the bijection f : Zk
2 → Zk

2. For x, y ∈ Zk
2 we have Rp(a′ a QF 2

A,B,C
` b′) =

1 if and only if a′ = (x, y, x, y ⊕k C) and b′ = (x, y). 2

Proof Let b′ = (b′1, b
′
2), a′ = (a′1, a

′
2, a

′
3, a

′
4), where b′1, b

′
2, a

′
1, a

′
2, a

′
3, a

′
4 ∈ Zk

2.
Rp(a′ a QF 2

A,B,C
` b′) = 1 ⇔

2−4k
∑

a δ(b′ ⊕2k QF 2
A,B,C

(a⊕4k a′)⊕2k QF 2
A,B,C

(a)) = 1 ⇔∑
a δ(b′ ⊕2k QF 2

A,B,C
(a⊕4k a′)⊕2k QF 2

A,B,C
(a)) = 24k ⇔

δ(b′ ⊕2k QF 2
A,B,C

(a⊕4k a′)⊕2k QF 2
A,B,C

(a)) = 1 (∀a ∈ Z4k
2) ⇔

b′ ⊕2k QF 2
A,B,C

(a⊕4k a′)⊕2k QF 2
A,B,C

(a) = 0 (∀a ∈ Z4k
2) ⇔

(b′1, b
′
2)⊕2kQF 2

A,B,C
(a1⊕ka

′
1, a2⊕ka

′
2, a3⊕ka

′
3, a4⊕ka

′
4)⊕2kQF 2

A,B,C
(a1, a2, a3, a4) =

0 (∀a1, a2, a3, a4 ∈ Zk
2) ⇔

b′1 ⊕k a1 ⊕k a′1 ⊕k A ⊕k B ⊕k f(a2 ⊕k a′2 ⊕k a4 ⊕k a′4 ⊕k C) ⊕k a1 ⊕k A ⊕k

B⊕k f(a2⊕k a4⊕k C) = 0∧ b′2⊕k a2⊕k a′2⊕k A⊕k B⊕k f(a1⊕k a′1⊕k a3⊕k

a′3 ⊕k B ⊕k C ⊕k f(a2 ⊕k a′2 ⊕k a4 ⊕k a′4 ⊕k C))⊕k a2 ⊕k A⊕k B ⊕k f(a1 ⊕k

a3 ⊕k B ⊕k C ⊕k f(a2 ⊕k a4 ⊕k C)) = 0 (∀a1, a2, a3, a4 ∈ Zk
2) ⇔

b′1 ⊕k a′1 = f(a2 ⊕k a′2 ⊕k a4 ⊕k a′4 ⊕k C) ⊕k f(a2 ⊕k a4 ⊕k C) ∧ b′2 ⊕k a′2 =
f(a1⊕k a′1⊕k a3⊕k a′3⊕k B⊕k C⊕k f(a2⊕k a′2⊕k a4⊕k a′4⊕k C))⊕k f(a1⊕k

a3 ⊕k B ⊕k C ⊕k f(a2 ⊕k a4 ⊕k C)) (∀a1, a2, a3, a4 ∈ Zk
2) ⇔

From the first equation, because f is a bijection, we have that a′4 = a′2⊕k C
and b′1 = a′1 and from the second equation, because the same reason, a′3 = a′1
and b′2 = a′2. This means that a′ = (x, y, x, y ⊕k C) and b′ = (x, y). ¥

Corollary 7 Extended Feistel network F 2
a,b,c : Z2k

2 → Z2k
2 of the group (Z2k

2 ,⊕2k),
created by the bijection f : Zk

2 → Zk
2 produces weak-restricted quasigroups

and even more, its prop ratio table has 22k ones. 2

70 Chapter 2. Generation of huge quasigroups

Remark 6 If we analyze the quasigroup QF 2
A,B,C

(x1, x2, y1, y2) = (x1 ⊕k

A⊕k B⊕k f(x2⊕k y2⊕k C), x2⊕k A⊕k B⊕k f(x1⊕k y1⊕k B⊕k C⊕k f(x2⊕k

y2 ⊕k C))), where x1, x2, y1, y2 ∈ Zk
2, obtained by F 2

A,B,C , it is easy to see
that its linearity depends on linearity of f , so the following statement is
true. Extended Feistel network F 2

A,B,C : Z2k
2 → Z2k

2 of the group (Z2k
2 ,⊕2k),

created by the bijection f : Zk
2 → Zk

2 , where f as a vector valued Boolean
function does not have any linear component Boolean function, produces
pure non-linear and non-correlated quasigroups. 2

Proposition 24 The quasigroup (Q, •), created by an affine complete map-
ping θ of a group (Zn

2 ,⊕n) is totally anti-symmetric (TA-quasigroup). 2

Proof Let φ = I ⊕n θ is orthomorphism of affine complete mapping θ, so
φ is affine bijection too.
(1) x • y = y • x ⇒ x = y follows from Corollary 5.
(2) Let x, y, c ∈ Q and let (c • x) • y = (c • y) • x ⇒
θ(θ(c⊕n x)⊕n x⊕n y)⊕n y = θ(θ(c⊕n y)⊕n y ⊕n x)⊕n x ⇒
θ(θ(c⊕n x))⊕n θ(x)⊕n θ(y)⊕n y = θ(θ(c⊕n y))⊕n θ(y)⊕n θ(x)⊕n x ⇒
θ(θ(c⊕n x))⊕n y = θ(θ(c⊕n y))⊕n x ⇒
θ(θ(c)⊕n θ(x)⊕n θ(0))⊕n y = θ(θ(c)⊕n θ(y)⊕n θ(0))⊕n x ⇒
θ(θ(c))⊕n θ(θ(x))⊕n θ(θ(0))⊕n y = θ(θ(c))⊕n θ(θ(y))⊕n θ(θ(0))⊕n x ⇒
θ(θ(x))⊕n x = θ(θ(y))⊕n y ⇒
θ(θ(x))⊕n θ(x)⊕n θ(x)⊕n x = θ(θ(y))⊕n θ(y)⊕n θ(y)⊕n y ⇒
φ(θ(x))⊕n φ(x)⊕n φ(0) = φ(θ(y))⊕n φ(y)⊕n φ(0) ⇒
φ(θ(x)⊕n x) = φ(θ(y)⊕n y) ⇒ (φ is bijection)
θ(x)⊕n x = θ(y)⊕n y ⇒
φ(x) = φ(y) ⇒ (φ is bijection)
x = y
From (1) and (2) ⇒ (Q, •) is totally anti-symmetric quasigroup. ¥

Affine extended Feistel network can find some application also, for exam-
ple, for creating TA-quasigroups [16] that can be used for the definition of
the check digit systems, where the early typing errors have to be recognized.
Creating a quasigroup by using an affine complete map is simply a special
case of creating a quasigroup by affine isotopies [97].

Remark 7 There are 384 complete mappings of the group (Z3
2,⊕3) and

they all are affine [99]. 2

2.11 Summary

Our contributions in this chapter are:

2.11. Summary 71

– a survey of most common ways of constructing quasigroups

– new approach which connects the Feistel networks and the orthomor-
phisms as extended Feistel networks, for generating huge quasigroups

– examination of properties of quasigroups obtained by extended Feistel
network.

As an open question remains the exploring of the extended Feistel net-
works from other groups than (Zk

2,⊕k) and analyzing the produced quasi-
groups. Interesting will be the produce of extended Feistel network as or-
thomorphisms from dihedral group.

Chapter 3

Cryptographic primitives with quasigroup

transformations

Most of the known constructions of cryptographic primitives, error detect-
ing and error correcting codes use structures from the associative algebra as
groups, rings and fields. Two eminent specialists on quasigroups, J. Dénes
and A. D. Keedwell [22], once proclaimed the advent of a new era in cryp-
tology, consisting in the application of non-associative algebraic systems as
quasigroups and neo-fields. Quasigroups and their combinatorial equivalent
Latin squares are very suitable for this aim, because of their structure, their
features, their big number and because they lead to particular simple and
yet efficient primitives. Nevertheless, at present, very few researchers use
these tools and cryptographic community still hesitate about them.

First quasigroup-Latin square application in cryptography dated from
16 century. Johannes Trithemius (1462-1516) invented a progressive key
polyalphabetic cipher called the Trithemius cipher, which switch alphabet
for each letter in the message. This can be represented, for example for
English alphabet, by 26 x 26 Latin square. Each next row is new alphabet
shifted one letter to the left from the one above it. Another early application
is in the Schaufler PhD dissertation [125] from 1948, where he reduced the
problem of breaking the Vigènere cipher to minimum number of entries of
a particular Latin square which would determine the square completely.
Most of the results from application of quasigroups in cryptology to the
end of eighties years of the 20 century are described in [19, 20]. Some
newer results and topics are not covered in this thesis, like quasigroup based
secret sharing schemas and zero knowledge protocols, generating the NLPN-
sequences, application of critical sets and power sets of Latin square and
row-Latin squares in cryptography. We refer [128] for those topics.

Application of quasigroups in cryptography is justified also by the con-

73

74 Chapter 3. Cryptographic primitives with quasigroup transformations

cept of multipermutation, introduced by Schnorr and Vaudenay [127], which
is pervasive in cryptography and correspond to pairs of orthogonal Latin
squares. A permutation f : Z2 → Z2, f(a, b) = (f1(a, b), f2(a, b)) is a mul-
tipermutation, if for every a, b ∈ Z the mappings f1(a, ∗), f1(∗, b), f2(a, ∗)
and f2(∗, b) are permutations on S. In the light of the latest linear and
differential attacks to the cryptographic primitives, multipermutations are a
basic cryptographic tool for a perfect generation of diffusion and confusion,
because, intuitively, modifying one or several inputs of the multipermuta-
tion has the influence to modify a maximal number of outputs from the
computation. Vaudenay [133] generalized the concept of multipermutation
by following definition.

Definition 28 A (r, n)−multipermutation over an alphabet Z is a function
f : Zr → Zn such that two different (r + n)-tuples of the form (x, f(x))
cannot collide in any r positions. 2

A (2, 1) multipermutation is equivalent to a Latin square. A (2, n) multi-
permutation is equivalent to a set of n two wise orthogonal Latin squares.

In this chapter is given a survey of basic cryptographic primitives, like
hash functions, block and stream ciphers, pseudo-random number gener-
ators and public key algorithms, build specifically with quasigroups and
quasigroup transformations. In the earlier designs, security was based on
secret quasigroup operations, big number of quasigroups of the same or-
der, big number of isotopies for a given carrier, secret permutation J in
CI−quasigroups, etc. The newer designs base their security mostly on dif-
ficulty to solve systems of quasigroup equations, but also you can find secu-
rity based on secret order of elements in quasigroup operation, secret leaders
and/or order of used elementary quasigroup transformations, secret order of
used quasigroups from some predefined set of quasigroups, solving a system
of multivariate quadratic functions, etc.

We introduce also a new family of cryptographic hash function NaSHA,
which was one of the 1st Round candidates to NIST SHA-3 competition.
NaSHA has compression function based on the quasigroup string transfor-
mation MT and its implementation use novel design principle - use of dif-
ferent quasigroups for every application of component quasigroup transfor-
mations in every iteration of the compression function and, much more, the
used quasigroups are functions of the processed message block. This can be
achieved by using quasigroups generated by the extended Feistel networks
with tunable parameters in them. NaSHA uses quasigroups of huge order
264 and starting bijection of order 28. The name NaSHA in the macedonian
language means ”OURS”.

3.1. Hash functions 75

We introduce a new family of tweakable block ciphers Alex’smile-(B, I,G)
with 128-bit block size implementations (B = 4) for G ∈ {128, 192, 256},
I = 2. Encryption and decryption algorithms use quasigroup string trans-
formations defined by the extended Feistel networks, three S-boxes chosen
by the tweak and a fixed 4× 4 maximum distance separable (MDS) matrix
over GF (28). Quasigroup operations are of order 232 are defined only by
xoring and table lookups.

3.1 Hash functions

Hash functions are functions that take a variable-size input messages and
map them into fixed-size output, known as hash result, message digest, hash-
code etc. They are considered as ”Swiss army knife” because of their versa-
tile application in checking data integrity, digital signature schemes, commit-
ment schemes, password based identification systems, digital timestamping
schemes, pseudo-random string generation, key derivation, one-time pass-
words etc. They are basic security mechanism for local or decentralized file
systems, for P2P file-sharing, for decentralized revision control tools and
for intrusion detection systems. They are also used in popular software
package tools such as Microsoft CLR strong names, Python setuptools, De-
bian control files, Ubuntu system-integrity-check, etc. Hash functions can
be divided in cryptographic hash functions (manipulation detection codes -
MDCs) and keyed hash functions (message authentication codes - MACs).
MACs use additional input of fixed length, known as a key and they are
basic cryptographic tool for providing authentication in a wide range of ap-
plications. Further cryptographic hash functions can be divided into one
way hash functions and collision-resistant hash functions. The following in-
formal definitions are given by Preneel [116]. A one-way hash function
is a function h satisfying the following conditions:

– The input X can be of arbitrary length and the result h(X) has a fixed
length of n bits.

– Given h and X, the computation of h(X) must be ”easy”.

– The hash function must be one-way in the sense that given a Y in
the image of h, it is ”hard” to find a message X such that h(X) = Y
(preimage-resistance) and given X and h(X) it is hard to find a mes-
sage X ′ 6= X such that h(X ′) = h(X) (second preimage-resistance).

A collision-resistant hash function is a function h that satisfies the
following conditions:

76 Chapter 3. Cryptographic primitives with quasigroup transformations

– The input X can be of arbitrary length and the result h(X) has a fixed
length of n bits.

– Given h and X, the computation of h(X) must be ”easy”.

– The function must be preimage-resistant and second preimage-resistant.

– The hash function must be collision-resistant: this means that it is
”hard” to find two distinct messages that hash to the same result (i.e.,
find X and X ′, X ′ 6= X, such that h(X) = h(X ′)).

A message authentication code or MAC is a function h that satisfies
the following conditions:

– The input X can be of arbitrary length and the result h(K, X) has a
fixed length of n bits.

– Given h, K and X, the computation of h(K,X) must be ”easy”.

– Given a message X, it must be ”hard” to determine h(K,X). Even
when a large set of pairs {Xi, h(K, Xi)} is known, it is ”hard” to
determine the key K or to compute h(K, X ′) for any new message
X ′ 6= X (adaptive chosen text attack).

Almost every hash function consists of compression function C with
fixed-size input and output, and domain extender that, from the given com-
pression function, produces a function with a variable-size input. Often, the
message M is divided in blocks M0,M1, . . . , Mn with fixed size of b bits,
which then are processed iteratively by the compression function. Usually,
some padding rule which often contains an encoding of the length of the
message is used for the last message block. The compression function C
takes two inputs: a chaining variable Hi and a message block Mi. The
starting chaining value is fixed to initial vector IV . After processing the
last message block, the output from C is send to the output transformation
f which compute the hash result h(M). This can be represented as

H0 = IV

Hi+1 = C(Hi,Mi), 0 6 i 6 n

h(M) = f(Hn+1)

The compression function for practical hash functions can be made from
existing block ciphers or can be made specially, with optimized performance

3.1. Hash functions 77

in mind. The simplest and most commonly used domain extender is the
Merkle-Damg̊ard construction, but recently many other are also used, like
HAIFA, sponge construction, wide-pipe and double-pipe construction, en-
veloped MD construction, etc. The most often used constructions from block
cipher are:

Davies-Meyer: Hi+1 = C(Hi,Mi) = EMi(Hi)⊕Hi

Miyaguchi-Preneel: Hi+1 = C(Hi,Mi) = Eg(Hi)(Mi)⊕Hi ⊕Mi

Matyas-Meyer-Oseas: Hi+1 = C(Hi,Mi) = Eg(Hi)(Mi)⊕Hi

The usual target of the attacks to hash functions is to find preimage, sec-
ond preimage or collision. There is one group of attacks, known as generic
attacks, that can be apply to any recent or future hash function. Generic
attacks depend only of one generic parameter - the length of message di-
gest and they provide the upper security bounds to the given hash function.
Assume now that message digest from hash function is n-bit long. Time
complexity of the generic random (second) preimage attack is O(2n) oper-
ations, and the time complexity of the generic birthday attack is O(2n/2)
operations, where the ”operations” correspond to the computation of the
hash result for a random input. Hash function is an ideal secure if the best
attacks are the generic attacks. Second group of attacks are the short-cut
attacks, in which for breaking the hash function, the attacker uses the flows
in its design and internal structure. Hash function is said to be broken if
there is a short-cut attack faster than the best generic attack.

The most often used and standardized cryptographic hash functions are
MD4, MD5, SHA-0, SHA-1 and the family of SHA-2 hash functions, which
are the last standard issued by NIST. In the light of recent differential at-
tacks by Wang et al [139, 137, 136, 138], now is ongoing the NIST SHA-3
competition for new standard for cryptographic hash functions.

Usually MAC takes a secret key to generate a checksum (MAC-value,
authentication tag) for a given message (signing) or to verify an existing
checksum (verifying). The same iterated model as the one defined for cryp-
tographic hash functions is used also for MAC constructions, and here one
needs to consider forgery attacks based on internal collisions. The most
common approach is to base the compression function on an existing cryp-
tographic primitive, either a block cipher or a cryptographic hash function.
One of the most popular construction from the hash function h is HMAC,
suggested by Bellare et al. [2]. HMAC value is obtained by

HMAC(K1||K2, X) = h(K2||h(K1||X))

where the keys K1 and K2 are usually dependent on each other.

78 Chapter 3. Cryptographic primitives with quasigroup transformations

3.1.1 Cryptographic hash functions with quasigroups

First attempts for using quasigroups and quasigroup transformations for
creating cryptographic hash functions do not have actual implementations.
One of the earliest attempt is the work of Markovski et al [78]. They em-
ploy two previously defined quasigroup transformations QM1 and QM2 for
obtaining hash functions, but they are not enough analyzed and elaborated.
QM1 transforms string with length 2m in a string with same length, so
the message M first is pad to be with the length 2mn - a1a2 . . . a2mn, and
than is divide in n blocks Bi. We apply QM1 to everyone of the blocks
Bi and QM1(Bi) = gi

1g
i
2 . . . gi

2m. A hash function H can be defined by
H(M) = h1h2 . . . h2m, where

hi =
n⊕

j=1

gj
i , i = 1, 2, . . . 2m

QM2 transforms string with length m in a string with double length,
so it can be used for hash results with length 2m. Let the message M =
a1 . . . ar, r > m (if M has small length, padding rule can be employed), let
j = r −m and

QM2(a1 . . . am) = g1
1 . . . g1

2m

QM2(g1
m+2 . . . g1

2mam+1) = g2
1 . . . g2

2m

QM2(g2
m+2 . . . g2

2mam+2) = g3
1 . . . g3

2m

...

H(M) = QM2(gj
m+2 . . . gj

2mar) = gj+1
1 . . . gj+1

2m

This definition uses only one character of the message in every iterative step
of compression function QM2, which is very impractical.

Another early attempt to use quasigroups for creating hash function is
given by Dvorský et al [29], and preimage, second preimage and collision
attacks against this hash function for some special quasigroups are given
by Vojvoda [134]. Snášel et al [130] continue to develop this hash function.
Let (Q, ◦) be a quasigroup of order r and let a be a fixed element from Q.
They define function Ha(q1q2 . . . qn) = ((. . . ((a ∗ q1) ∗ q2) ∗ . . .) ∗ qn as hash
function. Also, they proposed to use huge quasigroups obtained by isotopies
from the quasigroup of modular substraction, given with

a ◦ b = π−1((ω(a) + n− ρ(b)) mod n)

3.1. Hash functions 79

This quasigroup has a right unit 0 and is isotopic to the group (Zn, +)
(see [135]). If n is an even number, (Zn, +) has a proper subgroup, the
subset of even numbers. Some arguments why to use quasigroup of modular
substraction as a carrier, are given in Ochodková et al [28]. They suggest
that one can use also huge quasigroups isotopic to the following quasigroup

a ◦ b = (h · a + k · b + l) mod n

where h, k, l are integers and GCD(h, n) = 1 = GCD(k, n) (the inverses h−1

and k−1 exist). But this quasigroup also is isotopic to the group (Zn, +) with
isotopes ω(x) = x · h−1, ρ(x) = x · k−1 and π(x) = (x + l) mod n, where
x ∈ Zn. The authors suggest that for real usage of proposed hash function,
arithmetic of long numbers (i.g. 512 bits) must be adopted.

Another generic quasigroup based hash function Edon-F without imple-
mentation, is given in [79]. Here we will explain only the used quasigroup
string transformation f : Qn → Qn, which is in fact one-way function. It
uses two auxiliary vectors U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn).
Vector V at the beginning is fixed to some random values. Let a1, a2, . . . , an

be a given message and let (Q, ∗) be a quasigroup. At first, the values u1

and u2 are computed by

u1 = ((a1 ∗ a2) ∗ (a2 ∗ a1)) ∗ v1

u2 = ((. . . ((a1 ∗ a2) ∗ a3) ∗ . . .) ∗ an) ∗ v2

Values ui, for 3 6 i 6 n are computed by

ui = (ai ∗ ui−1) ∗ (ai ∗ vi)

After that, the new values of V are computed by the rules of the same kind:

v1 = ((c1 ∗ c2) ∗ (c2 ∗ c1)) ∗ u1

v2 = ((. . . ((c1 ∗ c2) ∗ c3) ∗ . . .) ∗ cn) ∗ u2

vi = (ci ∗ vi−1) ∗ (ci ∗ ui), 3 6 i 6 n

where ci = ui ∗ ai, 1 6 i 6 n. Then, f(a1, a2, . . . , an) = (v1, v2, . . . , vn).
A generic hash function with reverse quasigroup string transformationR

(1.12) has been described in [43]. First implementation of this hash function
with name: Edon-R(256, 384, 512) has been described in [37]. But the most
famous of its implementation is the Edon-R, the fastest candidate of NIST
SHA-3 competition, designed by Gligoroski et al [46]. This implementation
is explained here.

80 Chapter 3. Cryptographic primitives with quasigroup transformations

The quasigroup reverse string transformation R : Q4
q → Q2

q is used for
calculating new chaining value in following way

R(H1
i ,H2

i ,M1
i ,M2

i) = (H1
i+1,H

2
i+1)

where
H1

i+1 = M
1
i ∗ ((H2

i ∗ (M2
i ∗M1

i)) ∗H1
i)

H2
i+1 = (M1

i ∗ ((H2
i ∗ (M2

i ∗M1
i)) ∗H1

i)) ∗ (((H2
i ∗ (M2

i ∗M1
i))∗

∗((M2
i ∗M1

i) ∗M2
i)) ∗ ((H2

i ∗ (M2
i ∗M1

i)) ∗H1
i))

Edon-R is wide-pipe iterative hash function with standard MD-straitening.
Its compression function R uses huge quasigroups of order 2256 and 2512 (the
biggest so far) and their operations are defined by isotopies of Abelian groups
((Zw

2)8, +8), where w = 32, 64 and +8 is componentwise addition on two 8-
dimensional vectors in (Zw

2)8. Definition of quasigroup operations uses only
bitwise xoring, left rotations and addition modulo 232 and 264 and is given
by

X ∗ Y = π1(π2(X) +8 π3(Y))

where X = (X0, X1, . . . , X7), Y = (Y0, Y1, . . . , Y7) ∈ (Zw
2)8 and πi : Zq

2 →
Zq

2, 1 6 i 6 3, q = 256, 512 are permutations. Authors have proofs that the
used quasigroups are non-associative, non-commutative and without iden-
tity.

Let Q256 = {0, 1}256 and Q512 = {0, 1}512. Transformations πi : Qq →
Q2 (q = 256, 512) are defined as:

π1(X0, X1, X2, X3, X4, X5, X6, X7) = (X5, X6, X7, X0, X1, X2, X3, X4)

π2 ≡ Â1 ◦ROTLr1,q ◦ A2

π3 ≡ Â3 ◦ROTLr2,q ◦ A4

where ROTLr(X) can be expressed as a linear matrix − vector multiplica-
tion over the ring (Z2, +,×), Âi = Ci +Ai ·X, i = 1, 3. Invertible matrices
Ai, 1 6 i 6 4, rotation constants r1,q, r2,q and constant vectors C1, C3 are
given in [46].

Because the used quasigroups are constructed by isotopes from the Abelian
group ((Z2w)8,+8), every X has inverse −X = (−X0,−X1, . . . ,−X7), where
−Xi is inverse element of Xi in abelian group (Z2w , +) (+ is addition modulo
2w, 0 is unit). We are interesting in those elements X in (Z2w)8 for which

3.1. Hash functions 81

X0 = X1 = . . . = X7 = x. We will represent (x, x, x, x, x, x, x, x) = X. For
these elements π1(X) = X.

Observation For quasigroups in Edon-R we have:

A ∗ C = X
A ∗D = X +8 Z
B ∗ C = Y



 ⇒ B ∗D = Y +8 Z (3.1)

Proof. We have

π1(π2(A) +8 π3(C)) = X ⇒ π2(A) +8 π3(C) = X

π1(π2(A) +8 π3(D)) = X +8 Z ⇒ π2(A) +8 π3(D) = X +8 Z ⇒
π3(D) = X +8 Z− π2(A)

π1(π2(B) +8 π3(C)) = Y ⇒ π2(B) +8 π3(C) = Y ⇒ π2(B) = Y − π3(C)

Therefore,

B ∗D = π1(π2(B) +8 π3(D)) = π1(Y − π3(C) +8 X +8 Z− π2(A)) =

π1(Y +8 Z) = Y +8 Z

If we choose B in a way that Y = 0, then by choosing D and Z we can
obtain B ∗D whatever we want.

Another interesting application of quasigroups is given by Gligoroski et
al. [40] as security fix of the MD4 family of hash functions with so called
quasigroup folding, that use shapeless randomly generated quasigroup (Q, ∗)
of order 16. This technique is applied at the end of every iterative step of
hash function. Every 32-bit register is seen as a concatenation of 8, 4-bit
variables a1, a2, . . . , a8. Variables a1, a2, a3, a4 are replaced with b1, b2, b3, b4,
where b1 = a1∗a5, b2 = a6∗a2, b3 = a3∗a7 and b4 = a8∗a4. Obtained impact
on the speed is 2 time slower hash function. The similar technique has
been used in [39], where new hash function SHA-1Q2 has been constructed
from SHA-1. The new hash function uses the message expansion part with
quasigroup folding and has only 8 internal iterative steps (it is 3% faster
that SHA-1).

3.1.2 MACs with quasigroups

First application of quasigroup for creating authentication scheme is ex-
plained by Dénes and Keedwell in [21]. Let (Q, ◦) be a quasigroup and let

82 Chapter 3. Cryptographic primitives with quasigroup transformations

M = m1 . . . mn, mi ∈ Q, be a message that need to be signed with authenti-
cation tag b0 . . . bs−1, bj ∈ Q. Message M is divided into s mutually disjoint
subsets Sj , 0 6 j < s, where |Sj | = t = [ns] and Sj = {mj1 , . . . , mjt}. The
last subset Ss−1 can contain r 6 t elements. Then bj can be calculate with

bj = (. . . ((mj1 ◦mj2) ◦mj3) ◦ . . .) ◦mjt

with exception of the last value bs−1 for which only r elements are used for
calculating. After that, the message and signature are concatenated and
sent. The security of this authentication scheme lies in how the sets Sj are
created, and for that aim authors suggest the use of the Latin square L with
elements {0, 1, . . . , s− 1} as a secret key. Positions in L are numbered from
1 to s for the first row, s+1 to 2s for the second row and so on, (s− 1)s+1
to s2 for the last row. When set Sj is forming, positions of j in L are read as
j1, . . . , jt and proper elements mj1 , . . . , mjt from the message M are chosen.
The authors also suggest the use of the same structure for (Q, ◦) and L, for
saving memory. The process can be made faster by precomputing of the
sets Sj .

Security of this scheme is analyzed by Dawson et al [17]. One problem
with this scheme is that it does not have an output with fixed sizes, it is
not really a MAC. Also, properties of the quasigroup (Q, ◦) are not being
utilized and it will work even in the case of a group instead of quasigroup.

Meyer in [97] describes proper quasigroup based MAC algorithm, known
as QMAC. In QMAC, (Q, ◦) is public and the secret key is the order in which
the message elements are multiplied together to create the MAC-value, i.e.
the parentheses scheme. Also in key is incorporated one fixed element c
which serves to hide the innermost multiplications. Without c, one can
start an adaptive chosen-text attack, described in [97]. The authentication
tag for a message M = m1 . . . ,mt is computed by multiplying the message
elements together in the order specified by the key K, except that every
innermost multiplication (mi ◦mi+1) is replaced by ((mi ◦ c) ◦mi+1). This
can be represented as hK(m1, . . . , mt). Security of this scheme relies on
the structure of used quasigroup. Huge ”highly non-associative” quasigroup
without any structure are wanted. The author gives 3 different methods
for constructing MAC value for large messages and we are going to explain
only one. Let every message block consists of t elements over Q and let
|M | = Nt, with padding.

H0 = IV ∈ Q

Hi+1 = Hi ◦ hK(mit+1, . . . , m(i+1)t), 0 6 i 6 N − 1

QMACK(M) = HN

3.1. Hash functions 83

The author also give nice representation of the key and show that the size
of the keyspace increases exponentially in the length of the key.

Another quasigroup based MAC is defined by Bakhtiari et al [1]. They
first define the family of hash functions H = {h : Qq2 → Qq} and then
they use the Wegman-Carter universal-hash construction [140]. Let (Q, ∗)
is quasigroup of order q = 2t end let b = q/2 isotopies of (Q, ∗) are given as
(Q, ∗1), . . . , (Q, ∗b). Let M be a message with q2 elements arranged in q× q
matrix. Define the sets Sr,c = {r ∗1 c, . . . , r ∗b c}, 1 6 r, c 6 q. Hash result D
is represented as q-tuple (d1, . . . , dq) and at the beginning all dk = 1. The
final output is calculated by

di∗kj = mi,j ∗ di∗kj , 1 6 k 6 b, 1 6 i, j 6 q

Secret key is quasigroup (Q, ∗) and its b isotopies. Authors suggest the
key to be represented as (K1,K2), where K1 is critical set of the correspon-
dent Latin square to (Q, ∗) and K2 is information about the used permuta-
tions for obtaining the isotopies. The authors suggest that it is enough for
security to take q = 16 and b = 8. One problem with this MAC is that the
authors did not give any discussion about key space, and its relation with
order of the chosen quasigroup.

3.1.3 Family of cryptographic hash functions NaSHA-(m, k, r)

We use the quasigroup transformation MT (Definition 18) for definition
of a new family of hash functions NaSHA-(m, k, r). The parameters m, k
and r denote the length of the output hash result (the message digest), the
complexity of MT and the order 22r

of used quasigroup respectively, so k
is a positive even integer and m and r are positive integers.

The main transformation MT as a one-way function

First, we will show that the transformation MT : Qt → Qt can be consid-
ered as a one-way function when Q = Z2n is enough big.

Let us take k = 2 for simplicity, and let a quasigroup (Q, ∗), lead-
ers l1, l2 and elements c1, c2, . . . , ct ∈ Q be given. Suppose that for some
unknown x1, x2, . . . , xt ∈ Q we have (c1, c2, . . . , ct) = MT (x1, x2, . . . , xt)
= ρ(RAl1)(Al2(x1, x2, . . . , xt)). Then there are unknown y1, y2, . . . , yt ∈ Q
such that

Al2(x1, x2, . . . , xt) = (y1, y2, . . . , yt) (3.2)

and

RAl1(ρ(y1, bn2 c), ρ(y2, bn2 c), . . . , ρ(yt, bn2 c)) = (c1, c2, . . . , ct). (3.3)

84 Chapter 3. Cryptographic primitives with quasigroup transformations

From the equations (3.2) and (3.3) we obtain the following system of 2t
equations with 2t unknowns.





(l2 + x1) ∗ x1 = y1

(y1 + x2) ∗ x2 = y2

. . .
(yt−1 + xt) ∗ xt = yt

(3.4)





ρ(yt, bn
2 c) ∗ (ρ(yt, bn

2 c) + l1) = ct

ρ(yt−1, bn
2 c) ∗ ρ((yt−1, bn

2 c) + ct) = ct−1

. . .
ρ(y1, bn

2 c) ∗ (ρ(y1, bn
2 c) + c2) = c1.

(3.5)

The subsystem (3.5) consists of t equations with t unknowns of kind
y ∗ (y + a) = b. As much as we know, there is no explicit formula to find the
unknown y, so one has to check for each y ∈ Q if the equation y ∗ (y+a) = b
is satisfied. By Proposition 1.14 one has to make, roughly, 2n − 1/2n ≈ 2n

checks, i.e., a solution can be found after 2n−1 checks on average. In the
same way, by checking, solutions x1, x2, . . . , xt can be found. Altogether, for
finding a solution of the system consisting of (3.4) and (3.5) one has to make,
on average, 2t2n−1 = 2nt checks. Thus, we have the following properties.

Proposition 25 The system of equations (3.4) and (3.5) can be solved
after 2nt checks on average. ¤

Proposition 26 If Q is sufficiently large and (Q, ∗) is an arbitrary quasi-
group, chosen uniformly at random, the problem of finding a preimage of the
transformation MT is computationally infeasible. ¤

NaSHA-(m, k, r) hash algorithm

NaSHA-(m, k, r) hash algorithm

Input: A positive even integer k and positive integers m and r
such that m > 2r, and an input message M .

Output: A hash value NaSHA-(m, k, r)(M) of m bits.

1. Denote by n the smallest integer such that m 6 2n.
(For example, n=8 for m=224 and n=9 for m=384.)

2. Pad the message M, so that the length of the padded message M ′ is
a multiple of 2n+1, |M ′| = 2n+1N for some N .
Separate M ′ in N 2n+1-bit blocks, M ′ = M1||M2|| . . . ||MN , |Mi| = 2n+1.

3. Initialize the initial value H0, which is a 2n+1-bit word.
4. The first message block M1 and the initial value H0

separate to q = 2n−r+1 2r-bits words:
M1 = S1||S3||S5|| . . . ||S2q−3||S2q−1,
H0 = S2||S4||S6|| . . . ||S2q−2||S2q, (|Si| = 2r) and form the word

3.1. Hash functions 85

S(0) = S1||S2||S3||S4|| . . . ||S2q−3||S2q−2||S2q−1||S2q.
5. Choose leaders li as functions that depend on S1, S2, S3, . . . , S2q

and a suitable linear transformation LinTr2n+2 .

6. Choose two quasigroups ({0, 1}2r

, ∗1) and ({0, 1}2r

, ∗2)
(one for A and one for RA transformation)

and compute the string of bits S(N−1) as follows:
for i = 1 to N − 1 do

A1||A2||A3|| . . . ||A2q ←MT (LinTr2q

2n+2(S
(i−1)))

B1||B2||B3|| . . . ||Bq−1||Bq ← Mi+1,

S(i) := B1||A2||B2||A4|| . . . ||Bq−1||A2q−2||Bq||A2q,
end

7. Choose two quasigroups ({0, 1}2r

, ∗1) and ({0, 1}2r

, ∗2) and compute

MT (LinTr2q

2n+2(S
(N−1))) := A1||A2||A3|| . . . ||A2q. Then

NaSHA-(m, k, r)(M) = A4||A8|| . . . ||A2q−4||A2q (mod 2m).

We emphasize that some steps (e.g., Step 5) need more detailed elabo-
rations in concrete implementations.

Figure 3: NaSHA-(m, k, r)

Implementation of NaSHA-(m, 2, 6) hash functions for
m ∈ {224, 256, 384, 512}
Here we give a complete implementation of NaSHA-(m, 2, 6) algorithm where
m ∈ {224, 256, 384, 512}. The used quasigroup of order 226

= 264 is con-
structed by extended Feistel networks. This implementation has been sub-

86 Chapter 3. Cryptographic primitives with quasigroup transformations

mitted as a candidate in the SHA-3 competition of The American National
Institute of Standards and Technology, NIST. Now it is one of the 51 se-
lected 1st round candidates [86, 88].

Figure 4: NaSHA-(m, 2, 6)

Padding

The padding consists of the standard Merkle-Damg̊ard strengthening
[96]. Denote by M the bit input message of length s = |M | < 2128.

1. Denote by q the smallest nonnegative integer such that

s + q + 1 ≡ 384 (mod 512)

for m = 224 and m = 256, and

s + q + 1 ≡ 896 (mod 1024)

for m = 384 and m = 512.
2. Let 0q denote the binary word consisting of q zeros, and let bs be the

binary presentation of s by 128 bits.
3. Append to the message M the words 1, 0q and bs.
The padding of M is the message M ′ = M ||1||0q||bs and for m = 256 is

a multiple of 512 and for m = 512 is a multiple od 1024. This implementa-
tion of NaSHA hash algorithm accepts messages of length up to 2128−1 bits.

Starting bijection

As starting bijection f : Z8
2 → Z8

2 for creating extended Feistel network
we use improved AES S-box with the APA structure from Cui and Cao [12],
given on Table 3.1 in hexadecimal notation.

3.1. Hash functions 87

f 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 8c 90 d9 c1 46 63 53 f1 61 32 15 3e 26 9a 97 2e
1 d8 a0 99 9e c0 95 67 b7 6d e0 f3 28 20 86 b6 ef
2 4b 31 b5 d2 13 39 6c a5 03 3f 4d 34 f9 ec 8e 17
3 c5 25 3c 89 c9 2b 3a c2 6e c6 aa 91 49 18 93 de
4 0d 6f 65 af 92 a7 f6 a6 40 b9 ed b0 c3 d7 7d 7c
5 54 59 df 2f da a4 05 94 9b 72 01 74 a9 f7 81 e9
6 1f b3 eb cf 8 47 52 36 bc 16 29 76 12 fa 9c 8a
7 5b a8 43 d1 79 85 42 82 c7 a1 78 4f e2 35 ea ad
8 dc 0e d3 2d 6a 5a 44 ab c8 e5 37 0a 6b 51 e3 14
9 cd 56 4a d6 08 83 bb 33 e1 30 4e 24 5e b4 00 48
a 5f 22 0b 50 3d 80 1a bf cc ff 64 87 1b c4 07 f8
b 0c d4 ac 02 10 84 7e 69 70 60 55 2a 21 57 23 66
c 62 73 cb 41 58 71 77 1c 7b 8f 9f 9d a3 b1 7f 5d
d f4 06 ae d5 e6 3b ba Fe 96 e7 0f 45 2c f0 fc bd
e e4 98 fb ca 11 f5 dd 7a 5c fd ce 88 d0 68 8d 4c
f be 04 38 1d 1e f2 27 19 b2 75 a2 ee db b8 09 8b

Table 3.1: The starting bijection f = f(m||n)

Linear transformation

The algorithm of NaSHA hash functions uses the following linear trans-
formations.

Denote by LinTr512 and by LinTr256 the transformations of the sets
{0, 1}2028 and {0, 1}1024 respectively, defined by

LinTr512(S1||S2|| . . . ||S31||S32) = (S7 ⊕ S15 ⊕ S25 ⊕ S32)||S1||S2|| . . . ||S31,

LinTr256(S1||S2|| . . . ||S15||S16) = (S4 ⊕ S7 ⊕ S10 ⊕ S16)||S1||S2|| . . . ||S15,

where Si are 64-bits words, ⊕ denotes the operation XOR on 64-bits words,
and the operation || denotes the concatenation of words.

Note that LinTr512 is in fact the LFSR obtained from the primitive
polynomial x32 + x25 + x15 + x7 + 1 over the Galois field GF(2), applied
in parallel 64 times, while LinTr256 is obtained in the same way from the
primitive polynomial x16 + x10 + x7 + x4 + 1. As a consequence we have the
following.

Proposition 27 LinTr512 is a permutation of the set {0, 1}2028 and LinTr256

is a permutation of the set {0, 1}1024. ¤

Quasigroup operations via extended Feistel networks

From the starting bijection f we define three extended Feistel networks
Fa1,b1,c1 , Fa2,b2,c2 , Fa3,b3,c3 : Z16

2 → Z16
2 by

Fai,bi,ci(l8||r8) = (r8 ⊕ ai)||(l8 ⊕ bi ⊕ f(r8 ⊕ ci)),

88 Chapter 3. Cryptographic primitives with quasigroup transformations

where l8 and r8 are 8-bit variables, and ai, bi, ci are 8-bit words that
are defined before each application of MT . Denote by f ′ the bijection
Fa1,b1,c1 ◦ Fa2,b2,c2 ◦ Fa3,b3,c3 : Z16

2 → Z16
2 .

By using the bijection f ′ we define a quasigroup operation on Z64
2 which is

going to be used for the additive string transformation A as follows. Create
the Feistel networks Fα1,β1,γ1 : Z32

2 → Z32
2 and FA1,B1,C1 : Z64

2 → Z64
2 by

Fα1,β1,γ1(l16||r16) = (r16 ⊕ α1)||(l16 ⊕ β1 ⊕ f ′(r16 ⊕ γ1)),

FA1,B1,C1(l32||r32) = (r32 ⊕A1)||(l32 ⊕B1 ⊕ Fα1,β1,γ1(r32 ⊕ C1)),

where l16, r16 are 16-bit variables, α1, β1, γ1 are 16-bit words, l32, r32 are 32-
bit variables and A1, B1, C1 are 32-bit words. The constant words will be de-
fined latter. The function FA1,B1,C1 is a orthomorphism (complete mapping)
in the group (Z64

2 ,⊕), and then the operation ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1

defined by

x ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1 y = FA1,B1,C1(x⊕ y)⊕ y

is a quasigroup operation in Z64
2 .

By using the bijection f ′ we define also a quasigroup operation in Z64
2

which is going to be used for the reverse additive string transformation RA
as follows. Create the Feistel networks Fα2,β2,γ2 : Z32

2 → Z32
2 and FA2,B2,C2 :

Z64
2 → Z64

2 by

Fα2,β2,γ2(l16||r16) = (r16 ⊕ α2)||(l16 ⊕ β2 ⊕ f ′(r16 ⊕ γ2)),

FA2,B2,C2(l32||r32) = (r32 ⊕A2)||(l32 ⊕B2 ⊕ Fα2,β2,γ2(r32 ⊕ C2)),

where l16, r16 are 16-bit variables, α2, β2, γ2 are 16-bit words, l32, r32 are 32-
bit variables and A2, B2, C2 are 32-bit words. The constant words will be
defined latter. The function FA2,B2,C2 is an orthomorphism (complete map-
ping) in the group (Z64

2 ,⊕), and then the operation ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2

defined by

x ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2 y = FA2,B2,C2(x⊕ y)⊕ y

is a quasigroup operation in Z64
2 .

In such a way we achieve for each application of MT to use different
quasigroup operations ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1 for the transfor-
mation A and ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2 for the transformation
RA.

3.1. Hash functions 89

Chaining initial vectors
The definition of NaSHA-(m, k, r) hash function includes one initial

string H0. The initial strings that we are using are the following, repre-
sented in hexadecimal as concatenation of 64-bit chunks.

1. m = 224,H0 =
6a09e667f3bcc908, cbbb9d5dc1059ed8, bb67ae8584caa73b, 629a292a367cd507,
3c6ef372fe94f82b, 9159015a3070dd17, a54ff53a5f1d36f1, 152fecd8f70e5939

2. m = 256,H0 =
510e527fade682d1, 67332667ffc00b31, 9b05688c2b3e6c1f, 8eb44a8768581511,
1f83d9abfb41bd6b, db0c2e0d64f98fa7, 5be0cd19137e2179, 47b5481dbefa4fa4

3. m = 384,H0 =
6a09e667f3bcc908, cbbb9d5dc1059ed8, bb67ae8584caa73b, 629a292a367cd507,
3c6ef372fe94f82b, 9159015a3070dd17, a54ff53a5f1d36f1, 152fecd8f70e5939,
510e527fade682d1, 67332667ffc00b31, 9b05688c2b3e6c1f, 8eb44a8768581511,
1f83d9abfb41bd6b, db0c2e0d64f98fa7, 5be0cd19137e2179, 47b5481dbefa4fa4

4. m = 512,H0 =
2dd8a09a3c4e3efb, e07688dc6f166b73, 061a77a060948dcd, 0c34aa2a315e01d5,
8a47ea1880559ce6, c785f4364a0b98f4, 9f22535b264607a8, 53a8c8ca56e1288c,
2547d84e9ccde59d, 3c1563a9317c57a1, 9486eb50c7d8037f, 77341edad21e9a40,
c0f905d741c9cb74, d648813e45121dbb, ad0d1e41a985e51e, 4cf768fc7df11b00

The initial values are randomly generated. If somebody has suspicions
for NaSHA initial chaining values, at any time, they can be replaced by
other, without changes in the security or in the performances.

Definition of the leaders and constants

Before every computation MT (S1||S2||S3|| . . . ||S2q−1||S2q), where Si are
64-bit words, we define the 64-bit leaders l1 of RA and l2 of A, the 8-bit
words a1, b1, c1, a2, b2, c2, a3, b3, c3, the 16-bit words α1, β1, γ1, α2, β2, γ2 and
the 32-bit words A1, B1, C1, A2, B2, C2.

For m = 224 and 256, necessary definitions are this ones:

l1 = S1 + S2, l2 = S3 + S4,

a1||b1||c1||a2||b2||c2||a3||b3 = S5 + S6, c3 = a1

90 Chapter 3. Cryptographic primitives with quasigroup transformations

α1||β1||γ1||α2 = S7 + S8,

β2||γ2 = (S9 + S10)(mod 232),

A1||B1 = S11 + S12, C1||A2 = S13 + S14, B2||C2 = S15 + S16.

For m = 384 and 512, necessary definitions are:

l1 = S1 + S2 + S28 + S30, l2 = S3 + S4 + S29 + S31,

a1||b1||c1||a2||b2||c2||a3||b3 = S5 + S6 + S17 + S18, c3 = a1

α1||β1||γ1||α2 = S7 + S8 + S19 + S20,

β2||γ2 = (S9 + S10 + S21 + S22)(mod 232),

A1||B1 = S11 + S12 + S23 + S27, C1||A2 = S13 + S14 + S24 + S26,

B2||C2 = S15 + S16 + S25 + S32.

Here, the addition + is modulo 264.

Design rationales

THE CHOICE OF THE STARTING BIJECTION. As NaSHA starting
bijection we wanted to use some publicly known function in order to prevent
the suspicious of possible “trap door” in the implementation. We considered
several possibilities: the AES S-box [15], the improved AES S-box from Liu
and all [68] and the improved AES S-box with the APA structure from Cui
and Cao [12]. All three runners have some pros and cons. The AES S-
box is the most famous and the most investigated S-box in cryptology, with
good differential and linear resistance and high algebraic degree. But it has
simple algebraic structure with only 9 terms. The improved AES S-boxes
has also good differential resistance with differential 4-uniformity and good
linear resistance. They have the same algebraic degree as AES S-box, but
they have much bigger algebraic complexity of 255 terms for the first, and
253 terms for the second, S-box. Their inverse S-boxes have high algebraic
complexity of 255 terms as AES inverse S-box. But both are not enough
studied from other authors. Our winner f is the third solution, because of
its algebraic complexity and because it is a little bit more studied than the
second solution. The function f also satisfies the condition f(0) 6= 0 that
is needed by our extended Feistel network to derive a non-idempotent and
a non-associative quasigroup. In case of suspicion of a trapdoor being built
into the hash, the current S-box might be replaced by other two candidates.

3.1. Hash functions 91

THE CHOICE OF THE LINEAR TRANSFORMATION. The linear
transformation is used for obtaining suitable diffusion of the input of 64-bit
words. We use LFSRs for obtaining linear transformation that is a bijection
and that can be easily computed. For that aim we use primitive polynomials
over the Galois field GF(2), from the Rajski’s list [117]. The degree of the
primitive polynomial for 224 and 256 hash needs to be 16, and 32 for 384
and 512 hash. Since the algorithm applies the linear transformation 16
(i.e, 32) times, we take the primitive polynomials with 5 terms. Any other
polynomial that fulfils these requirements is a good choice too.

THE CHOICE OF THE QUASIGROUP TRANSFORMATIONS. By
our experience and some theoretical results we found that the quasigroup
transformations are good nonlinear building blocks for designing different
cryptographic primitives. We use quasigroups of huge order 264 and they
are defined by extended Feistel networks, defined in [87]. Our algorithm
can also be implemented by quasigroups of order 232, 2128, 2256 etc, but we
found that the choice of order 264 is optimal for obtaining tradeoff between
security and speed.

THE CHOICE OF THE EXTENDED FEISTEL NETWORKS. It is not
easy to define a workable quasigroup of huge order, like 264, having good
cryptographic properties. Our choice were the extended Feistel networks
because they produce shapeless quasigroups, and they allow to insert tunable
parameters in their definition. We used that feature to obtain different
quasigroups for every application of component quasigroup transformations
in every iteration of the compression function and, much more, the used
quasigroups are functions of the processed message block.

We are using 9 8-bit words a1, b1, c1, a2, b2, c2, a3, b3, c3, 6 16-bit words
α1, β1, γ1, α2, β2, γ2 and 6 32-bit words A1, B1, C1, A2, B2, C2 in every itera-
tion of the compression function and pass them to extended Feistel networks.
The way of their definition was leaded by the idea all bits of the processed
input block to be included.

If instead of extended Feistel network F , we were using extended Feistel
network F 2, the obtained quasigroups will be also suitable for cryptographic
purposes. Choice of F instead of F 2 and shapeless quasigroups instead of
quasigroups suitable for cryptographic purposes, again was tradeoff between
security and speed.

THE CHOICE OF THE COMPOSITE MAPPINGS IN THE MAIN
TRANSFORMATION AND THE TUNABLE SECURITY PARAMETER
k. In general, the main transformation MT can be defined as any compo-
sition of the transformations A and RA. Having in mind the properties of
the extended Feistel networks, where the starting bijection influences mostly

92 Chapter 3. Cryptographic primitives with quasigroup transformations

the right half of the output result, we are going to use the transformation
RA after rotating left for 32 bits the obtained 64-bit words from A. In such
a way, a homogeneous spreading of the starting bijection is obtained. Also,
by the transformation A the influence of the input bits are spreading only
in the right part of the output, which is why RA is defined as a reverse way
of A. In the end, we obtain every bit of an input block to influence almost
all bits of the output blocks of RA ◦ A.

The tunable security parameter of the NaSHA hash algorithm is the
complexity k of the main transformation MT , since we define MT as com-
position of k mappings of kind RA and A, applied consecutively. The choice
of higher values of k will give stronger security, but lower speed. Our choice,
recommendation and low bound is k = 2 (there is no upper bound). We be-
lieve that the cryptanalysis will become practical if k = 1, that will happen
if MT = A or MT = RA.

Avalanche effect

We tested the avalanche propagation of one bit differences in the com-
pression function of NaSHA-(m, 2, 6), where m ∈ {224, 256, 384, 512}, in
two cases: when the initial message consists of all zeros and when the initial
message is randomly generated. We present in Tables 3.2 and 3.3 the ob-
tained results for messages of length 8, 80, 800, 8000 and 80000 bits, where
minimum, average and maximum different bits and standard deviation are
given. Table 3.2 is for initial messages consisting of all zeros and Table 3.3
is for randomly generated initial message. One can see that in every case
the Hamming distance is around m/2, or one bit difference of input bits
produces about 50% different output bits, as it would be expected in theo-
retical models of ideal random functions.

Performances

Memory requirements for implementing NaSHA are quite small, only
0.625KB (0.25KB for starting bijection and 0.375 KB for 48 64-bit initial
values). We tested the implementation on 32-bit and 64-bit architecture and
for results of NaSHA on different configurations one can see EBASH project
web site [6].

1.
a. Description of the platform: Wintel personal computer, with

an Intel Core 2 Duo Processor, 2.4GHz clock speed, 2GB RAM, running

3.1. Hash functions 93

n 8 bits 80 bits 800 bits 8000 bits 80000 bits
224 min = 42% min = 41% min = 41% min = 38% min = 35%

avg = 50.06% avg = 49.86% avg = 50.21% avg = 49.97% avg = 50.02%
max = 56% max = 57% max = 60% max = 63% max = 63%
sd = 4.44 sd = 3.48 sd = 3.39 sd = 3.40 sd = 3.41

256 min = 45% min = 43% min = 40% min = 37% min = 35%
avg = 49.12% avg = 50.88% avg = 50.11% avg = 49.96% avg = 50.00%
max = 55% max = 58% max = 58% max = 60% max = 62%
sd = 2.91 sd = 3.35 sd = 3.20 sd = 3.14 sd = 3.16

384 min = 46% min = 45% min = 40% min = 40% min = 39%
avg = 49.32% avg = 49.86% avg = 50.10% avg = 50.04% avg = 50.00%
max = 53% max = 54% max = 59% max = 59% max = 60%
sd = 1.96 sd = 2.49 sd = 2.52 sd = 2.60 sd = 2.61

512 min = 47% min = 45% min = 42% min = 41% min = 41%
avg = 50.12% avg = 50.01% avg = 50.04% avg = 49.99% avg = 50.00%
max = 51% max = 55% max = 58% max = 58% max = 58%
sd = 1.41 sd = 2.11 sd = 2.35 sd = 2.25 sd = 2.25

Table 3.2: Avalanche effect of input message with all zeros

n 8 bits 80 bits 800 bits 8000 bits 80000 bits
224 min = 49% min = 41% min = 41% min = 37% min = 35%

avg = 52.68% avg = 50.38% avg = 50.14% avg = 49.99% avg = 50.00%
max = 56% max = 61% max = 62% max = 61% max = 63%
sd = 2.27 sd = 3.89 sd = 3.40 sd = 3.38 sd = 3.42

256 min = 42% min = 41% min = 41% min = 38% min = 36%
avg = 48.73% avg = 50.72% avg = 50.06% avg = 50.01% avg = 50.01%
max = 53% max = 60% max = 58% max = 61% max = 62%
sd = 3.80 sd = 3.46 sd = 3.14 sd = 3.18 sd = 3.18

384 min = 47% min = 43% min = 42% min = 40% min = 39%
avg = 50.29% avg = 49.95% avg = 49.87% avg = 49.98% avg = 50.00%
max = 54% max = 54% max = 57% max = 58% max = 59%
sd = 2.28 sd = 2.38 sd = 2.60 sd = 2.63 sd = 2.61

512 min = 49% min = 47% min = 43% min = 41% min = 40%
avg = 51.20% avg = 50.32% avg = 50.00% avg = 50.05% avg = 50.02%
max = 53% max = 55% max = 57% max = 58% max = 59%
sd = 1.28 sd = 1.95 sd = 2.26 sd = 2.25 sd = 2.26

Table 3.3: Avalanche effect of a randomly generated input message

Windows Vista Ultimate 32-bit (x86) Edition. Compiler: the ANSI C
compiler in the Microsoft Visual Studio 2005 Professional Edition.

b. Speed estimate: Comparison of NaSHA-(m, 2, 6) performance in
Cycles/Byte Versus Message on 32-bit architecture, where m ∈ {224, 256, 384,
512} is given in the Table 1.

c. Speed/memory tradeoffs: One way to change NaSHA perfor-
mances is if as starting bijection we use function of order 216, instead of 28,
paying with larger memory of 64KB instead of 0.25KB. In this way we will
work with 16-bit words, instead of 8-bit words, increasing the performances
by decreasing the number of operations. But searching the bigger Cayley

94 Chapter 3. Cryptographic primitives with quasigroup transformations

Length (bytes) 1 10 100 1000 10000 100000
NaSHA–(224, 2, 6) 2787.00 270.20 50.24 34.83 33.73 34.53
NaSHA-(256, 2, 6) 2797.00 279.70 51.37 37.68 36.43 34.56
NaSHA-(384, 2, 6) 5365.00 541.30 53.77 38.47 37.53 35.58
NaSHA-(512, 2, 6) 5485.00 548.50 55.21 38.68 37.57 37.16

Table 3.4: Performance in Cycles/Byte Versus Message of NaSHA-(m, 2, 6),
where m ∈ {224, 256, 384, 512} on 32-bit architecture

table will decrease performances again. The examination of this option and
the possible performance result is an open question. Another problem is the
construction of suitable permutation of order 216.

Also we can speed NaSHA-(m, k, 6), where m ∈ {224, 256, 384, 512}, by
working with quasigroups of order 2128 or 2256 (r = 7 or r = 8). Our
opinion is that in that case, the security will be somewhat weakened if the
permutation of order 28 is used. We think that the same level of security as
NaSHA-(m, k, 6) can be obtained for NaSHA-(m, k, 7) if we use a permuta-
tion of order 216.

If instead of k = 2 in NaSHA-(m, k, 6), where m ∈ {224, 256, 384, 512},
we use k = 4, we obtain slowdowns by factor that ranges from 1.75 to 1.9
for NaSHA-(224, k, 6) and NaSHA-(256, k, 6) and from 1.78 to 2 for NaSHA-
(384, k, 6) and NaSHA-(512, k, 6).

2.

a. Description of the platform: Wintel personal computer, with
an Intel Core 2 Duo Processor, 2.4GHz clock speed, 2GB RAM, running
Windows Vista Ultimate 64-bit (x64) Edition. Compiler: the ANSI C
compiler in the Microsoft Visual Studio 2005 Professional Edition.

Length (bytes) 1 10 100 1000 10000 100000
NaSHA-(224, 2, 6) 1718.00 168.10 31.90 24.80 22.30 23.08
NaSHA-(256, 2, 6) 1729.00 174.90 32.77 24.94 22.32 23.06
NaSHA-(384, 2, 6) 3289.00 330.10 32.65 24.55 24.04 24.52
NaSHA-(512, 2, 6) 3361.00 336.10 36.25 24.64 24.04 24.55

Table 3.5: NaSHA Performance in Cycles/Byte Versus Message Length on
64-bit architecture

3.1. Hash functions 95

b. Speed estimate: Comparison of NaSHA-(m, 2, 6) performance in
Cycles/Byte Versus Message on 64-bit architecture, where m ∈ {224, 256, 384,
512} is given in the Table 2.

c. Speed/memory tradeoffs: If instead of k = 2 in NaSHA-(m, k, 6),
where m ∈ {224, 256, 384, 512}, we use k = 4, we obtain slowdowns by factor
almost 2.

Preliminary security analysis

NaSHA family of cryptographic hash function uses Merkle-Damg̊ard domain
extender with standard Merkle-Damg̊ard strengthening. It has incorporated
also the wide-pipe design of Lucks [70, 71] and Coron’s [11] suggestions.
In every iterative step of the compression function, we use 2n-bit message
blocks and 2n-bit chaining variable, so the strings of length 4n bits are
mapped to strings of length 4n bits and then only 2n bits are kept for the
next iterative step. And, the most important, the length of any chaining
variable is at least two times wider than the final digest value. For the same
reasons D. Gligorovski [37] stated, by this kind of design we gain resistance
to some generic attacks like: length extension attack, Joux’s multicollision
attack [54], length extension attack, Dean fixed point attack [18], Kelsey
and Schneier’s long message 2nd preimage attack [57], Kelsey and Kohno’s
herding attack [56] and 2nd collision attack.

Resistance to preimage and 2nd preimage attacks

The quasigroup used for NaSHA-(256, 2, 6) is of order 2n = 264 and MT
is performed on t = 16 64-bit words, so by Proposition 25 one can find a sec-
ond preimage or collision after around 268 checks, but under condition that
the quasigroup operations and the values of the leaders are known by the at-
tacker. The quasigroup operations ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1 and
∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2 of NaSHA-(256, 2, 6) hash function and
the leaders l1, l2 depend on the input values of MT .

Let MT (x1||x2||x3|| . . . ||x16) = (d1, d2, . . . , d16), where xi are 64-bit
unknowns and di are given 64-bit words. Let Al2(x1||x2||x3|| . . . ||x16) =
z1||z2||z3|| . . . ||z16 and put yi = ρ(zi, 32) for i = 1, 2, . . . , 16. Then we obtain
the following system of equations with unknowns xi and yi (i.e., zi), un-
known quasigroup operations • = ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1 and

96 Chapter 3. Cryptographic primitives with quasigroup transformations

? = ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2 , and unknown leaders l1 and l2:





(l2 + x1) • x1 = y1

(y1 + x2) • x2 = y2

. . .
(y15 + x16) • x16 = y16

y16 ? (y16 + l1) = d16

y15 ? (y15 + d16) = d15

. . .
y1 ? (y1 + d2) = d1.

(3.6)

For solving the system (3.6) we need at first to define the quasigroup
operation • and ? and the leaders l1 and l2. So, we have to choose 8 bytes
a1, b1, c1, a2, b2, c2, a3, b3 (note that c3 = a1), 6 16-bit words α1, β1, γ1, α2, β2,
γ2, 6 32-bit words A1, B1, C1, A2, B2, C2 and 2 64-bit words l1, l2, and that
can be done in 2480 ways. Fix a choice of all of the constant words and then,
after around 268 checks, a solution x1, x2, x3, . . . , x16 of (3.6) can be found.
Now, we have to see if the obtained solution satisfies the equalities

x1 ⊕ x2 = l1, (3.7)

x3 ⊕ x4 = l2, (3.8)

x5 ⊕ x6 = a1||b1||c1||a2||b2||c2||a3||b3, (3.9)

x7 + x8 = α1||β1||γ1||α2, (3.10)

(x9 + x10)(mod 232) = β2||γ2, (3.11)

x11 + x12 = A1||B1, (3.12)

x13 + x14 = C1||A2, (3.13)

x15 + x16 = B2||C2. (3.14)

For each of the equalities (3.7)–(3.10), (3.12)–(3.14), we have that the
probability to be true is 2−64, so these seven equalities will be true with
probability 2−448. The equality (3.11) will be true with a probability 232. So,
all the equalities (3.7)–(3.14) will be true with probability 2−480. (Namely,
there are (264)2 pairs (x1, x2), and there are 264 different solutions of (3.7)
when (3.7) is considered as an equation with 2 unknowns x5, x6. The same
discussion holds for the others equalities as well.)

So, after having around 268 checks, we can find a solution of (3.6) with a
probability 2−480. The space of all possible values of (a1, b1, c1, a2, b2, c2, a3,

3.1. Hash functions 97

b3, α1, β1, γ1, α2, β2, γ2, A1, B1, C1, A2, B2, C2, l1, l2) consists of 2480 elements.
Then, after making 268 · 2480 = 2548 checks, a solution of (3.6) can be found
with probability 1− (1− 2−480)2

480 ≈ 0.53.

We conclude that NaSHA-(256, 2, 6) is 2nd preimage resistant. Con-
sequently, it is preimage resistant with much higher complexity, since in
this cases only d4, d8, d12 and d16 are known (the hash value of NaSHA
hash is d4||d8||d12||d16). To discover the original image one has to choose
d1, d2, d3, d5, d6, d7, d9, d10, d11, d13, d14, d15 in such a way the true values of
y1, . . . , y16 of (3.6) have to be find, and that can be done with probability
around (2−64)12.

The analysis given above for NaSHA-(256, 2, 6) holds true for NaSHA-
(224, 2, 6) too. The same analysis holds true for NaSHA-(384, 2, 6) and
NaSHA-(512, 2, 6). In this case, a slightly better results are obtained since
the value of t is 32.

Collision resistance

For the collision resistance we have to find (x1, . . . , x16) 6= (x′1, . . . , x
′
16)

such that MT (x1, x2, . . . , x16) = MT (x′1, x
′
2, . . . , x

′
16). We infer equations

of kind 



(l2 + x1) • x1 = y1

(y1 + x2) • x2 = y2

. . .
(y15 + x16) • x16 = y16

(3.15)





(l′2 + x′1) •′ x′1 = y′1
(y′1 + x′2) •′ x′2 = y′2
. . .
(y′15 + x′16) •′ x′16 = y′16

(3.16)





y16 • (y16 + l1) = y′16 •′ (y′16 + l′1)
y15 • (y15 + (y16 • (y16 + l1))) = y′15 •′ (y′15 + (y′16 •′ (y′16 + l′1)))
. . .
y1 • (y1 + (y2 • . . .) . . .) = y′1 •′ (y′1 + (y′2 •′ . . .) . . .).

(3.17)

Now, besides the equalities (3.7)–(3.14), we will have eight more

x′1 ⊕ x′2 = l′1, (3.18)

x′3 ⊕ x′4 = l′2, (3.19)

x′5 ⊕ x′6 = a′1||b′1||c′1||a′2||b′2||c′2||a′3||b′3, (3.20)

98 Chapter 3. Cryptographic primitives with quasigroup transformations

x′7 + x′8 = α′1||β′1||γ′1||α′2, (3.21)

(x′9 + x′10)(mod 232) = β′2||γ′2, (3.22)

x′11 + x′12 = A′1||B′
1, (3.23)

x′13 + x′14 = C ′
1||A′2, (3.24)

x′15 + x′16 = B′
2||C ′

2. (3.25)

Then, even we assume that we have a solution of the system of equa-
tions (3.17), after 21028 checks we can find a solution of (3.15) and (3.16)
with probability ≈ 0.5. So we have the following statement. Similar can be
proved for NaSHA-(384, 2, 6) and NaSHA-(512, 2, 6).

Resistance to attacks that get all the additions to behave as XORs

Compression function of NaSHA-(m, k, r) use additions modulo 232 and
264, XORs and left rotations, so we must to examine attacks that find values
for which additions in NaSHA-(m, k, r) behave as XORs. It is important
to mention the work of Lipmaa and Moriai [66], which constructed efficient
algorithms for computing differential properties of addition modulo 2n, work
of Lipmaa et al [67], which constructed linear-time algorithm for computing
the additive differential probability of XOR, and work of Paul and Preneel
[113].

NaSHA-(m, k, r) is resistant to these kind of attacks, because it is using
extended Feistel networks, which incorporate operations with 8, 16, 32 and
64-bits operations and table lookups, instead of using only combinations of
32 or 64-bits words. Additionally, having in mind that compression function
of NaSHA-(m, k, r) is function from {0, 1}4n to {0, 1}4n, at this moment it is
impossible to find concrete values of arguments for this function, for which
additions will behave as XORs.

Resistance to linear and differential attacks

Recent collision attacks on some hash functions [139, 137, 136, 138]
are in fact differential attacks that involves modular integer subtraction
or exclusive-or as a measure of difference and some kind of message modifi-
cation techniques. There are several strategies which one might employ to
attempt to prevent the success of these attacks. The first one is to attempt
to prevent the existence of any ”good” differential (a differential path that
leads to (near) collisions and holds with probability greater than 2−n/2),

3.1. Hash functions 99

like wide trail strategy for block ciphers. The second strategy would be to
reduce the success probability of the attack with restraining the power of
the message modification techniques. A third possibility is to consider sit-
uations in which single message bits are going to affect multiple blocks or
maybe entire hash.

The NaSHA-(m, k, r) hash algorithm allows each bit of an input message
M to influence almost all bits of the resulting hash value. To verify this let
represent S(i) as

S(i) = S
(i)
1 ||S(i)

2 ||S(i)
3 || . . . ||S(i)

2t−2||S(i)
2t−1||S(i)

2t .

We have that every bit from the bit string S(i) influences all blocks S
(i+1)
j

with even subindexes (j = 2, 4, 6, . . . , 2t) of the bit string S(i+1). Namely,
by Step 6 we apply the transformations LinTr2t

2n+2 and MT on S(i). The
linear transformation besides diffusion spread out the influence of the bits.
The MT transformation is composition of Al and ρ(RAl) transformations.
Now, if b is a bit from a block S

(i)
j of S(i), then all blocks of Al(S(i)) from the

j+1-th until 2t-th are influenced by b. After that, all blocks ofMT (Al(S(i)))
will be influenced by b. So we have the following theorem.

Theorem 22 Every bit from the input message M influences all blocks of
the hash value NaSHA-(m, k, r)(M). 2

Proof By the above mentioned considerations we have that each bit of M
influences all blocks with even subindexes of S(N). Since NaSHA-(m, k, r)(M) =
A4||A8|| . . . ||A2t−4||A2t, where A1||A2||A3|| . . . ||A2t = (LinTr2t

2n+2(S(N))),
all blocks of NaSHA-(m, k, r)(M) are influenced by each bit of M . ¥

Much more than Theorem 22 is stating, the internal structure of the
quasigroup operation and the addition modulo 2r allows us to conclude that
almost all bits of the hash value are influenced by each bit of the input
message.

Also we have to stress out that our starting bijection has also good
resistance to differential attacks with differential 4-uniformity and good re-
sistance to linear attack with nonlinearity of 112. All these together give a
good resistance to any attack that will involve differential cryptanalysis.

Nonlinearity of 112 of starting function is inherited in constructed ex-
tended Feistel network in our implementation. From all this, we gain resis-
tance of NaSHA-(m, k, r) to any attack that will involve linear cryptanalysis,
but also we gain resistance to recent Cube attack of Dinur and Shamir [26],

100 Chapter 3. Cryptographic primitives with quasigroup transformations

that can be applied to wide rang of cryptographic primitives which are pro-
vided as a black box (even when nothing is known about its internal struc-
ture) as long as at least one output bit can be represented by (an unknown)
polynomial of relatively low degree in the secret and public variables.

Cryptanalysis

For the early version of our implementation of NaSHA-(m, 2, 6) where def-
inition of leaders and constants were same for all m, there have been some
cryptanalysis for NaSHA-(384, 2, 6) and NaSHA-(512, 2, 6).

J. Li et al [51] have been given free start collisions for all versions of
NaSHA with examples and really interesting truncated differential collision
attack on NaSHA-512 with claimed complexity 2192 of the attack. They
made a very interesting observation: that when a and x satisfy the conditions
(a)64...32 = ¬(x)64...32, (a)32 = 1 and (a)31...1 = 0, the input difference 4x =
0x00000000FFFFFFFF always lead to the zero output difference for the
calculation of (a+x) ∗x ((x)i denotes the i-th bit of x). For example, given
x = 0xAAAAAAAA00000000, x0 = 0xAAAAAAAAFFFFFFFF and a =
0x5555555580000000, (a+x)∗x = (a+x0)∗x0 always holds no matter what
parameters are set for the quasigroup operation ∗. S. Markovski et al [89]
confirmed that this attack has unknown probability, because attackers use a
system of three quasigroup equations with five variables. Their claim will be
true if this kind of systems always has a solution. But this is not true. There
are examples of these kind of systems with no solutions for quasigroups of
order 4.

I. Nikolić and D. Khovratovich [106] have been given free-start collision
attacks on NaSHA with complexity of 232 and free-start preimage attack
on NaSHA-n with complexity of 2n/2. With recent changes only this attack
will work and this will be only for 256 and 224 version of NaSHA.

3.2 Pseudo-random number generators

A pseudo-random number generator (PRNG) is an deterministic algorithm
for generating a pseudo-random sequence of numbers that approximates
the properties of random numbers. They are necessary in cryptography,
stochastic simulations, search heuristics, game playing etc, for generation of
keys, nonces, challenges etc. Pseudo-randomness comes from the fact that
the sequence is completely determined by a relatively small set of initial
values, called the PRNG’s state, which is initialize by random seed. Ran-
dom seeds are often generated from the state of the computer system (such

3.2. Pseudo-random number generators 101

as the time), a cryptographically secure pseudo-random number generator
(CSPRNG) or from a hardware random number generator. PRNGs need to
have very long periods and simple and fast software implementation. Com-
mon classes of these algorithms are the linear congruence functions and the
linear feedback shift registers, which have relatively small periods and are
highly predictable. Some newer PRNGs are Blum Blum Shub, Fortuna, and
the Mersenne twister. PRNG can be made also from other cryptographic
primitives as stream and block ciphers and hash functions. PRNG need to
satisfy some requirements:

– PRNG needs to pass many statistical randomness tests.

– Produced pseudo-random sequences do not contain identical consecu-
tive elements with a high probability.

– It should be impossible for any attacker to calculate, or otherwise
guess, from any given sub-sequence, any previous or future values in
the sequence, nor any inner state of the generator.

– It should be impossible, for an attacker to calculate, or guess from an
inner state of the generator, any previous numbers in the sequence or
any previous inner generator states.

Only PRNGs that meet the last requirement can apply in cryptography
for key generation, generation of nonces, salts etc.

Dimitrova and Markovski [25] propose one quasigroup based PRNG -
QPRSG with arbitrary large period and give analysis of which quasigroups
are appropriate to use in PRNGs. Let (Q, ∗) be a quasigroup and then
choose a ∈ Q, so a ∗ a 6= a. Then they apply k times the transformation Ea

on string aaa . . . or

E(k)
a (aaa . . .) = a

(k)
1 a

(k)
2 a

(k)
3 . . .

The Theorem 4 provides that with the increasing of the k will also in-
crease the period of QPRSG. Also obtained sequences pass all statistical
randomness tests. From the numerical experiments made by authors, over
50% of the quasigroups have coefficient of period growth greater than half of
their order. Fraction of quasigroup with almost ideal period growth is very
small, but real. The QPRSG is CSPRNG if the quasigroup that was used
to build the generator remains unknown. The QPRSG further can be make
faster with parallelization and can be improved by using random starting
sequence b1b2b3 . . . instead of aaa . . . [73].

102 Chapter 3. Cryptographic primitives with quasigroup transformations

Markovski et al. [80] have been proposed a new method for simulating
unbiased physical sources of randomness and improving the properties of
existing PRNGs, which is based on the quasigroup string transformations.
This method is flexible, highly parallel, with linear complexity and is capa-
ble of producing a random number sequence from a very biased stationary
source. In fact, it comes in two variants based on E− and E′− quasigroup
string transformations, represented below. The input of each algorithm con-
sists of choosing quasigroup (Q, ∗) of order s, fixed element l from Q as a
leader, an integer k as the number of applied transformations and biased
random string b0b1b2 . . . bj .

E-algorithm E’-algorithm
1. For i = 1 to k do Li ← l; 1. For i = 1 to k do Li ← l;
2. j ← 0; 2. j ← 0;
3. do 3. do

b ← bj ; b ← bj ;
L1 ← L1 ∗ b; L1 ← b ∗ L1;
For i = 2 to k do For i = 2 to k do

Li ← Li ∗ Li−1; Li ← Li−1 ∗ Li;
Output: Lk; Output: Lk;
j ← j + 1; j ← j + 1;

loop; loop;

The authors also made some recommendations about method’s param-
eters. For simulating unbiased physical sources of randomness, order s can
be arbitrary large and 4 6 s 6 256. The number k should be chosen by the
rule ”for smaller s larger k” and its choice depends on the source. For highly
biased sources recommendation are ks > 512 and k > 8. For improving the
properties of existing PRNGs, the chosen quasigroup must be exponential.

3.3 Stream ciphers

Stream cipher is a symmetric key algorithm, which encrypt plaintext bits,
usually individual bytes (or bit), one at a time, using an encryption trans-
formation which varies with time. So, it gives different output for the same
sequence of plaintext. Stream ciphers typically are faster than block ciphers
and have lower hardware complexity. Because stream ciphers have limited
or no error propagation, stream ciphers may be advantageous in situations
where transmission errors are highly probable. They are mandatory when

3.3. Stream ciphers 103

buffering is limited or when characters must be individually processed as
they are received.

Usually stream ciphers generate the so called keystream which is than
combined with plaintext stream by some combiner-type algorithms, which
in most cases is simple bitwise xoring operation (binary additive stream ci-
pher). Stream ciphers can be divided to synchronous and self-synchronous
or asynchronous. Synchronous stream ciphers generate the keystream in-
dependently of the plaintext and ciphertext. They are having no error-
propagation, which limits the opportunity to detect an error when decryp-
tion is performed, but more importantly an attacker is able to make con-
trolled changes to parts of the ciphertext knowing induced changes on the
corresponding plaintext. Also the sender and the receiver must be exactly
in step for decryption to be successful and for that aim, restoration of syn-
chronization is needed, usually by including ”marker positions” in the trans-
mission. Errors in the transmission results in incorrect decryption until one
of the marker positions is received.

Self-synchronous or asynchronous stream ciphers use n bits of ciphertext
to generate the keystream so it has limited error propagation - the one-bit
error may produce incorrect decryption of the following n bits. They have
ability to resume correct decryption if the decrypting keystream falls out
of synchronization with the encrypting keystream. Big drawback of these
ciphers is that the attacker knows some of the variables being used as input
to the algorithm.

Some known stream ciphers are RC4, PANAMA, SEAL, Trivium etc.
Stream ciphers must have long periods, must not produce related or weak
keys and it must be impossible to recover the cipher’s key or internal state
from the keystream. Produced keystreams must not allow to attackers to
distinguish them from random noise.

One of the earliest quasigroup based encryption method is given in [123],
where a set of {L1, . . . , Lk} MOLS of order n is used. The secret key is pair
of different squares (Lc, Ld) and if the message is encoded as a pair (i, j),
it can be encrypted in the pair (α, β), that occur at the intersection of row
i and column j of the Latin squares Lc and Ld. Decryption is done by
simple scanning of Lc and Ld and because of the orthogonality, unique pair
of coordinates (i, j) will be obtained.

Another early attempt to use quasigroups for constructing stream ci-
pher, which is synchronous, is made by Kościelny [60]. For that aim, he
suggests to use quasigroup (Q, ◦) obtained by isotopies from group, isomor-
phic to the additive group of GF (q) or cyclic group of order q or Abelian
loop of even order q (in [61] you can find several Maple 7 routines for gen-

104 Chapter 3. Cryptographic primitives with quasigroup transformations

erating quasigroups isomorphic to the interior of: cyclic group of order q,
multiplicative group and additive group of a finite field GF (pm) and their
isotopies). The quasigroup can also be represented as vector valued Boolean
functions. For creating the stream cipher, he also uses the two conjugates of
the given quasigroup, (Q, \) and (Q, /). Let m1m2m3 . . . denote the stream
of characters of the plaintext, c1c2c3 . . . denote the stream of characters of
the ciphertext and k1k2k3 . . . denote the keystream. The author suggests 6
ways for enciphering and deciphering:

ci = mi ◦ ki, mi = ci/ki

ci = ki ◦mi, mi = ki\ci

ci = ki/mi, mi = ci\ki

ci = mi/ki, mi = ci ◦ ki

ci = mi\ki, mi = ki/ci

ci = ki\mi, mi = ki ◦ ci

If (Q, ◦) is not associative, than mi can be mapped into 6 different char-
acters, which is a progress in comparison with the stream ciphers built over
GF (2) with XOR operation. The secret key may have five components: the
sequence of characters interacting with the stream of the characters of a
plaintext, the quasigroup (Q, ◦) and three permutations needed to form the
conjugate quasigroups. One security argument is that the set of all isotopies
of a quasigroup of order q forms a group of order (q!)3.

Other early attempt to create quasigroup based asynchronous stream
cipher is given in Markovski et al. [76]. Let ◦ be a quasigroup operation
defined on alphabet Q and let \ be its left division. The cipher stream is
obtained by simple e− transformation with fixed leader and decrypting is
done by d− transformation with the same leader. The secret key is the used
quasigroup. Several years letter, Ochodkova and Snasel [109] use exactly
the same method for encoding the file.

In Markovski et al [82] is given quasigroup based enciphering method,
where encryption is done by T

(n)
ln,...,l1

− transformation and decryption with
opposite transformation. This is in fact asynchronous stream cipher. The
secret key are leaders l1 . . . ln and the order of e− or d− transformations in
encryption transformation, but quasigroup is publicly known. Interesting is
that the authors implemented this in the so called Ytalk 3.0.2 software for
on-line chat over Internet and for that aim they used quasigroup of order
128 with alphabet first 128 characters of ASCII table.

3.3. Stream ciphers 105

In [114] Petrescu gives an enciphering method using ternary quasigroups,
which can be used as a asynchronous stream cipher. Let (Q,α) be publicly
known quasigroup which will be used as a seed and as an isotope carrier.
Every ternary quasigroup (Q,α) forms an algebra (Q,α, α1, α2, α3) with 4
ternary operation, satisfying the following identities

α(α1(x1), x2, x3) = x1, α1(α(x1), x2, x3) = x1

α(x1, α2(x2), x3) = x2, α2(x1, α(x2), x3) = x2

α(x1, x2, α3(x3)) = x3, α3(x1, x2, α(x3)) = x3

Let K = Q4 × {1, 2, 3} be the key space. The key is represented as k =
a1a2a3a4i and it determines another isotopic quasigroup (Q, β) by

β(x1, x2, x3) = f4(α(f−1
1 (x1), f−1

2 (x2), f−1
3 (x3))),

where fj = faj are permutations on Q. Every key uniquely determines a
bijection Ek(m1m2 . . .) = c1c2 . . ., given below

i = 1 i = 2 i = 3
c1 = β(m1, a1, a2) c1 = β(a1,m1, a2) c1 = β(a1, a2,m1)
c2 = β(m2, a3, a4) c2 = β(a3,m2, a4) c2 = β(a3, a4,m2)
j > 2 j > 2 j > 2
cj = β(mj , cj−2, cj−1) cj = β(cj−2,mj , cj−1) cj = β(cj−2, cj−1,mj)

Decryption function Ek(c1c2 . . .) = m1m2 . . . is defined as

i = 1 i = 2 i = 3
m1 = β1(c1, a1, a2) m1 = β2(a1, c1, a2) m1 = β3(a1, a2, c1)
m2 = β1(c2, a3, a4) m2 = β2(a3, c2, a4) m2 = β3(a3, a4, c2)
j > 2 j > 2 j > 2
mj = β1(cj , cj−2, cj−1) mj = β2(cj−2, cj , cj−1) mj = β3(cj−2, cj−1, cj)

The author gave an assemble implementation also, where the seed quasi-
group is defined as α(x1, x2, x3) = (x1−x2 +x3) mod 256 and fa(x) = x+a
mod 256.

Maybe the most famous quasigroup based stream cipher, which has been
intrigue the cryptography community for a several years is Edon80, designed
by Gligoroski et al. [42, 44]. It is one of the few left unbroken eSTREAM
finalists. Especially interesting about this cryptographic primitive is that it
uses 4 quasigroups of very small order, 4 actually, and it is still resisting to
all attacks. The authors claimed that 64 out of 576 quasigroups of order 4
are very suitable for using in Edon80, and they have chose the quasigroups

106 Chapter 3. Cryptographic primitives with quasigroup transformations

with the lexicographic order 61, 241, 350 and 564. Only quasigroup 350 is
shapeless, 61 is commutative, 241 has left unit 1 and satisfy the identity
x •1 (x •1 (x •1 (x •1 y))) = y and 564 satisfy the identity x •3 (x •3 y) = y.
Other algebraic properties of these quasigroups are examined in [135].

•0 0 1 2 3
0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

•1 0 1 2 3
0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

•2 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

•3 0 1 2 3
0 3 2 1 0
1 1 0 3 2
2 0 3 2 1
3 2 1 0 3

Table 3.6: Quasigroups used in Edon80

Edon80 is a binary additive stream cipher, with average period of 291 and
with three modes of operation: KeySetup, IVSetup and Keystream mode.
First two modes serve for initialization of the key and the initial vector IV .
The secret key is 80 bits long, and it is divided in 40 2-bits values, each
of them selects one of four quasigroup operations. Obtained IV is consists
also from 40 2-bits values v0v1 . . . v3132100123 and it has the initial values
of the internal states a0 . . . , a79. Encryption is done in Keystream mode
and it starts with periodic string that has shape: 01230123 . . . 0123 En-
cryption consists from 80 e−transformations, with initialized internal states
a0 . . . , a79 as a leaders. The output of the stream cipher is every second
value of the last e−transformation. In [38] one can find a proposal of adding
MAC functionality to Edon80. A related key attack on Edon80 is suggested
by Hell et al [49], with the complexity of 269, although this complexity has
been disputed by the Edon80 authors.

Another eSTREAM unbroken phase 3 candidate that uses quasigroups
is CryptMT v3 (Cryptographic Mersenne Twister), designed by Matsumoto
et al [92, 93]. It is a binary additive stream cipher over the set B = F8

2,
with period multiply of 219937− 1. It uses combined generator, consisting of
two parts. The first part is so called SFMT (SIMD-oriented Fast Mersenne
Twister) generator, which generate 128-bit pseudo-number integer in one
step, and the second part is an uniform quasigroup filter with memory of
one wordsize. We are interesting in used quasigroup. Let Q be the ring
Z/232 of integers modulo 232 and every x ∈ Q corresponds to a 33-bit odd
integer 2x + 1 mod 233. Quasigroup operation ◦ is defined as

x ◦ y = 2xy + x + y mod 232

which is essentially the multiplication of 33−bit odd integers. This quais-
group definitely is too far from being shapeless. From the definition one can

3.4. Block ciphers 107

see that this quasigroup is associative, commutative, with unit 0 and has
several proper quasigroups (Table 3.7).

◦ 0 231 − 1
0 0 231 − 1

231−1 231 − 1 0

◦ 0 232 − 1
0 0 232 − 1

232−1 232 − 1 0

◦ 0 231

0 0 231

231 231 0

◦ 0 231 − 1 231 232 − 1
0 0 231 − 1 231 232 − 1

231 − 1 231 − 1 0 232 − 1 231

231 231 232 − 1 0 231 − 1
232 − 1 232 − 1 231 231 − 1 0

Table 3.7: Some proper quasigroups used in CryptMT quasigroup

3.4 Block ciphers

Block cipher is a symmetric key algorithm, which encrypts plaintext in
fixed-length groups of bits, termed blocks, with an unvarying transforma-
tion. Conventional block ciphers take two inputs: a key K ∈ {0, 1}k

and a plaintext M ∈ {0, 1}n and produce a single output - a ciphertext
C ∈ {0, 1}n. This can be represented as E : {0, 1}k × {0, 1}n → {0, 1}n or
EK : {0, 1}n → {0, 1}n, when the key is fixed. Each key selects one bijection
EK(·) from the possible set of (2n)!. Decryption can be done by inverse
transformation E−1

K , or for the message M , we have E−1
K (EK(M)) = M .

There exist also “tweakable” block cyphers, which accept additional input
called the tweak T ∈ {0, 1}t. The tweak, along with the key, selects the per-
mutation computed by the cipher (EK,T (·) is bijection). Role of the tweak
is to provide variability, unlike the key which provides uncertainty to the
adversary.

For encrypting messages larger than size of the block, a mode of opera-
tion and some padding rule are used. NIST [110] recommends the following
modes of operation for use with an underlying symmetric key block cipher
algorithm: electronic codebook (ECB), cipher-block chaining (CBC), cipher
feedback (CFB), output feedback (OFB) and counter (CTR) mode. Some
modes of operation, like OFB mode and CTR mode turn a block cipher to
work as a stream cipher and for them, the plaintext does not need to be a
multiple of the block size. For the ECB and CBC modes, the total number
of bits in the plaintext must be a multiple of the block size and for CFB
mode, the total number of bits in the plaintext must be a multiple of a
parameter,that does not exceed the block size. CBC and CFB mode start

108 Chapter 3. Cryptographic primitives with quasigroup transformations

with initialization vector IV , for which it is important to be unpredictable,
and for OFB mode, IV can be nonce.

There is one interesting application of quasigroups, made by Gligoroski
[45], who proved that CBC and OFB modes can be represented as quasi-
group string transformations, and that OFB is special case of CBC mode
of operation where the encryption of a string of all zeroes is performed.
This implies that one can launch several attack scenarios against that inter-
changed use of CBC and OFB modes of operation.

Most block ciphers are constructed by repeatedly applying a simpler
function, termed the round function. This approach is known as iterated
block cipher where each iteration is termed a round. Most famous block
ciphers are DES, IDEA, AES etc. Currently, there are 3 approved block
ciphers: AES, Triple DES and Skipjack (EES).

One attempt to deploy quasigroups for block cipher is given by Carter et
al [10]. They introduce DESV - a version of DES in which XOR is replaced
by an arbitrary quasigroup operation defined by a Latin square, and also
they claim that reduced numbers of rounds can be safely contemplated.

3.4.1 Block cipher Alex’smile-(B, I, G)

Here we define the family of tweakable block ciphers Alex’smile-(B, I, G)
that works on 32-bit words. The parameters B, I,G denote block size in 32-
bit words (even number), number of rounds and the length of the key size in
bits (multiple of 32). Each round consists of two OT transformations going
in different direction through the string, followed by fixed left rotations.
Before the first round and after the last round there is classical whitening
with XOR, which is applied in several designs, e. g. Khufu/Khafre, DES-X,
Twofish, AES etc. Motivation for this is that every operations before the
first and after the last key manipulation does not contribute to the security
of the given cipher.

Generally, any Alex’smile-(B, I, G) block cipher transforms a plaintext
message block of length B words into a ciphertext block of same length by
using a secret key k of length G bits. It use one additional input, the tweak
T of length 128 bits, which purpose is only to provide variability. Special
algorithm for key expanding and key scheduling is used. It uses the secret
key k and the tweak T as an input. Expanded key consists of 2B + 8I
subkeys words, denoted by K = K1K2 . . . K2B+8I , where Ki,∈ Z32

2 .
Given a plaintext M = m1m2 . . . mB ∈ (Z32

2)B we obtain the ciphertext
C = c1c2 cB ∈ (Z32

2)B by using the following encryption algorithm.

3.4. Block ciphers 109

Encryption algorithm of Alex’smile-(B, I, G)

Input: A plaintext M = (m1, . . . , mB), an expanded key K = (K1, . . . , K2B+8I),
fixed constants for left rotations (l1, . . . , l2B−4) and
constants (RC1, . . . , RCB) as 32-bit words.

Output: A ciphertext C = (c1, . . . , cB).

1. for i = 1 to B do bi ← (Ki ⊕mi) + RCi;
2. for j = 1 to I do

∗1 = ∗KB+(j−1)I+1...KB+(j−1)I+4 and ◦1 = ◦KB+(j−1)I+1...KB+(j−1)I+4

OT∗1,◦1(b1, b2 . . . bB) = a1, a2 . . . aB

(lr1, lr2, lr3, . . . , lrB) =
(lr1(KB+(j−1)I+3), lr2(KB+(j−1)I+3), l1, . . . lB−2);

for i = 1 to B do bi ¿lri ;
∗2 = ∗KB+(j−1)I+5...KB+(j−1)I+8 and ◦2 = ◦KB+(j−1)I+5...KB+(j−1)I+8

OT∗2,◦2(aB , aB−1 . . . a1) = bB , bB−1 . . . b1

(lrB+1, lrB+2, lrB+3, . . . , lr2B) =
(lrB+1(KB+(j−1)I+7), lrB+2(KB+(j−1)I+7), lB−1, . . . l2B−4);

for i = 1 to B do bi ¿lrB+i ;
3. For i = 1 to B do ci = KB+8I+i ⊕ bi

Decryption is done by the following algorithm.

Decryption algorithm of Alex’smile-(B, I, G)

Input: A ciphertext C = (c1, . . . , cB), an expanded key K = (K1, . . . , K2B+8I),
fixed constants for left rotations (l1, . . . , l2B−4) and
constants (RC1, . . . , RCB) as 32-bit words.

Output: A plaintext M = (m1, . . . , mB).

1. For i = 1 to B do bi ← KB+8I+i ⊕ ci;
2. For j = I down to 1 do

(lrB+1, lrB+2, lrB+3, . . . , lr2B) =
(lrB+1(KB+(j−1)I+7), lrB+2(KB+(j−1)I+7), lB−1, . . . l2B−4);

for i = 1 to B do bi ÀlrB+i ;
∗2 = ∗KB+(j−1)I+5...KB+(j−1)I+8 and ◦2 = ◦KB+(j−1)I+5...KB+(j−1)I+8

OT−1
∗2,◦2(bB , bB−1 . . . b1) = aB , aB−1 . . . a1

(lr1, lr2, lr3, . . . , lrB) =
(lr1(KB+(j−1)I+3), lr2(KB+(j−1)I+3), l1, . . . lB−2);

for i = 1 to B do bi Àlri ;
∗1 = ∗KB+(j−1)I+1...KB+(j−1)I+4 and ◦1 = ◦KB+(j−1)I+1...KB+(j−1)I+4

OT−1
∗1,◦1(a1, a2 . . . aB) = b1, b2 . . . bB

3. For i = 1 to B do mi = (bi −RCi)⊕Ki

Let denote the Encryption (Decryption) algorithm by EAK (DAK). The
algorithms EAK and DAK for fixed K can be considered as transformations
of the set QB and since

EAK(DAK(m1m2 . . . mB)) = m1m2 . . . mB

and
DAK(EAK(m1m2 . . .mB)) = m1m2 . . .mB,

110 Chapter 3. Cryptographic primitives with quasigroup transformations

we have

Theorem 23 The transformations EAK and DAK are permutations of
the set QB. ¤

Figure 5: Alex’smile-(B, I, G)

Alex’smile has a special key expansion and key schedule algorithm, that
needs to provide 2B + 8I words for expansion key, where 4I > G/32.

Key expansion and key schedule algorithm of Alex’smile-(B, I, G)

Input: A key bytes k = (k0, . . . , kG/8−1), a tweak words (T1, . . . , T4), N = G/32
an 8× 8 S-box and round constants (RK1, . . . , RK2B+8I) as 32-bit words

Output: An expanded key K = (K1, . . . , K2B+8I).

1. sum = 0; For i = 0 to N − 1 do
KKi+1 = (k4i+3||k4i||k4i+1||k4i+2)⊕RKi+1;
sum = sum + KKi+1;

2. For i = 5 to 2B + 8I do Ti = T(i mod 4)+1

2. From sum bytes (s1||s2||s3||s4) we make RS = (S(s4)||S(s3)||S(s2)||S(s1))
4. KKN+1 = (RS + TN+1)⊕RKN+1;

KKN+2 = (KKN)¿8 + (KKN−1)À5)⊕RKN+2;
5. For i = N + 3 to 2B + 8I − 1 step 2 do

KKi = ((KKi − 2)¿7 + (KKi−1)À4)⊕RKi;
KKi+1 = ((KKi)¿8 + (KKi−1)À5)⊕RKi+1;

6. ∗1 = ∗0...0 and ◦1 = ◦0...0

OT∗1,◦1(KK1, KK2 . . . KK32) = K1, K2 . . . K32

3.4. Block ciphers 111

It can be seen that the first N words are filled with bytes from the secret
key, which are then xored with round constants. We find the sum of the
first N words, and after that we produce the word RS from bytes of the
sum, taken in reverse order and mapped with the given S box. Next word
is obtained in special way, by the word RS, the tweak word and the round
constant. In this way, we diffuse all secret key bits in all next calculated
expanded key words with non-linearity of given S box. Every next word is
sum of the previous two words, where one is rotated to the left and one is
rotated to the right for fixed positions, xored with round constants. At the
end, we apply the OT quasigroup transformation with all parameters zeros
on obtained words, to produce the expanded key words. This transformation
can be done “on the fly”.

Implementation of Alex’smile-(8, 2, G) for G ∈ {128, 192, 256}
We give the implementation of 256-bit Alex’smile-(8, 2, G) block ciphers with
key size of 128, 192 and 256 bits (G ∈ {128, 192, 256}). One can use shorter
keys by padding them with zeros until the next larger defined key length.
This implementation is very flexible, fast and simple.

Quasigroup operations via extended Feistel networks

In every round, we use two different pairs of orthogonal quasigroup oper-
ations ∗j and ◦j (j = 1, 2). In our implementation, orthogonal quasigroups
operations ∗j and ◦j are obtained from orthogonal orthomorphisms FAj ,Bj ,Cj

and F 2
Aj ,Bj ,Cj

(extended Feistel networks, j = 1, 2) of the group (Z32
2 ,⊕32),

by
x ∗j y = x⊕32 FAj ,Bj ,Cj (y)

x ◦j y = x⊕32 F 2
Aj ,Bj ,Cj

(y)

We use the same S-box as NASHA (improved AES S-box with the APA
structure from Cui and Cao [12], given on Table 3.1) as starting bijection
and we define three extended Feistel networks Fa1,b1,c1 , Fa2,b2,c2 , Fa3,b3,c3 :
Z16

2 → Z16
2 by

Fai,bi,ci
(l8||r8) = (r8 ⊕ ai)||(l8 ⊕ bi ⊕ S(r8 ⊕ ci)),

where l8 and r8 are 8-bit variables, ai, bi, ci are 8-bit words from the ex-
panded key which are used as parameters for selecting the quasigroup oper-
ation. Denote by f ′ the bijection Fa1,b1,c1 ◦ Fa2,b2,c2 ◦ Fa3,b3,c3 : Z16

2 → Z16
2 .

112 Chapter 3. Cryptographic primitives with quasigroup transformations

Create the extended Feistel networks FAj ,Bj ,Cj : Z32
2 → Z32

2 and F 2
Aj ,Bj ,Cj

(j = 1, 2) by

FAj ,Bj ,Cj (l16||r16) = (r16 ⊕16 Aj)||(l16 ⊕16 Bj ⊕16 f ′(r16 ⊕16 Cj)),

where l16, r16 are 16-bit variables and Aj , Bj , Cj are 16-bit words, also part
from the expanded key.

Definition of parameters to extended Feistel networks

The parameters of the used extended Feistel network FA,B,C needed for
one pair of an orthogonal quasigroup operations ∗ and ◦ are obtained by 4
subkeys (SK1, SK2, SK3, SK4) from the extended key K. These dependen-
cies can be written as ∗ = ∗SK1,SK2,SK3,SK4 and ◦ = ◦SK1,SK2,SK3,SK4 . Ev-
ery subkey SKi can be represented as array of four bytes (ski1 , ski2 , ski3 , ski4),
where i = 1 . . . 4. We have

a1||b1||c1||a2 = sk11 ||sk12 ||sk13 ||sk14

b2||c2||a3||b3 = sk21 ||sk22 ||sk23 ||sk24

c3||d||A = sk31 ||sk32 ||(sk33 ||sk34)

B||C = (sk41 ||sk42)||(sk43 ||sk44)

Parameter d is used for calculation of the first two rotation values as
[d/32] and d%32, that are needed after every OT transformation.

Definition of constants

In Alex’smile-(8, 2, G) we use several group of constants, all with pur-
pose to make harder the attacker’s job. 8 32-bits RC and 32 32-bits RK
constants, are given in hexadecimal as:

RC = 510e527f, ade682d1, 9b05688c, 2b3e6c1f, 1f83d9ab, fb41bd6b,
5be0cd19, 137e2179

RK = 2dd8a09a, 3c4e3efb, e07688dc, 6f166b73, 061a77a0, 60948dcd,
0c34aa2a, 315e01d5, 8a47ea18, 080559ce6, c785f436, 4a0b98f4, 9f22535b,
264607a8, 53a8c8ca, 56e1288c, 2547d84e, 9ccde59d, 3c1563a9, 317c57a1,
9486eb50, c7d8037f, 77341eda, d21e9a40, c0f905d7, 41c9cb74, d648813e,
45121dbb, 6a09e667, f3bcc908, cbbb9d5d, c1059ed8

3.4. Block ciphers 113

After every OT transformation, we use left rotation of every state word.
First two rotation values are key dependent, but the other 6 are fixed. Fixed
rotations are given in the following Table 3.8.

i 1 2 3 4 5 6 7 8 9 10 11 12
lri 3 4 5 6 7 8 12 11 2 1 23 13

Table 3.8: Fixed left rotations

Design rationales

THE CHOICE OF THE STARTING BIJECTION. When we discussed
about NaSHA, we mentioned three S-boxes that where investigated: the
AES S-box [15], the improved AES S-box from Liu and all [68] and the
improved AES S-box with the APA structure from Cui and Cao [12]. For
the same reasons as there, we chose the last one. In case of suspicion of
a trapdoor being built into the block cipher, the current S-box might be
replaced by other two candidates.

THE CHOICE OF THE QUASIGROUP TRANSFORMATION. We
choose the orthogonal quasigroup string transformation mainly because of
the following Theorem, given in [101].

Theorem 24 Let OT be an orthogonal quasigroup string transformation
defined by two orthogonal quasigroups (Q, ∗1) and (Q, ∗2). The restric-
tion OTt of the orthogonal quasigroup string transformation OT is a (t, t)-
multipermutation, for each positive integer t. 2

Proof OT1 is an (1, 1)− and OT2 is a (2, 2)-multipermutation. We proceed
by induction, and assume that OTk are (k, k)-multipermutations for each
k < t. Let OTt(x1, x2, . . . , xt) = (z1, z2, . . . , zt). We have OTt−1(x1, x2, . . . ,
xt−1) = (z1, z2, . . . , zt−2, u) and (zt−1, zt) = (u∗1xt, u∗2xt). By the induction
hypothesis, two different 2(t−1)-tuples of the form (x1, x2, . . . , xt−1, z1, z2, . . . ,
zt−2, u) cannot collide in any t−1 positions. Now, suppose that two different
2t-tuples of the form (x1, x2, . . . , xt, z1, z2, . . . , zt) collide in t positions. The
collision cannot happen if t − 1 of the positions contains some elements of
the set {x1, x2, . . . , xt−1, z1, z2, . . . , zt−2}. So, the collision happens at zt−1,
zt and at some t − 2 elements of the set {x1, x2, . . . , xt−1, z1, z2, . . . , zt−2}.
From (zt−1, zt) = (u ∗1 xt, u ∗2 xt), since zt−1 and zt collide, there are u′ and
x′t such that (zt−1, zt) = (u′ ∗1 x′t, u′ ∗2 x′t). But this is a contradiction with
the orthogonality of 1 and 2. ¥

114 Chapter 3. Cryptographic primitives with quasigroup transformations

In the light of the latest linear and differential attacks to the crypto-
graphic primitives, the multipermutations are basic cryptographic tool for a
perfect generation of diffusion, because, by changing i of the inputs at least
n− i + 1 of the outputs will be changed [127].

By changing the length of the string or the order of the used quasigroup
we can influent the orthogonal quasigroup transformation as multipermu-
tation. If we use larger string, we will obtain bigger multipermutation in
the sense of the parameter t. If we use smaller quasigroups, we will obtain
again bigger multipermutation, but also we will have the influence of the
multipermutation on smaller group of bits.

Our OT quasigroup transformation is (8, 8)−multipermutation in the
encryption-decryption algorithm, and (32, 32)−multipermutation in our key
expansion and key schedule algorithm. Used quasigroups are of order 232.

THE CHOICE OF EXTENDED FEISTEL NETWORKS. Quasigroup
operations in Alex’smile implementation are defined by extended Feistel
networks of the groups (Zn,⊕n), where n = 16, 32. There are several rea-
sons for choosing them. First, for the OT transformation we needed two
orthogonal quasigroups, and one way to obtain them is by orthogonal or-
thomorphisms. Extended Feistel network FA,B,C has at least two orthogonal
orthomorphisms F−1

A,B,C and F 2
A,B,C . So, we choose the FA,B,C and F 2

A,B,C

for generating orthogonal quasigroups. Second, the extended Feistel net-
work has parameters that can be changed. We made these parameters to be
calculated from the expanded key, so, in that way we obtain different pair of
orthogonal quasigroup operations for every quasigroup transformation. We
already use this approach in NaSHA design. In this way we obtain keyed
quasigroups.

THE CHOICE OF FIXED ROTATIONS AND CONSTANTS. For defi-
nition of quasigroup operations we use bitwise xoring and table lookups. So
to avoid to have only xor operations and table lookups, we decide to use also
left rotation of every state word after the OT transformation and addition
modulo 232 of the state words and the constants. In this way it is much
harder for the attacker to analyze the cipher.

We use constants in key expansion and key schedule algorithm, also. In
that way we remove the symmetry that exists between the rounds, because
the round transformation is the same for all rounds.

To avoid suspicion of a trapdoor we reuse some of the constants from
NaSHA, but any other constants can also be used.

3.4. Block ciphers 115

THE CHOICE OF THE KEY EXPANSION AND KEY SCHEDULE
ALGORITHM. Our implementation use much more key words (32) than
it is provided by the actual key (4, 6 or 8). For that aim, we introduce a
key expansion and key schedule algorithm. In our algorithm we reuse the
S-box for high non-linearity and the OT matrix for high diffusion. This
algorithm has also another input, the tweak of length 128 bits, which is
used to obtain variability of encryption functions. With OT , we eliminate
the possibility of existing a pair of different secret keys that produce the same
expanded key. Key bits in every round are unique, so ”slide” attacks are
avoided. We decide not to use one-way function for generating subkeys, but
instead we use previous generated subkeys for generating the next subkeys,
together with predefined round constants. In this way we achieve fast key
expansion and avoid symmetry, with minimal amount of storage for keeping
the precomputed key material. Also we believe that possibility of existence
of weak or related keys is very small.

The key expansion and key schedule algorithm has been chosen in that
way that knowledge of a part of the secret key or round subkeys bits shall
not allow determination of many other round subkeys bits. Also, important
was not to allow full determination of round subkeys bits differences from
the secret key differences.

length of the key 128 bits 192 bits 256 bits
key = 0 min = 39% min = 39% min = 35%

tweak = 0 avg = 46.22% avg = 44.63% avg = 42.50%
max = 53% max = 51% max = 54%
sd = 2.42 sd = 2.81 sd = 3.73

key = rand min = 41% min = 38% min = 35%
tweak = 0 avg = 46.56% avg = 44.39% avg = 42.31%

max = 52% max = 58% max = 53%
sd = 2.36 sd = 2.99 sd = 3.52

key = 0 min = 41% min = 38% min = 35%
tweak = rand avg = 46.29% avg = 44.46% avg = 42.34%

max = 52% max = 53% max = 53%
sd = 2.30 sd = 3.00 sd = 3.69

key = rand min = 41% min = 35% min = 34%
tweak = rand avg = 46.39% avg = 44.60% avg = 42.70%

max = 54% max = 53% max = 54%
sd = 2.32 sd = 2.62 sd = 3.67

Table 3.9: Avalanche effect of expanded key, when the secret key and the
tweak are with all zeros or randomly generated

We reuse OT quasigroup transformation with all parameters zeros, to
obtain high diffusion of the secret key bits in all expanded key bits. Our
analysis shows us that by changing one bit in the secret key, we obtain more

116 Chapter 3. Cryptographic primitives with quasigroup transformations

than changed 46% expanded key bits for 128 bit keys, 44% expanded key
bits for 192 bit keys and 42% expanded key bits for 256 bit keys. All results
are given in Table 3.9. This is close to ideal, but it is enough diffusion for
protection from some slide and key-related attacks.

Avalanche effect

length of the key 128 bits 192 bits 256 bits
key = 0 min = 42% min = 39% min = 39%

message = 0 avg = 49.81% avg = 49.83% avg = 50.01%
tweak = 0 max = 58% max = 57% max = 58%

sd = 3.39 sd = 3.20 sd = 3.37
key = 0 min = 40% min = 40% min = 38%

message = 0 avg = 50.03% avg = 49.48% avg = 49.78%
tweak = rand max = 58% max = 61% max = 57%

sd = 3.24 sd = 3.15 sd = 3.35
key = rand min = 40% min = 38% min = 41%
message = 0 avg = 49.90% avg = 50.23% avg = 49.74%
tweak = 0 max = 58% max = 57% max = 56%

sd = 3.40 sd = 3.36 sd = 3.23
key = rand min = 42% min = 41% min = 41%
message = 0 avg = 50.16% avg = 50.19% avg = 49.97%
tweak = rand max = 58% max = 60% max = 59%

sd = 3.25 sd = 2.95 sd = 3.22
key = 0 min = 41% min = 42% min = 41%

message = rand avg = 50.02% avg = 49.91% avg = 49.91%
tweak = 0 max = 58% max = 59% max = 62%

sd = 3.17 sd = 3.13 sd = 3.34
key = 0 min = 42% min = 41% min = 42%

message = rand avg = 49.95% avg = 50.18% avg = 49.77%
tweak = rand max = 59% max = 60% max = 57%

sd = 3.18 sd = 3.18 sd = 3.21
key = rand min = 40% min = 41% min = 41%

message = rand avg = 49.65% avg = 49.68% avg = 50.18%
tweak = 0 max = 59% max = 58% max = 58%

sd = 2.98 sd = 3.24 sd = 3.11
key = rand min = 40% min = 40% min = 41%

message = rand avg = 50.05% avg = 50.65% avg = 49.83%
tweak = rand max = 58% max = 60% max = 57%

sd = 3.36 sd = 3.46 sd = 3.00

Table 3.10: Avalanche effect of 256-bit message block, when the message
block, secret key and the tweak are with all zeros or randomly generated

We tested the avalanche propagation of one bit differences in the en-
cryption function of Alex’smile-(8, 2, G) for G ∈ {128, 192, 256}, in 8 cases:
when the message, the key and the tweak consist of all zeros or are randomly
generated. We present in Table 3.10 the obtained results for 256-bit message

3.4. Block ciphers 117

block, where minimum, average and maximum different bits and standard
deviation are given. One can see that in every case the Hamming distance is
around m/2, or one bit difference of input bits produces about 50% different
output bits, as it would be expected in theoretical models of ideal random
functions.

Resistance to slide and key-related attacks

To understand the resistance of the Alex’smile-(8, 2, G) to many attacks,
first, it is necessary to consider how key material is used in it. Beside
the usual whitening, we use round subkeys for producing keyed orthogonal
quasigroup operations for every OT transformation. To obtain one pair
of keyed orthogonal quasigroup operations, we use 4 expanded key words.
Only 120 out of the 128 bits, are used for quasigroups, and the rest 8 bits
are used for definition of two rotation values.

Let FA,B,C : Z2n
2 → Z2n

2 be an extended Feistel network created by
a bijection f : Zn

2 → Zn
2 . In general, let exist A,B,C and A′, B′, C ′ in

Zn
2 so the following equation is true FA,B,C(l, r) = FA′,B′,C′(l, r) for every

(l, r) ∈ (Zn
2)2. We have

(r ⊕A, l ⊕B ⊕ f(r ⊕ C)) = (r ⊕A′, l ⊕B′ ⊕ f(r ⊕ C ′)).

From here we have A = A′ and B⊕B′ = f(r⊕C)⊕f(r⊕C ′) = K, where K
is a constant. Let C⊕C ′ = R, where R is a constant. If we write r = t⊕C,
we obtain f(t)⊕ f(t⊕R) = K, for every t.

Delot sto sleduva so prasalnici ne mi e dokazan. Treba da najdam za
edna OT transformacija kolku razlicni kvazigrupi moze da se generiraat,
pa posle ke ja krenam verojatnosta na stepen 4. Za prethodnoto sakam da
dokazam deka vazi samo koga K=0 i R=0. Ako toa vazi delot so verojatnosti
248 ke bide tocen. Delot so 224 e sigurno tocen, poradi toa sto proveriv so
programa za nasiot Sbox. Isto taka ako se zeme i f da e druga startna
biekcija g, se dobiva slicno deka B ⊕B′ = f(r ⊕ C)⊕ g(r ⊕ C ′) = K. I ova
mi e problem da go dokazam ili samo da go ogranicam.

???The final extended Feistel network FA,B,C : Z32
2 → Z32

2 is unique
determined by the three 16-bits words A, B and C and its starting bijection
f ′. For a given starting bijection f ′ there are 248 different extended Feistel
networks FA,B,C and the same number of different quasigroups of order 232.
8-bits parameters ai, bi, ci, uniquely determine the extended Feistel network
Fai, bi, ci (i = 1, 2, 3), so we have 224 different extended Feistel networks of
this kind. The composite bijection f ′ is not necessary unique, but because

118 Chapter 3. Cryptographic primitives with quasigroup transformations

of the previous, there are at least 224 different compositions f ′ (the number
is much larger, but smaller than 272).??

One can notice that, because the key expansion and key schedule algo-
rithm use the (32, 32)−multipermutation OT , there is no pair of keys k and
k′ that gives the same expanded key sequence. So it is very unlikely that a
pair of equivalent keys (a pair of secret keys that encrypt all plaintexts into
the same ciphertexts) exists. Pairs of inverse keys k and k′, that have the
property to give always the original message after two encryptions, first with
k and then with k′, are also unlikely to exist at all. The same is true also for
self-inverse keys, which are keys for which encrypting a block of data twice
with the same key gives back the original data. We also have not found
simple relations between the key, message and cipher, and strongly doubt
that they exist. So, we can give a conjecture, that Alex’smile-(8, 2, G) does
not have weak keys.

3.5 Public-key algorithms

Public key algorithms encrypt messages using a nonsecret key. They are
much slower than symmetric key algorithms, so they are usually used for
key agreement and key management between two communication parties,
and then, the actual communication is continued by some symmetric fast
block or stream cipher algorithm.

In a public key encryption scheme a pair of encryption key and de-
cryption key (public and private key) is generated for each user, and all
the encryption keys are made public (decryption key is private key for the
user). When sending a secret message to a receiver, the sender encrypts
the message with the receiver’s public key. Receiver decrypt the message
with his private key. So, a public key encryption scheme is comprised of
three algorithms: a key generation algorithm, an encryption algorithm and
a decryption algorithm.

The design of a public key cryptosystem can be based on a trapdoor
one-way function. A trapdoor one-way function is a function f onto a set
X that anyone can compute efficiently; however inverting f is hard unless
one is also given some ”trapdoor” information. Construction on trapdoor
function can be based on the hardness of discrete logarithm problem, on the
difficulty of integer factorization, on the discrete logarithm problem in an
additive group of points defined by elliptic curves over finite fields, on error
correcting codes, on multivariate quadratic polynomials, etc. Some examples
of public key encryption schemes are: RSA public key encryption, ElGamal

3.5. Public-key algorithms 119

public key encryption, McEliece public key cryptosystem, Rabin’s digital
signature method, Goldwasser-Micali encryption scheme, Blum-Goldwasser
probabilistic public-key encryption scheme, etc.

In practice, it is very important to have certificates for users public keys.
In order to certify public keys, the notion of a public key infrastructure -
PKI has been developed, which is usually based on some general standard,
such as X.509 or EMV. When certificates are required, it is often necessary
to provide means for verifying whether a certificate has not been revoked
for some reason. This is handled by means of revocation lists or on-line
inquiry protocols regarding the status of a certificate. You can find more
for public-key cryptography in any cryptographic book, like [132, 33].

In 2000, NIST approved Digital Signature Standard (DSS), which spec-
ifies three FIPS-approved algorithms for generating and verifying digital
signatures: Digital Signature Algorithm (DSA), RSA and Elliptic Curve
DSA (ECDSA).

One of the early attempts to make quasigroup based public-key algorithm
is made by Keedweel [55]. He uses CI−quasigroups (Q, ◦) with long inverse
cycles for that aim. A key distributing centre would be established and
only it will have knowledge of the long inverse cycle and would use it to
distribute a public key cu

i ∈ Q and a private key cu+1
i ∈ Q to each user Ui,

where Jcu
i = cu+1

i . Every user can perform the needed quasigroup operation
◦. When user Ui wish to send a message m to user Uj , he would send cu

i ◦m,
and Uj with his private key cu+1

j will decipher as (cu
i ◦m) ◦ cu+1

j = m. The
key exchange can be done without the key distributing centre also, if sender
and receiver have both knowledge of J . Then sender will choose randomly
cu ∈ Q and he will send it together with the ciphertext cu◦m to the receiver.
The receiver will use J to obtain the cu+1 and to decrypt the message. Big
drawback of these methods is that if the attacker knows the permutation J ,
he can decipher any encrypted message.

Kościelny and Mullen [62] tried to built a quasigroup-based public key
cryptosystem with help of its previous defined stream-cipher [60], but this is
not public-key cryptosystem in a real sense. There is no public and private
keys, but only encryption and decryption procedure in which random kx

bytes, as public portion of the key, are used for initial condition of used
PRNG, for obtaining the keystream K. Used quasigroup is also part of the
secret key. Everybody with knowledge of used quasigroup and kx can obtain
the secret key K and can do decryption or encryption. At the end, security
of this cryptosystem reduce to secret quasigroup.

The public key stream cipher based on quasigroups is given by Gligoroski
[34] and interesting, according to the author, its speed can be comparable

120 Chapter 3. Cryptographic primitives with quasigroup transformations

with the fastest symmetric key stream ciphers. It uses the ElGamal al-
gorithm in the initialization phase and E−transformations for encryption,
with appropriate D−transformation for decryption. The cryptographical
strength of the proposed stream cipher is based on the fact that breaking
it would be at least as hard as solving systems of multivariate polynomial
equations modulo big prime number p which is NP-hard problem and there
aren’t any fast randomized or deterministic algorithms for solving it.

The used quasigroup (Q, ◦) is defined by permutation in the set of Z∗p,
where p is a big prime number with more than 1024 bits. The permutation
is produced by fK(j) = 1

1+(K+j) mod (p−1) mod p, where 1 6 K 6 p − 2,
and then the quasigroup operation is defined by i ◦ j = i · fK(j) mod p. For
decryption, we need the left parastrophe (Q, \), which is defined as

i\j =
{

gK(i, j), gK(i, j) 6= 0
p− 1, gK(i, j) = 0

(3.26)

where gK(i, j) = ((i · j−1 mod p)− 1−K) mod (p− 1). So, the session key
consists of number K, which determine the quasigroup and k leaders. As a
prime, one can use a prime numbers of the form pl = 28l + 3 (for example
p213 and p251 are prime numbers with 1704 and 2008 bits respectfully).

The first trapdoor one-way function that use quasigroup string transfor-
mations with multivariate quadratic quasigroups (MQQ) is given by Glig-
oroski et al [47, 41]. This is a new class of trapdoor functions for building
public key cryptosystems by multivariate quadratic polynomials. Obtained
public key algorithm is a bijective mapping, it does not perform message
expansions and can be used both for encryption and signatures. The speed
of encryption of this scheme is similar to other MQ schemes, and the speed
of decryption is in the range of 500–1000 times faster than the most pop-
ular public key schemes. Unfortunately, this cryptosystem was successfully
broken by Mohamed et al [104] by modified version of MutantXL algorithm.

Sufficient conditions some quasigroup (Q, ◦) to be MQQ is given by the
following Theorem.

Theorem 25 [47] Let A1 = [fij]d×d and A2 = [gij]d×d be two d×d matrices
of linear Boolean expressions, and let b1 = [ui]d×1 and b2 = [vi]d×1 be two
d × 1 vectors of linear or quadratic Boolean expressions. Let the functions
fij and ui depend only on variables x1, . . . , xd, and let the functions gij and
vi depend only on variables xd+1, . . . , x2d. If

Det(A1) = Det(A2) = 1 in GF (2) (3.27)

3.6. Some other cryptographic primitives 121

and if

A1 · (xd+1, . . . , x2d)T + b1 ≡ A2 · (x1, . . . , xd)T + b2 (3.28)
2

then the vector valued operation ∗vv(x1, . . . , x2d) = A1 ·(xd+1, . . . , x2d)T +b1

defines a quasigroup (Q, ∗) of order 2d that is MQQ.

The authors give heuristic algorithm for finding MQQ of order 2d and of type
Quadd−kLink and with it, they generate two sets of MQQ of type Quad4Lin1

and Quad5Lin0 are generated with more than 220 elements each (prepro-
cessing phase). A generic description for this scheme can be expressed as:
T ◦ P ′ ◦ S : {0, 1}n → {0, 1}n where T and S are two nonsingular linear
transformations, and P ′ is a bijective multivariate quadratic mapping on
{0, 1}n. T and S together with 8 chosen MQQs ∗1, . . . , ∗8 form the private
key. The public key consist of set of n multivariate quadratic polynomials
with n variables P = {Pi(x1, . . . , xn) | i = 1, . . . , n}, where n = 140, 160, . . .

and its size is n·(1+ n(n+1)
2) bits. Generation of these polynomials is done by

e-transformation with chosen quasigroups and bijection of Dobbertin, with
requirement - minimal rank of quadratic polynomials when represented in
matrix form to be at least 8. Encryption is done by direct applying of multi-
variate quadratic polynomials over a vector x = (x1, . . . , xn), i.e. y = P(x).
Decryption is done by using of T−1, S−1, Dobbertin inverse and left paras-
trophes \i of the quasigroups ∗i, i = 1, . . . , 8. In fact, the owner of the
private key need to store left parastrophes of key’s quasigroups.

3.6 Some other cryptographic primitives

Marnas et al [90] have been suggested a new quasigroup based transforma-
tion scheme for All-Or-Nothing encryption (Rivest [118]). AON transforma-
tion is used for pre-processing of the message into pseudo-message, before
the encryption, achieving that it is computationally infeasible for the at-
tacker to decrypt the message if any of the pseudo-message block is missing.
Quasigroup modification uses a quasigroup (Q, ◦) of order 256 represented
as a permutation in the set of Q = Z∗257, with which they encoded ASCII
table, with one difference, 256 stands for 0. The message is transformed in
pseudo-message by one e−transformation using fixed leader l. The message
needs to be encrypted is constructed as

message to encrypt = leader l + 1st row of the quasigroup +
pseudo-message

122 Chapter 3. Cryptographic primitives with quasigroup transformations

and it is only 257B longer than original message. Then the actual encryption
takes place with any known algorithm. On the other side, the actual decryp-
tion is done first to obtain the pseudo-message. After that, the quasigroup
(Q, \) is formed first, and then decryption is done by using d−transformation
with the same leader l.

The authors did not mention one thing, that with their modification,
the basic idea of AONT is violated. The attacker can start with decrypting
without knowing all pseudo-message blocks. For example, if he knows only
those blocks that contains the quasigroup and the leader, he can starts
decrypting character by character only if he obtains characters in right order.

In [124] Satti gives an quasigroup based cryptosystem, which can be used
as stream or block cipher, that involves the Trusted Authority. This cryp-
tosystem is not elaborated enough. Encryption use only E

(n)
h1,...,hn

− transfor-
mations. The main difference from previous designs is that it uses different
quasigroup operations for every transformation. First half of e− transfor-
mations are made by different isotopies of one smaller quasigroup, and the
second half by different isotopies of one bigger quasigroup. Also he suggests
one not very practical way of implementing the cipher. He suggests sender
and receiver to have stored one smaller quasigroup and all their isotopies as
an array, and the same for the bigger quasigroup. Even more quasigroups
and their isotopies must be changed in regular intervals. The choice of the
quasigroups and isotopies indexing is issued by the Trusted Authority in
regular intervals. The Trusted Authority use some algorithm for generat-
ing order of quasigroups and indexes of isotopies. The secret key consists
of the leaders (hidden keys) and is produced by some algorithm in both
communication parties.

3.7 Summary

Our contributions in this chapter are:

– a survey of quasigroup based primitives like hash functions, block and
stream ciphers, PRNGs, public-key cryptosystems etc;

– new quasigroup based family of hash functions NaSHA-(m, k, r);

– implementations of NaSHA-(m, 2, 6) hash functions for
m ∈ {224, 256, 384, 512};

– a new quasigroup based family of tweakable block ciphers Alex’smile-
(B, I, G);

3.7. Summary 123

– implementations of Alex’smile-(4, 2, G) block ciphers for G ∈ {128, 192, 256}.

124 Chapter 3. Cryptographic primitives with quasigroup transformations

Chapter 4

Conclusions and Future Work

In the summary we answer the research questions posed in the introduction.

– What properties should have some quasigroup, so it can be used as
non-linear building block in cryptographic primitives and it can con-
tributed to the defence of linear and differential attacks?

When we try to find quasigroups suitable for cryptography in this sense,
we started from shapeless quasigroups, defined by Gligoroski et al. [43].
Additionally we investigate the prop ratio tables and correlation matrices
of quasigroups and some quasigroup transformations to answer this ques-
tion and we introduce a new classification of quasigroups. In the light of
the recent linear and differential attacks we extend the notation of shape-
less quasigroups to perfect quasigroups. It is important used quasigroups to
be non-linear vector valued Boolean functions without any linear component
Boolean function, without nontrivial difference propagations with prop ratio
1 and restriction weight of 0 and with every nonzero output selection vector
correlated to more than one input selection vector. This is the stronger re-
quirement and this is needed especially in the cases when we use quasigroup
without any quasigroup transformation. If we use quasigroups with quasi-
group transformation usually it is enough quasigroup to be only shapeless,
and still to have defence to differential and linear attacks. Sometimes even
a quasigroup with some structure is preferable or structure does not affect
the security. In other cases quasigroups with additional restriction to the
structure maybe needed, as not to be semisymmetric or Stein quasigroup or
Schroeder quasigroup, etc. Also, some cryptographic primitives need special
kind of quasigroups. For example, when the period of produced sequences
is important, like for PRNGs and stream ciphers, quasigroup must be expo-
nential.

125

126 Chapter 4. Conclusions and Future Work

– How to generate and how to compute fast operation of huge quasi-
groups?

We suggest a new hybrid method for definition of huge quasigroups. It
integrate the known cryptographic building block, a Feistel network with
orthomorphisms and Sade’s diagonal method for constructing quasigroups.
The complexity of our algorithm for construction of quasigroups of order
22k

is O(log(logk)). We use group (Zn,⊕n) as an example. But extended
Feistel networks from other group need to be investigate also.

– What kind of features have huge quasigroups obtained by new con-
struction method?

We examined quasigroups obtained by the extended Feistel networks on a
group (Zn,⊕n) and proved that they can not be perfect quasigroups, but
only shapeless. These quasigroups are anti-commutative, non-associative,
without left or right unit, Shroeder quasigroups, and from the choice of start-
ing bijection, we can influence on property quasigroup to be idempotent, or
to satisfy the identities of the kinds x(... ∗ (x︸ ︷︷ ︸

k

∗y)) = y, y = ((y ∗x) ∗ ...) ∗ x︸ ︷︷ ︸
k

.

Quasigroups produced by extended Feistel networks FA,B,C defined on
Abelian group (Zn,⊕n) are weak-restricted, correlated and weak non-linear,
but F 2

A,B,C produces much better quasigroups which are non-correlated and
pure non-linear, but steel weak-restricted quasigroups.

– In which way to use huge quasigroups as building blocks of crypto-
graphic primitives?

The best way to use quasigroups as building blocks for cryptographic prim-
itives is as part of some quasigroup transformation. We showed this by
designing NaSHA, a new family of cryptographic hash functions and Alexs-
mile, a new family of block ciphers.

As future work, it is interesting to analyze quasigroups obtained by ex-
tended Feistel networks from other groups, for example dihedral groups.
Also it is interesting to find a way to generate and compute fast opera-
tion of huge n-ary quasigroups, with n > 2, but also to investigate n-ary
quasigroups as vector valued Boolean functions, their prop ratio tables and
correlation matrices etc. One can try to build quasigroup transformation
with n-ary quasigroups. Finally, it is interesting to analyze security of cryp-
tographic primitives obtained by n-ary quasigroups and quasigroup trans-
formations.

Bibliography

[1] S. Bakhtiari, R. Safavi-Naini, and J.Pieprzyk. A message authentica-
tion code based on latin square. LNCS, 1270:194–203, 1997.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. Advances in Cryptology, Crypto’96, LNCS,
1109:1–15, 1996.

[3] V. D. Belousov. Osnovi teorii kvazigrup i lup. Nauka, Moskva, 1967.

[4] V. D. Belousov. n-ary kvazigrup. Shtiintsa, Kishinev, 1972.

[5] G. B. Belyavskaya. On generalized prolongation of quasigroups. Math.
Issled., 5(2):28–48, 1970.

[6] Daniel J. Bernstein and Tanja Lange (editors). ebacs: Ecrypt bench-
marking of cryptographic systems. http://bench.cr.yp.to, accessed 6
April 2009.

[7] E. Biham and A. Shamir. Differential cryptanalysis of des-like cryp-
tosystems. Journal of Cryptology, 4(1):3–72, 1991.

[8] R. H. Bruck. Simple quasigroups. Bull. Amer. Math. Soc., 50:769–781,
1944.

[9] R. H. Bruck. Some results in the theory of quasigroups. Trans. Amer.
Math. Soc., 55:19–52, 1944.

[10] G. Carter, E. Dawson, and L. Nielsen. Desv: A latin square variation
of des. In Proc. of the Workshop on Selected Areas in Cryptography,
pages 144–158. Ottawa, Canada, 1995.

[11] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damg̊ard
revisited: How to construct a hash function. Advances in Cryptology
- CRYPTO 2005, LNCS, 3621:430–448, 2005.

127

128 BIBLIOGRAPHY

[12] L. Cui and Y. Cao. A new s-box structure named affine-power-affine.
International Journal of Innovative Computing, Information and Con-
trol, 3(3):751–759, 2007.

[13] J. Daemen. Cipher and Hash Function Design. Strategies based on
Linear and Differential Cryptanalysis. PhD thesis, Katholieke Univer-
siteit Leuven, 1995.

[14] J. Daemen, R. Govaerts, and J. Vandewalle. Correlation matrices. In
Fast Software Encryption 1994, LNCS 1008, pages 275–285. Springer-
Verlag, 1995.

[15] J. Daemen and V. Rijmen. The Design of Rindael: AES - The Ad-
vanced Encryption Standard. Springer-Verlag, 2002.

[16] H. M. Damm. Totally anti-symmetric quasigroups for all orders n 6=
2, 6. Discrete Mathematics, 307(6):715–729, 2007.

[17] E. Dawson, D. Donowan, and A. Offer. Ouasigroups, isotopisms and
authentification schemes. Australasian J. of Comb., 13:75–88, 1996.

[18] R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis,
Princeton University, 1999.

[19] J. Denes and A. D. Keedwell. Latin squares and their applications.
Academic Press, Inc., 1974.

[20] J. Denes and A. D. Keedwell. Latin squares: New developments in the
theory and applications. Elsevier science publishers, 1991.

[21] J. Dénes and A. D. Keedwell. A new authentification scheme based
on latin squares. Discrete Math., 106/107:157–161, 1992.

[22] J. Dénes and A. D. Keedwell. Some applications of non-associative
algebraic systems in cryptology. Pure Mathematics and Applications,
12(2):147–195, 2001.

[23] I. I. Deriyenko and W. A. Dudek. On prolongations of quasigroups.
Quasigroups and related systems, 16(2):187–198, 2008.

[24] V. Dimitrova. Quasigroup transformations and their applications.
Master’s thesis, Faculty of Natural Science, Skopje, 2005.

BIBLIOGRAPHY 129

[25] V. Dimitrova and J. Markovski. On quasigroup pseudo random se-
quence generators. In Proc. of the 1-st Balkan Conference in Infor-
matics, pages 393–401. Thessaloniki, 2004.

[26] I. Dinur and A. Shamir. Cube attacks on tweakable black box
polynomials. Advances in Cryptology - EUROCRYPT 2009, LNCS,
5479:278–299, 2009.

[27] A. L. Dulmage, N. S. Mendelsohn, and D. M. Johnson. Orthomor-
phisms of groups and orthogonal latin squares i. Canad. J. Math.,
13:356–372, 1961.

[28] J. Dvorský, E. Ochodková, and V. Snášel. Generation of large quasi-
groups: an application in cryptography. In Proc. of AAA64, 2002.

[29] J. Dvorský, E. Ochodková, and V. Snášel. Hash function based on
large quasigroups. In Proc. of Velikonocni kriptologie, Brno. 1-8, 2002.

[30] A. B. Evans. Orthomorphism graphs of groups. Journal of Geometry,
32 (No. 1–2):66–74, 1989.

[31] A. B. Evans. On orthogonal orthomorphisms of cyclic and non-abelian
groups. Discrete Mathematics, 243:229–233, 2002.

[32] H. Feistel. Cryptography and computer privacy. Scientific American,
228 (No. 5):15–23, 1973.

[33] N. Ferguson and B. Schneier. Practical Cryptography. Wiley, 1st edi-
tion, 2003.

[34] D. Gligoroski. Stream cipher based on quasigroup string transforma-
tions in Z∗p. Contributions, Sec. Math. Tech. Sci., MANU, 2004.

[35] D. Gligoroski. Candidate one-way functions and one-way permuta-
tions based on quasigroup string transformations. Cryptology ePrint
Archive, Report, 2005/352, 2005.

[36] D. Gligoroski, V. Dimitrova, and S. Markovski. Classification of quasi-
groups as boolean functions, their algebraic complexity and applica-
tion of gröbner bases in solving systems of quasigroup equations. In
Groebner, Coding, and Cryptography, Ed. M. Sala. Springer, 2007.

[37] D. Gligoroski and S. Knapskog. Edon-R(256, 384, 512)-an efficient im-
plementation of edon-∇ family of cryptographic hash functions. ecrypt
archive, 2007/154.

130 BIBLIOGRAPHY

[38] D. Gligoroski and S. J. Knapskog. Adding mac functionality to edon80.
International Journal of Computer Science and Network Security,
7(1):194–204, 2007.

[39] D. Gligoroski, S. Markovski, and S. Knapskog. A secure hash algo-
rithm with only 8 folded sha-1 steps. International Journal of 194
Computer Science and Network Security, 6(10):194–205, 2006.

[40] D. Gligoroski, S. Markovski, and S. J. Knapskog. A fix of the md4
family of hash functions - quasigroup fold. In NIST Cryptographic
Hash Workshop. Gaithersburg, Maryland, USA, 2005.

[41] D. Gligoroski, S. Markovski, and S. J. Knapskog. A new class of mulri-
variate quadratic trapdoor functions based on multivariate quadratic
quasigrops. In Proc. of MATH′08, pages 44–49. Cambridge, Mas-
sachusetts, 2008.

[42] D. Gligoroski, S. Markovski, and S. J. Knapskog. The stream cipher
edon80. In New Stream Cipher Designs: The eSTREAM Finalists,
152–169. Springer-Verlag, 2008.

[43] D. Gligoroski, S. Markovski, and L. Kocarev. Edon-R, an infinite
family of cryptographic hash functions. In The Second NIST Crypto-
graphic Hash Workshop, UCSB, 275–285. Santa Barbara, CA, 2006.

[44] D. Gligoroski, S. Markovski, Lj. Kocarev, and M. Gusev. The
stream cipher edon80. Submission to eSTREAM project, 2005,
http://www.ecrypt.eu.org/stream/edon80p3.html.

[45] D. Gligorovski. On the insecurity of interchanged use of ofb and cbc
modes of operation. http://eprint.iacr.org/2007/385.pdf.

[46] D. Gligorovski, R.S. Ødeg̊ard, M. Mihova, S.J. Knapskog, L. Kocarev,
A. Drápal, and V. Klima. Cryptographic hash function edon-r. Sub-
mission to NIST, 2008.

[47] D. Gligorovski, S. Markovski, and S. J. Knapskog. A public key block
cipher based on multivariate quadratic quasigrops. Cryptology ePrint
Archive, Report 2008/320.

[48] S. W. Golomb, G. Gong, and L. Mittenthal. Constructions of ortho-
morphisms ofzn

2 . In The 5th International Conference on Finite Fields
and Applications, Fq5, Germany, pages 178–195. Springer, 1999.

BIBLIOGRAPHY 131

[49] M. Hell and T. Johansson. A key recovery attack on edon80. Advances
in Cryptology ASIACRYPT 2007, LNCS, 4833:568–581, 2008.

[50] T. Ito. Creation method of table, creation apparatus, creation program
and program storage medium. US Patent application 20040243621,
Dec. 2, 2004.

[51] L. Ji, X. Liangyu, and G. Xu. Collision attack on nasha− 512. Cryp-
tology ePrint Archive, Report, 2008/519.

[52] X. W. Jia and Z. P. Qia. The number of latin cubes and their isotopy
classes. J. Huazhong Univ. Sci. Tech., 11(27):104–106, 1999.

[53] D. M. Johnson, A. L. Dulmage, and N. S. Mendelsohn. Orthomor-
phisms of groups and orthogonal latin squares, i. Canadian Journal
of Mathematics, 13(3):356–372, 1961.

[54] A. Joux. Multi-collisions in iterated hash functions. applications to
cascades constructions. Advances in Cryptology - CRYPTO 2004,
LNCS, 3152:306–316, 2004.

[55] A. D. Keedwell. Crossed inverse quasigroups with long inverse cycles
and applications to cryptography. Australasian J.of Comb., 20:241–
250, 1999.

[56] J. Kelsey and T. Kohno. Herding hash functions and the nos-
tradamus attack. Advances in Cryptology - EUROCRYPT 2006,
LNCS, 4004:183–200, 2006.

[57] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions
for much less than 2n work. Advances in Cryptology - CRYPTO 2005,
LNCS, 3494:474–490, 2005.

[58] A. Klimov and A. Shamir. Cryptographic applications of t-functions.
LNCS, 3006:248–261, 2002.

[59] A. Klimov and A. Shamir. A new class of invertible mappings.
In Workshop on Cryptographic Hardware and Embedded Systems
(CHES), 2002.

[60] C. Kościelny. A method of constructing quasigroup-based stream-
ciphers. Appl. Math. and Comp. Sci., 6:109–121, 1996.

[61] C. Kościelny. Generating quasigroups for cryptographic applications.
Int. J. Appl. Math. Comput. Sci., 12(4):559–569, 2002.

132 BIBLIOGRAPHY

[62] C. Kościelny and G. L. Mullen. A quasigroup-based public-key cryp-
tosystem. Int. J. Appl. Math. Comput. Sci., 9(4):955–963, 1999.

[63] C. F. Laywine and G. L. Mullen. Discrete Mathematics using Latin
Squares. John Wiley & Sons, Inc., 1998.

[64] C. C. Lindner. The generalized singular direct product for quasigroups.
Can. Math. Bull., 14:61–63, 1971.

[65] C. C. Lindner, N. S. Mendelsohn, and S. R. Sun. On the construction
of schroeder quasigroups. Discrete Mathematics, 3(32):271–280, 1980.

[66] H. Lipmaa and S. Moriai. Efficient algorithms for computing differen-
tial properties of addition. FSE 2001, LNCS, 2355:336–350, 2002.

[67] H. Lipmaa, J. Wallen, and P. Dumas. On the additive differential
probability of exclusive-or. FSE 2004, LNCS, 3017:317–331, 2004.

[68] J. Liu, B. Wei, X. Cheng, and X. Wang. Cryptanalysis of rijn-
dael s-box and improvement. Applied Mathematics and Computation,
170(2):958–975, 2005.

[69] M. Luby and C. Rackoff. How to construct pseudorandom permuta-
tions and pseudorandom functions. SIAM J. Comput., 17:373–386,
1988.

[70] S. Lucks. Design principles for iterated hash functions. Cryptology
ePrint Archive, Report, 2004/253.

[71] S. Lucks. A failure-friendly design principle for hash functions. ASI-
ACRYPT 2005, LNCS, 3788:474–494, 2005.

[72] H. B. Mann. The construction of orthogonal latin squares. The Annals
of Mathematical Statistics, 13:418–423, 1942.

[73] J. Markovski and V. Dimitrova. Improving existing prsg using qsp. In
Proc. of the CIIT, pages 380–386. Bitola, 2003.

[74] S. Markovski. Quasigroup string processing and applications in cryp-
tography. In 1st Conference of Mathematics and Informatics for In-
dustry, pages 278–290. Thessaloniki, 2003.

[75] S. Markovski, V. Dimitrova, and A. Mileva. A new method for com-
puting the number of n−quasigroups. Buletinul Academiei De Ştiinte
A Republicii Moldova, Matematica, 3(52):57–64, 2006.

BIBLIOGRAPHY 133

[76] S. Markovski, D. Gligoroski, and S. Andova. Using quasigroups for
one-one secure encoding. In Proc. VIII Conf. Logic and Computer
Science LIRA97, pages 157–162. Novi Sad, 1997.

[77] S. Markovski, D. Gligoroski, and V. Bakeva. Quasigroup string pro-
cessing - part 1. Contributions, Sec. Math. Tech. Sci., MANU, XX,
1-2:13–28, 1999.

[78] S. Markovski, D. Gligoroski, and V. Bakeva. Quasigroups and hash
functions. In Proc. VI Int. Conf. on Discrete Mathematics and Appli-
cations. Bansko, Bulgaria, 2001.

[79] S. Markovski, D. Gligoroski, and V. Bakeva. On infinite class of
strongly collision resistant hash functions ”edon-f” with variable length
of output. In Proc. 1st Int. Conf. on Mathematics and Informatics for
Industry, pages 302–308. Thessaloniki, 2003.

[80] S. Markovski, D. Gligoroski, and Lj. Kocarev. Unbiased random se-
quences from quasigroup string transformations. LNCS, 3557:163–180,
2005.

[81] S. Markovski, D. Gligoroski, and J. Markovski. Classification of quasi-
groups by random walk on torus. Journal of applied mathematics and
computing, 19, 1-2:57–75, 2005.

[82] S. Markovski, D. Gligoroski, and B. Stojčevska. Secure two-way on-line
communications by using quasigroup enchipering with almost public
key. Novi Sad Journal of Mathematics, 30(2):43–49, 2000.

[83] S. Markovski, D. Gligoroski, and Z. Šunić. Polinomial functions on
the units of Z2n . Journal of applied mathematics and computing, 19,
1-2:57–75, 2009.

[84] S. Markovski and V. Kusakatov. Quasigroup string processing - part
2. Contributions, Sec. Math. Tech. Sci., MANU, XXI, 1-2:15–32, 2000.

[85] S. Markovski and V. Kusakatov. Quasigroup string processing - part 3.
Contributions, Sec. Math. Tech. Sci., MANU, XXIII-XXIV, 1-2:7–27,
2002-2003.

[86] S. Markovski and A. Mileva. Nasha. Submission to NIST, 2008.

[87] S. Markovski and A. Mileva. Generating huge quasigroups from small
non-linear bijections via extended feistel function. Quasigroups and
Related Systems, 17:91–106, 2009.

134 BIBLIOGRAPHY

[88] S. Markovski and A. Mileva. Nasha - cryptographic hash functions.
In NIST The First SHA-3 Candidate Conference. Leuven, Belgium,
25-28 February 2009.

[89] S. Markovski, A. Mileva, V. Dimitrova, and D. Gligoroski. On a con-
ditional collision attack on nasha-512. Cryptology ePrint Archive, Re-
port, 2009/034.

[90] S. I. Marnas, L. Angelis, and G. L. Bleris. All-or-nothing transform
using quasigroups. In Proc. 1st Balkan Conference in Informatics,
pages 183–191. Thessaloniki, 2004.

[91] M. Matsui. Linear cryptanalysis method for des cipher. In Advances in
Cryptology, EUROCRYPT 1993, LNCS 765, pp. 386–397. Springer,
1993.

[92] M. Matsumoto, M. Saito, T. Nishimura, and M. Hagita. A fast stream
cipher with huge state space and quasigroup filter for software. Selected
Area in Cryptography, LNCS, 4876:246–263, 2007.

[93] M. Matsumoto, M. Saito, T. Nishimura, and M. Hagita. Cryptmt3
stream cipher. New Stream Cipher Designs, LNCS, 4986:7–19, 2008.

[94] B. D. McKay, A. Meynert, and W. Myrvold. Small latin squares,
quasigroups and loops. J. Combinatorial Designs, 15:98–119, 2007.

[95] B. D. McKay and I. M. Wanless. A census of small latin hypercubes.
SIAM Journal on Discrete Mathematics, 12:719–736, 2008.

[96] R. C. Merkle. One way hash functions and des. Advances in Cryptology
- CRYPTO 1989, LNCS, 435:428–446, 1990.

[97] K. A. Meyer. A new message authentication code based on the non-
associativity of quasigroups. PhD thesis, Iowa State University, 2006.

[98] A. Mileva. Analysis of some quasigroup transformations as boolean
functions. In MASSEE International Congress on Mathematics MI-
COM 2009, 16-20 September, Ohrid, 2009.

[99] A. Mileva and V. Dimitrova. Quasigroups constructed from complete
mappings of a group (Zn

2 ,⊕n). Contributions, Sec. Math. Tech. Sci.,
MANU, 1:1, 2009.

BIBLIOGRAPHY 135

[100] A. Mileva and S. Markovski. Correlation matrices and prop ratio tables
for quasigroups of order 4. In The 6th International Conference for
Informatics and Information Technology, CIIT, pages 17–22, 2008.

[101] A. Mileva and S. Markovski. Quasigroups string transformations and
hash function design. a case study: The nasha hash function. In ICT
Innovations conference 2009, Ohrid, 2009.

[102] L. Mittenthal. Block substitutions using orthomorphic mappings. Ad-
vances in Applied Mathematics, 16:59–71, 1995.

[103] A.R. Moghaddamfar and A.R. Zokayi. On the admissibility of finite
groups. Southeast Asian Bulletin of Mathematics, 33:485–489, 2009.

[104] M. S. E. Mohamed, J. Ding, and J. Buchmann. Algebraic cryptanal-
ysis of mqq public key cryptosystem by mutantxl. Cryptology ePrint
Archive, Report 2008/451.

[105] G. L. Mullen and R. E. Weber. Latin cubes of order 6 5. Discrete
Mathematics, 32:291–297, 1980.

[106] I. Nikolić and D. Knovratovich. Free-start attacks on nasha. http :
//ehash.iaik.tugraz.at/uploads/3/33/Free− start

attacksonNasha.pdf .

[107] V. A. Nosov. Constructing families of latin squares over boolean do-
mains. In Boolean Functions in Cryptology and Information Security,
pages 200–207. IOS Press, 2008.

[108] V. A. Nosov and A. E. Pankratiev. Latin squares over abelian groups.
Fundamental and applied math., 12(3):65–71, 2006.

[109] E. Ochadková and V. Snášel. Using quasigroups for secure encoding
of file system. Abstract of Talk on Conference Security and Protection
of information, Brno, 2001.

[110] National Institute of Standards and Special Publication 800-38A 2001
Technology. Recommendation for block cipher modes of operation
methods and techniques. December 2001.

[111] L. J. Paige. A note on finite abelian groups. Bull. Amer. Math. Soc.,
53:590–593, 1947.

[112] L. J. Paige. Complete mappings of finite groups. Pacific Journal of
Mathematics, 1:111–116, 1951.

136 BIBLIOGRAPHY

[113] S. Paul and B. Preneel. Near optimal algorithms for solving differential
equations of addition with batch queries. In Progress in Cryptology -
INDOCRYPT 2005, LNCS, 3797:90–103, 2005.

[114] A. Petrescu. Applications of quasigroups in cryptography. In Proc of
Inter Ing 2007, 2007.

[115] V. N. Potapov and D. S. Krotov. Asymptotics for the number of
n−quasigroups of order 4. Siberian Math. J., 47:720–731, 2006.

[116] B. Preneel. Analysis and Design of Cryptographic Hash Functions.
PhD thesis, Katholieke Universiteit Leuven, 1993.

[117] J. Rajski and J. Tyszer. Primitive polynomials over gf(2) of degree up
to 660 with uniformly distributed coefficients. Journal of Electronic
Testing: Theory and Applications, 19(6):645 – 657, 2003.

[118] R. Rivest. All-or-nothing encryption and the package transform. Fast
Software Encryption ’97, Springer LNCS, 1267:210–218, 1997.

[119] R. Rivest. Permutation polynomials modulo 2w. Finite Fields and
Their Applications, 7:287–292, 2001.

[120] A. Sade. Groupoides automorphes par le groupe cyclique. Canadian
Journal of Mathematics, 9(3):321–335, 1957.

[121] A. Sade. Quasigroupes parastrophiques. expressions et identites.
Math. Nachr., 20:73–106, 1959.

[122] A. Sade. Produit direct singulier de quasigroups orthogonaux et anti-
abéliens. Ann. Soc. Sci. Bruxelles Ser. I, 74:91–99, 1960.

[123] D. G. Sarvate and J. Seberry. Encryption methods based on combi-
natorial designs. Ars Combinatoria, 21A:237–246, 1986.

[124] M. Satti. A quasigroup based cryptographic system.
arXiv:cs/0610017v1 [cs.CR], 2006.

[125] R. Schaufler. Eine Anwendung zyklischer Permutationen und ihre The-
orie. PhD thesis, Marburg University, 1948.

[126] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Fer-
guson. Twofish: A 128-bit block cipher. Submission to NIST, 1998.

BIBLIOGRAPHY 137

[127] C. P. Schnorr and S. Vaudenay. Black box cryptanalysis of hash net-
works based on multipermutations. Advances in Cryptology - EURO-
CRYPT 94, LNCS, 950:47–57, 1995.

[128] V. Shcherbacov. On some known possible applications of quasigroups
in cryptology. SMIK, 2007.

[129] J. D. H. Smith. An introduction to quasigroups and their representa-
tions. Academic Press, Inc., 1974.

[130] V. Snášel, A. Abraham, J. Dvorský, P. Krömer, and J. Platoš. Hash
functions based on large quasigroups. Computational Science ICCS
2009, LNCS, 5544:521–529, 2009.

[131] S. K. Stein. On the foundations of quasigroups. Trans. Amer. Math.
Soc., 85:228–256, 1957.

[132] D. R. Stinson. Cryptography: Theory and Practice. Chapman & Hall
/ CRC, 2nd edition, 2002.

[133] S. Vaudenay. On the need for multipermutations: Cryptanalysis of
md4 and safer. FSE 94, LNCS, 1008:286–297, 1995.

[134] M. Vojvoda. Cryptanalysis of one hash function based on quasigroup.
Tatra Mt. Math. Publ., 29(3):173–181, 2004.

[135] M. Vojvoda, M. Sýs, and M. Jókay. A note on algebraic properties of
quasigroups in edon80. In SASC. Bochum, Germany, 2007.

[136] X. Wang, X. Lai, D. Feng, H. Chen, and H. Yu. Cryptanalysis of the
hash functions md4 and ripemd. Advances in Cryptology - EURO-
CRYPT 2005, LNCS, 3494:1–18, 2005.

[137] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full sha-1.
Advances in Cryptology - CRYPTO 2005, LNCS, 3621:17–36, 2005.

[138] X. Wang and H. Yu. How to break md5 and other hash functions. Ad-
vances in Cryptology - EUROCRYPT 2005, LNCS, 3494:19–35, 2005.

[139] X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on
sha-0. Advances in Cryptology - CRYPTO 2005, LNCS, 3621:1–16,
2005.

138 BIBLIOGRAPHY

[140] M. Wegman and J. Carter. New hash functions and their use in au-
thentication and set equality. Journal of Computer and System Sci-
ence, 22:265–279, 1981.

[141] R. L. Wilson. Quasidirect products of quasigroups. Commun. Algebra,
3:835–850, 1975.

[142] Federal Information New York. Data encryption standard. Processing
Standards Publication No. 46 (1977), National Bureau of Standards.

Curriculum Vitae

Aleksandra Mileva was born on the 6th of April 1975 in Štip, Republic
of Macedonia. She studied computer science at the Institute of Informat-
ics, Faculty of Natural Sciences and Mathematics, University ”Ss Cyril and
Methodius” of Skopje, Macedonia, and obtained the degree of Graduated
Engineer in Informatics in April 1998. In October 2004 she obtained a M.Sc.
degree in Informatics from the same institution. She is working now as an
Assistant on Faculty of Informatics, University ”Goce Delčev” of Štip.

139

