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Abstract. Diffusion layers, and specially perfect diffusion layers, are very im-

portant subject for cryptographic research. Main quest is a perfect diffusion
layer with more optimal hardware and/or software implementations (if possi-

ble, the last needs to holds also for its inverse). Different structures can be used

for representing these layers, but all are interconnected. We start with multi-
permutations as a tools for obtaining perfect diffusion, and we summarize the

interconnections between them, MDS codes, Latin squares and quasigroups,

orthogonal arrays and m-arcs. We give a new construction of perfect recur-
sive diffusion layer from r-recursive MDS codes, or recursively r-differentiable

quasigroups.

1. Introduction

The concept of diffusion was first introduced by Shannon in its seminal paper
“Communication Theory of Secrecy Systems” [34], and refers to dissipating the sta-
tistical structure of plaintext into statistical structure involving long combinations
of letters in ciphertext. Modern block ciphers are cascades of rounds, and every
round has a diffusion layer as its building block, usually some linear transforma-
tion. For a long time diffusion layers were little bit neglected in the cryptographic
research, compared to confusion layers. More serous research started with intro-
duction of notation of multipermutation by Schnorr and Vaudenay [30, 31]. By
their definition, a permutation f : Z2 → Z2, f(x, y) = (f1(x, y), f2(x, y)) is a mul-
tipermutation if for every x, y ∈ Z the mappings fi(a, ∗), fi(∗, b) for i = 1, 2 are
permutations on Z. Vaudenay [37] generalized the concept of multipermutation
with (r, t)−multipermutation and introduced the notation of perfect diffusion in
the sense that changing i input values changes at least (t− i+ 1) output values.

Definition 1.1. ([37]) A function f : Zr → Zt is a (r, t)−multipermutation if
any two different (r+ t)-tuples of the form (x1, . . . , xr, f(x1, . . . , xr)) cannot collide
in any r positions.

The perfect diffusion with (r, t)− multipermutation is achieved because for any
x1, . . . , xr ∈ Z and any integer i such that 1 ≤ i ≤ r, changing i input values on
f(x1, . . . , xr), will change at least (t− i+ 1) output values. Linear transformations
with maximal branch numbers (introduced by Daemen [10]) have perfect diffusion.
Perfect diffusion provides resistance against linear and differential cryptanalysis, so
building perfect diffusion layers, that have, together with their inverses, optimal
performances in hardware and/or software, is one of the main goals in modern
cryptography.
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In this paper, we try to summarized some known and some unknown intercon-
nections between multipermutations, MDS codes, Latin squares and quasigroups,
orthogonal arrays and m-arcs. We also give short survey of recent prospects in
building perfect diffusion layers, and a new construction of perfect recursive diffu-
sion layer from r-recursive MDS codes, or recursively r-differentiable quasigroups.

2. Connection with MDS codes

Maximum Distance Separable (MDS) code is a linear [n, k, d] code that meets
the Singleton bound, i.e. d = n− k+ 1, where n is the length of the codeword, k is
the dimension of code, and d is the minimal distance. Known MDS codes are Reed
Solomon Codes, (3, 1) Hamming code, (4, 1) extended Hamming codes, dual code
of MDS code, etc. The following two theorems hold for MDS codes.

Theorem 2.1 ([26], page 319). Let C be a [n, k, d] code over finite field Fq. The
following properties are equivalent:

• C is MDS.
• Every k columns of a generator matrix are linearly independent.
• Every n− k columns of a parity check matrix are linearly independent.
• C has minimum weight codewords in any d coordinates.

Theorem 2.2 ([26], page 321). A [n, k, d] code C with generator matrix [I|A],
where A is a k × (n − k) matrix, is MDS if and only if every square submatrix
formed from any i rows and any i columns (for any i ∈ {1, . . . ,min(k, n − k)}) of
A is nonsingular.

From the definition, the set of all words of the form (x1, . . . , xr, f(x1, . . . , xr))
can be seen as a systematic error correcting code of |Zr| words of length r + t
with minimal distance t + 1, which matches the Singleton bound. The connection
between multipermutations and MDS codes can be seen from the fact that if, Z
is a finite field, a linear (r, t)-multipermutation is a [r + t, r, t+ 1] MDS code, in a
sense that any word of length r is coded by the concatenation of the word and its
multipermutation image. Equivalence holds only when MDS code minimal distance
is at least r (t+1 ≥ r). Linear (r, t)− multipermutation f can be represented using
the r × t MDS matrix M as f : x 7→ M × x. The following two propositions give
the characterization of MDS matrices over a finite field Fq.

Proposition 2.3. ([26]) A square matrix M with coefficients in Fq is an MDS
matrix if and only if every square submatrices of M are nonsingular.

Proposition 2.4. ([22]) All entries of an MDS matrix with coefficients in Fq and
its inverse are non zero.

Many block ciphers, as Shark [28], Square[12], AES [11], Twofish [33] etc, use
MDS matrices for obtaining perfect diffusion. Usually, MDS matrices are over finite
fields GF (28) or GF (24). Block ciphers (including lightweight BCs) usually have
block sizes of 32, 64 or 128 bits, so usually they use

• (4, 4)-multipermutations, represented by 4×4 MDS matrices ([8, 4, 5] MDS
codes) of w = 8, 16 and 32-bit words, or

• (8, 8)-multipermutations, represented by 8 × 8 MDS matrices ([16, 8, 9]
MDS codes) of w = 4, 8 and 16-bit words.
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Most of the used MDS matrices are circulant or Hadamard. For example, AES
(Rijndael) [11] in its famous MixColumn operation, uses a 4×4 MDS circulant ma-
trix M = cir(0x02, 0x03, 0x01, 0x01) (as (4, 4)-multipermutation) with coefficients
in GF (28) (first used in Square [12]), which is represented as GF (2)[x]/v(x) where
v(x) = x8 + x4 + x3 + x + 1 is a irreducible polynomial of degree 8 over GF (2).
Circulant MDS matrices are used also in Whirlpool [4] and Maelstrom-0 [16] (M =
cir(0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09) as (8, 8)-multipermutation), Gr�-
stl [19] (M = cir(0x02, 0x02, 0x03, 0x04, 0x05, 0x03, 0x05, 0x07) as (8, 8)-multiper-
mutation), etc.

Let H be a m × m Hadamard matrix H = had(a0, a1, . . . , am−1) with ele-
ments hi,j = ai⊕j . Each Hadamard matrix H over a finite field has the fol-
lowing properties: H2 = γ · I where γ is a constant. When γ = 1, H is an
involution matrix. This property provides the same matrix to be used for en-
cryption and decryption. Involutional Hadamard MDS matrices can be found
in block ciphers KHAZAD [3] (with linear diffusion layer θ such that θ(a) =
b ⇔ b = a · H and H = had(0x01, 0x03, 0x04, 0x05, 0x06, 0x08, 0x0B, 0x07) as
(8, 8)-multipermutation), Anubis [2] (H = had(0x01, 0x02, 0x04, 0x06) as (4, 4)-
multipermutation), CLEFIA [35] (two (4, 4)-multipermutations obteined by two
4× 4 Hadamard matrices), etc.

2.1. Building Efficient MDS Matrices in Software. Junod and Vaudenay
[24] give a construction of 4 × 4 and 8 × 8 MDS matrices efficient in software, by
considering software implementations on various platforms. They considered only
one direction, so obtained inverse matrices may not be very efficient in software.
This is not important if MDS matrix is used with constructions like Feistel or
Lai-Massey schemes which do not use inverse matrix in decryption.

Their strategy is to maximize the number of 1s in the matrix and to minimize
the number of different constants. In this way, the ”optimal” 4 × 4 MDS matrix
has 9 ones and 3 different values and the ”optimal” 8× 8 MDS matrix has 24 ones
and 5 different values. One example of ”optimal” 4× 4 MDS matrix can be found
in FOX64 block cipher [25], which uses Lai-Massey scheme with an orthomorphism
and F function as a S-P network, and it is given by

M =


0x01 0x01 0x01 0x02
0x01 0xFD 0x02 0x01

0xFD 0x02 0x01 0x01
0x02 0x01 0xFD 0x01



2.2. Building Efficient MDS Matrices in Hardware. Guo, Peyrin, and Posch-
mann [20] give a construction of the dxd MDS matrices for compact hardware
implementation (this holds for inverse also) - PHOTON family of lightweight hash
functions.

First they take a matrix A that updates the last cell of the column vector with
a linear combination of all of the vector cells and then rotates the vector by one
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position towards the top. A is d× d matrix of the form

A =



0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1
Z0 Z1 Z2 Z3 . . . Zd−4 Zd−3 Zd−2 Zd−1


where coefficients (Z0, Z1, . . . , Zd−1) can be chosen freely. Such a matrix is denoted
by Serial(Z0, Z1, . . . , Zd−1). Then, their MDS matrix M is obtained by d appli-
cations of matrix A, or M = Ad. For different size d, the authors tested all the
possible values of (Z0, Z1, . . . , Zd−1), and picked the most compact candidate mak-
ing Ad an MDS matrix. In this paper, the authors give A = Serial(1, 2, 1, 4)
as an example of 4 × 4 MDS matrix. LED lightweight block cipher [21] uses
M = A4 = Serial(4, 1, 2, 2)4 as MDS matrix.

The efficiency of this approach lies in the shifting property of A, since this
allows to re-use the existing memory with neither temporary storage nor additional
control logic required. This new diffusion layer does not affect very much software
implementations, because precomputed lookup tables can be used here also.

Gupta and Ray [22] further investigate M = Ad matrices for better hardware
implementation. They try to maximize the occurrence of 1s in the coefficients.
There are no 4 × 4 MDS matrices of this type with three or four 1s. If Z0 = 1,
the hardware footprint for decryption is as good as that of encryption circuitry.
They give the following characterization of A = Serial(Z0, Z1, Z2, Z3) for A4 to
be an MDS matrix, with restriction of the Zi values to the set {1, α, α2, α + 1},
where α is the root of constructing polynomial of the field F2n , and number of 1’s
is maximized:

• A = Serial(1, α, 1, α2), for all n ≥ 5 except when n = 6 and α is root of
x6 + x5 + x4 + x+ 1.
• A = Serial(1, α, 1, α+ 1), for all n ≥ 4
• A = Serial(α, 1, 1, α2), for all n ≥ 5 except when n = 4 and α is root

of x4 + x3 + x2 + x + 1 or x4 + x3 + 1 or when n = 7 and α is root of
x7 + x6 + x5 + x4 + 1.

Similarly, generic constructions of 5×5 MDS matrices of the form Serial(1, α, 1, 1,
α2)5 and Serial(1, α2, 1, 1, α)5 are proposed, when some conditions are fulfilled. Au-
thors also give the conditions when A of the form Serial(1, β, 1, β2), Serial(1, β, 1,
β + 1) and Serial(β, 1, 1, β2), defined for any non zero β ∈ F2n , generates a 4 × 4
MDS matrix A4. Additionally, if Serial(1, β, 1, β2)4 is an MDS matrix, then so is
the matrix Serial(1, β, 1, β2)−4.

Sajadieh et al [29] define the notion of a recursive diffusion layer and propose a
method to construct such perfect diffusion layers.

Definition 2.5. A diffusion layer D with r words xi as the input, and r words yi
as the output is called a recursive diffusion layer if it can be represented in the
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following form:

D :


y0 = x0 ⊕ F0(x1, . . . , xr−1)
y1 = x1 ⊕ F1(x2, . . . , xr−1, y0)
...
yr−1 = xr−1 ⊕ Fr−1(y0, . . . , yr−2)

where F0, F1, . . . , Fr−1 are arbitrary functions.

Sajadieh et al [29] considered the vector space Fn2 over F2, because multiplications
with elements in F2n are specific linear transformations of vector space Fn2 . For every
linear transformation L of Fn2 , there is a square matrix M over F2 such that L(v) =
M ·v. So, the invertibility of L is equivalent to the non-singularity of M . They chose
Li =

∑2
j=−1 a

(j) ·Lj , where a(j) ∈ F2 and 1 ≤ i ≤ r. The final matrix obtained from
this strategy can be treated as an rn×rn matrix over F2 or an r×r matrix composed
of linear transformations over Fn2 . In this way, classical field multiplications are
replaced by simple F2 linear transformations (combinations of XORs and shifts)
which are much lighter. The authors give a construction of one class of perfect
recursive diffusion layers from same Fi(x1, x2, x3) = x2 ⊕ x3 ⊕ L(x1 ⊕ x3) by the
following theorem.

Theorem 2.6. ([29]) For the diffusion layer represented in

D :


y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

if the four linear functions L(x), x⊕ L(x), x⊕ L3(x), and x⊕ L7(x) are invertible,
then this diffusion layer is perfect.

Example of 4 × 4 MDS matrix A = Serial(1, 2, 1, 4) in [20] can be represented
by recursive diffusion layer D with Fi(x1, x2, x3) = L(x1) ⊕ x2 ⊕ L2(x3), where
L(x) = 2x and x ∈ GF (24).

MDS codes exist also over algebraic structures other than fields, like modules
[15], commutative rings [7], finite principal ideal rings [14], cyclic groups [39], etc.
This fact offers many new possibilities to construct efficient and compact hardware
implementation of MDS matrices.

Wu, Wang and Wu [38] revisit the design strategy of [20] and [29], and construct
recursive diffusion layers over particular commutative ring, with one or several
bundle-based LFSRs, which have smaller hardware implementation.

Let L be an n× n non-singular matrix over F2 and

S = {
∑

a−iL
−i + a0 +

∑
ajL

j : i, j ∈ Z+, a−i, a0, aj ∈ F2}

be a set which includes all polynomials of L and L−1. Then, the set S together
with the addition of F2 and the multiplication of polynomials, form a commutative
ring. It is denoted by F2[L,L−1]. The following construction strategy is used in
[38]:

• Construct r×r matrix A = (Ai,j) with each Ai,j =
∑
ai,jk ·Lk ∈ F2[L,L−1].

• Choose an integer d and compute D = Ad (d ≥ 1) as the final diffusion
layer. D is perfect if and only if the determinant of each square submatrix
of D is an invertible element in F2[L,L−1].
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• Additionally, when choosing, Ai,j should be with few terms and linear
transformation L should be with no more than one XOR gate.

Their proposals have smaller hardware implementations than diffusion layers
given in PHOTON lightweight hash family [20] and [29], because they use the

smallest possible number of XOR gates. For r = 4 the best result is A
(4)
lfsr =

[L, 1, 1, L2] and authors suggest also several lightweight linear transformations L.
With several bundle-based LFSRs (Type-II Generalized Feistel Structure), for r = 4

the best result is A
(4)
gfs = [L, 1, 1, L] and for r = 8 the best result is A

(8)
gfs =

[1, L4, 1, L−1, 1, L, 1, L2]. The authors discuss also some possible manners to con-
struct perfect diffusion layers by increasing the number of iterations and using
bit-level LFSRs.

Augot and Finiasz [1] try to construct larger MDS matrices, using the same
previous recursive construction: 8× 8 diffusion matrices with symbols of 4 bits and
16× 16 diffusion matrices with symbols of 8 bits.

Berger [6] give a generic construction of MDS recursive diffusion layers from
Gabidulin codes [18], which have additional MRD (Maximum Rank Distance) prop-
erty. This fact gives an additional property to diffusion layers which seems inter-
esting for cryptographic applications.

Recently, a new construction of block-wise MDS matrices over a finite commu-
tative ring with identity is given by Dehnavi et al [13].

3. Connection with Latin Squares and Quasigroups

3.1. Mathematical preliminaries. A quasigroup is a groupoid (Q, ∗) that satis-
fies the property for each one of the equations a ∗ x = b and y ∗ a = b to have a
unique solution x, respectively y. When Q is a finite set, the main body of the Cay-
ley table of the quasigroup (Q, ∗) represents a Latin square, i.e., a matrix with rows
and columns that are permutations of Q. Two quasigroups (Q, ∗1) and (Q, ∗2) are
orthogonal if for any u and v in Q, there exists a unique pair of elements x and y of
Q such that x∗1y = u and x∗2y = v. In particular, if (Q, ∗1) and (Q, ∗2) are orthog-
onal and x and y run through all elements of Q, the ordered pairs (x ∗1 y, x ∗2 y)
run through all elements of Q2. Moreover a set {(Q, ∗i) |i = 1 . . . t, t ≥ 2} of
quasigroups of order n is said to be orthogonal if any two distinct quasigroups are
orthogonal. Such a set of pairwise orthogonal quasigroups is said to be a set of
mutually orthogonal quasigroups or, when we speak about Latin squares - a set
of mutually orthogonal Latin squares (MOLS). The maximal possible number of
MOLS of order n is (n− 1) and if so, the set is said to be complete.

An n-ary groupoid (n ≥ 1) is an algebra (Q, h) on a nonempty set Q as its
universe and with one n-ary operation h : Qn → Q. We use the definition of an
n-ary quasigroup from Belousov [5].

Definition 3.1. An n-ary groupoid (Q, h) is an n-ary quasigroup (of order |Q|)
if any n elements of the a1, a2, . . . , an+1 ∈ Q, satisfying the equality

h(a1, a2, . . . , an) = an+1,

uniquely specifies the remaining one.

2-ary quasigroups, 3-ary quasigroups and 4-ary quasigroups are also known as bi-
nary, ternary and quaternary quasigroups, respectively. When we say a quasigroup,
we mean of a binary quasigroup.
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To every finite n-ary quasigroup of order r, an equivalent combinatorial structure
n-dimensional Latin hypercubes of order r can be associated. Let Q be the set of
r different elements. By n-dimensional Latin hypercube H of order r we mean
an n-dimensional array of rn cells, where the cell contains an element of Q and
where every set of r cells which coordinates match between themselves except in
one coordinate, contains each of the elements of Q. Latin hypercubes of dimension
1, 2 and 3 are commonly called permutations, Latin squares, and Latin cubes,
respectively.

3.2. Connections. A (1, t)-multipermutation is equivalent to a vector of t permu-
tations. A (2, 1)-multipermutation is equivalent to a Latin square (quasigroup),
every (2, 2)-multipermutation is equivalent to a pair of MOLS (mutually orthogo-
nal quasigroups) and a (2, t)-multipermutation is equivalent to a set of t pairwise
orthogonal Latin squares (quasigroups).

CS-Cipher [36] uses non-linear (2, 2)-multipermutation M which maps two 8-bit
words xl and xr, in the following way:

M(xl, xr) = (P (ϕ(xl)⊕ xr), P (Rl(xl)⊕ xr))
where P is a non-linear byte permutation, Rl is a bit rotation by one position to
the left and ϕ is a linear byte permutation.

Let Q = {0, 1}8. We can rewrite function M , by two orthogonal quasigroups
(Q, ∗1) and (Q, ∗2) of order 256 in the following way:

M(xl, xr) = (xl ∗1 xr, xl ∗2 xr)
where x ∗1 y = P (ϕ(x)⊕ y) and x ∗2 y = P (Rl(x)⊕ y).

Couselo et al [8] give a definition of k-recursive code and the conditions when
this code is an MDS code.

Definition 3.2. Let Q = {a1, a2, . . . , aq} be a finite set. A code C is called a
k-recursive code if there exists a function f : Qk → Q (k ≤ n) such that C is
the set of all words (u0, . . . , un−1) satisfy the condition ui+k = f(ui, . . . , ui+k−1)
for i = 0, 1, . . . , n − k − 1, where u0, . . . , un−1 are arbitrary elements of Q. It is
denoted by C(n, f).

C(n, f) can be represented by

C(n, f) = {(u0, . . . , uk−1, f0(u0, . . . , uk−1), . . . , fn−k−1(u0, . . . , uk−1)) : (u0, . . . , uk−1) ∈ Qk}

where
f0 = f0(u0, . . . , uk−1) = f(u0, . . . , uk−1),
f1 = f1(u0, . . . , uk−1) = f(u1, . . . , uk−1, f0)
. . .
fk−1 = fk(u0, . . . , uk−1) = f(uk−1, f0 . . . , fk−2)
fi+k = fi+k(u0, . . . , uk−1) = f(fi, . . . , fi+k−1) for i ≥ 0
are recursive derivatives.

Theorem 3.3. ([8, 9]) The arbitrary k-recursive code C(n, f) is an MDS code if
and only if the following two conditions are fulfil:
(i) For every function fi (0 ≤ i ≤ n− k− 1) holds that (Q, fi) is k-ary quasigroup.
(ii) The system of functions f0, . . . , fn−k−1 is an orthogonal system k-ary quasi-
groups, i.e. the values of arbitrary k functions from the set

(u0, . . . , uk−1, f0(u0, . . . , uk−1), . . . , fn−k−1(u0, . . . , uk−1))
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uniquely specifies the remaining n− k values.

Definition 3.4. ([8, 9]) A quasigroup operation f is called recursively r-differentia-
ble if all its recursive derivatives f1, f2, . . . , fr are quasigroup operations.

Definition 3.5. A quasigroup (Q, f) is called recursively r-differentiable if all
recursive derivatives f1, f2, . . . , fr of f are quasigroup operations.

Let F0 = F1 = . . . = Fr−1 = F in the recursive diffusion layer D from [29]. Let
f(x0, x1, . . . , xr−1) = x0 ⊕ F (x1, . . . , xr−1). Then we can rewrite D as

D :


y0 = x0 ⊕ F (x1, . . . , xr−1) = f(x0, x1 . . . , xr−1)
y1 = x1 ⊕ F (x2, . . . , xr−1, y0) = f(x1, x2, . . . , xr−1, y0)
...
yr−1 = xr−1 ⊕ F (y0, . . . , yr−2) = f(xr−1, y0, . . . , yr−2)

so we proofed the following Theorem.

Theorem 3.6. Every recursive diffusion layer D with r words xi as the input, r
words yi as the output, and F0 = F1 = . . . = Fr−1 = F is an r−recursive code
C(2r, f). If C(2r, f) is MDS code, then D is a perfect diffusion layer.

Construction of a perfect recursive diffusion layer, besides using the r−recursive
code, can be formulated using r-ary quasigroup by the following Theorem.

Theorem 3.7. Let (Q, f) be an r-ary recursively r-differentiable quasigroup. If
the recursive derivatives f0, f1, . . . , fr−1 form an orthogonal system of r-ary quasi-
groups, then the diffusion layer D given by

D :


y0 = f(x0, x1 . . . , xr−1)
y1 = f(x1, x2, . . . , xr−1, y0)
...
yr−1 = f(xr−1, y0, . . . , yr−2)

is a perfect recursive diffusion layer.

Proof. Direct consequence from previous two Theorems.

Corollary 3.8. Every recursive diffusion D layer with r words xi as the input,
r words yi as the output, and F0 = F1 = . . . = Fr−1 = F which represent MDS
matrix can be represented using r applications of one r−ary quasigroup.

Example of 4 × 4 MDS matrix A = Serial(1, 2, 1, 4) in [20] can be represented
by 4-recursive MDS code with the function

f(x0, x1, x2, x3) = x0 ⊕ L(x1)⊕ x2 ⊕ L2(x3)

where L(x) = 2x and x ∈ GF (24). This means that (GF (24), f) is 4−ary quasi-
group of order 16, and A can be obtained by 4 applications of the 4−ary quasigroup
operation f .

Couselo et al [8] give several constructions of linear MDS recursive codes, by
using linear recurrence sequences (LSR) over module and finite field. Additionally,
Markov and Nechaev [27] give a description of several recursive MDS codes by using
LSR over finite field. Let P = Fq. A sequence over P is a function u : N0 → P ,
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with representation u = (u(0), u(1), . . . u(i), . . .). Let denote P<1> = {u : N0 →
P}. For an arbitrary monic polynomial

f(x) = xm − fm−1x
m−1 − . . .− f1x1 − f0 ∈ P [x]

with LP (f) = {u ∈ P<1> : u(i+m) = fm−1u(i+m− 1) + . . .+ f0u(i)} is denoted
the set of all LRS with characteristic polynomial f(x). For any n ≥ m and any
u ∈ LP (f) its initial segment of length n is u(0, n− 1) = (u(0), u(1), . . . u(i)). The
set:

C = L0,n−1
P (f) = {u(0, n− 1) : u ∈ LP (f)}

is an [n,m, d]q−code over P , called linear recursive [n,m, d]−code with char-
acteristic polynomial f(x).

Remark. ([27]) All the recursive [8, 4, 5]8−MDS codes are BCH-codes.

4. Connection with with Orthogonal Arrays and m-arcs

4.1. Connection with Orthogonal Arrays. An orthogonal array OAλ(k, n, q)
is λqk × n array of q symbols, such that in any k columns of the array every one
of the possible qk ordered k-tuples of symbols occurs in exact λ rows. Usually k is
referred to as the strength of the OA, n is called the number of factors (constrains),
q is called the number of levels and λ is called the index of OA.

Theorem 4.1. ([23]) The rows of a OA1(k, n, q) linear orthogonal array of index
unity and symbols from Fq are the codewords of a [n, k, n−k+1] MDS code (linear
(k, n− k)−multipermutation) over Fq and conversely.

4.2. Connection with m-arcs. Let V [N + 1, q] be a vector space. The lattice of
subspaces of V [N + 1, q] of dimension at least 1 is called a Projective Geometry
and is denoted by PG(N, q). The 1-dimensional subspaces are called points, the 2-
dimensional subspaces lines, the 3-dimensional subspaces planes, etc. of PG(N, q).
A set of m points in PG(N,q), with m > N , is called an m-arc if every N + 1 of
the points are linearly independent. Let K be a set of m points, P1, P2, . . . , Pm
in PG(N, q). Form the N + 1 × m matrix G whose m columns are projective
coordinates of each of the points.

Theorem 4.2. (reformulated from [32]) K is an m-arc in PG(N, q) if and only if
G is the generator matrix of an [m,N + 1,m−N ] q-ary MDS code.

In PG(2, q) the largest m-arcs have size q+ 1 if q is odd and q+ 2 if q is even. A
(q + 1)-arc in PG(2, q) is called an oval and a (q + 2)- arc is called a hyperoval. In
PG(3, q), the largest m-arcs have size q + 1. For every q there exists a (q + 1)-arc
in PG(3, q), called a twisted cubic. Ovals give rise to [q + 1, 3, q − 1] MDS codes
((3, q − 2)−multipermutations). Hyperovals give rise to [q + 2, 3, q] MDS codes
((3, q − 1)−multipermutations). Twisted cubics give rise to [q + 1, 4, q − 2] MDS
codes ((4, q − 3)− multipermutations).

5. Future work

Last few years we are faced with intensive research on this subject, specially,
different ways of their construction and finding perfect diffusion layers with optimal
hardware and/or software implementation. Till recently, cryptographers used only
MDS codes over fields for their construction, but diversity of MDS codes over
different algebraic structures, offer new ways and new possibilities. For example,
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recursive MDS codes by using linear recurrence sequences over module and BCH-
codes are good candidates for further investigations.

References

[1] D. Augot, M. Finiasz: Exhaustive Search for Small Dimension Recursive MDS Diffusion
Layers for Block Ciphers and Hash Functions, ISIT 2013.

[2] P.S.L.M. Barreto and V. Rijmen: The Anubis Block Cipher, In First Open NESSIE

Workshop, KU-Leuven, Submission to NESSIE (2000)
[3] P.S.L.M. Barreto and V. Rijmen: The Khazad Legacy-Level Block Cipher, In First Open

NESSIE Workshop, KU-Leuven, Submission to NESSIE (2000)

[4] P.S.L.M. Barreto and V. Rijmen:, The Whirlpool hashing function, Primitive submitted
to NESSIE (September 2000) (Revised May 2003).

[5] V. D. Belousov: Osnovi teorii kvazigrup i lup, ”Nauka”, Moskva, 1967.

[6] T. P. Berger: Construction of Recursive MDS Diffusion Layers from Gabidulin Codes, In
INDOCRYPT 2013, LNCS 8250, (2013), 274− 285.

[7] W. C. Brown: Matrices over commutative rings, (1993), Chapman & Hall Pure and Applied
Mathematics Series, CRC Press.

[8] E. Couselo, S. Gonsales, V. Markov, A. Nechaev: Recursive MDS- codes and recur-

sively differentiable quasigroup, Discret. Mat. 10(2), (1998), 3− 29.
[9] E. Couselo, S. Gonsales, V. Markov, A. Nechaev: The parameters of recursive MDS-

codes, Discret. Mat. 12(4), (2000), 3− 24.

[10] J. Daemen: Cipher and Hash Function Design Strategies based on linear and dierential
cryptanalysis, PhD thesis, K.U.Leuven, (1995).

[11] J. Daemen, V. Rijmen:The Design of Rijndael: AES - The Advanced Encryption Stan-

dard, Information Security and Cryptography, Springer-Verlag, (2002).
[12] J. Daemen, L. Knudsen, V. Rijmen:The Block Cipher Square, In E. Biham, editor, Fast

Software Encryption. Proceedings, LNCS 1267, (1997), 149− 165.

[13] S. M. Dehnavi, A. Mahmoodi Rishakani, M. R. Mirzaee Shamsabad, H. Maimani,
E. Pasha: Construction of New Families of MDS Diffusion Layers, IACR Cryptology ePrint

Archive 2014: 11, (2014).
[14] S. T. Dougherty, J.-L. Kim, H. Kulosman: MDS codes over finite principal ideal rings,

Designs, Codes and Cryptography 50(1), (2009), Springer US, 77− 92.

[15] X.-D. Dong, C. B. Son, E. Gunawan: Matrix characterization of MDS linear codes over
modules, Linear Algebra and its Applications, 277(1-3), (1998), Elsevier, 57− 61.

[16] D.G. Filho, P.S.L.M. Barreto, V. Rijmen: The Maelstrom-0 hash function, In: SBSeg

2006 (2006)
[17] H. Feistel: Cryptography and computer privacy, Scientific American, 228 (1973), no. 5,

15− 23.

[18] E. M. Gabidulin: Theory of codes with maximum rank distance, Problems of Information
Transmission (English translation of Problemy Peredachi Informatsii) 21(1), (1985).

[19] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M.

Schlffer, S.S. Thomsen: Gr�stl a SHA-3 candidate Submission to NIST, (2008).
[20] J. Guo, T. Peyrin, A. Poschmann: The PHOTON family of lightweight hash functions,

In: Rogaway, P. (ed.) Crypto 2011, LNCS 6841, (2011), 222− 239.
[21] J. Guo, T. Peyrin, A. Poschmann, M. J. B. Robshaw: The LED block cipher, In:

Preneel, B. and Takagi, T. (Eds.) CHES 2011, LNCS 6917, (2011), 326− 341.
[22] K. C. Gupta, I. G. Ray: On Constructions of MDS Matrices from Companion Matrices

for Lightweight Cryptography, In: A. Cuzzocrea, C. Kittl, D. E. Simos, E. Weippl, L. Xu
(Eds.) CD-ARES Workshops 2013. LNCS 8128, (2013), Springer, Heidelberg, 2943.

[23] A.S. Hedayat, N.J.A. Sloane, J. Stufken: Orthogonal Arrays: Theory and Applications,
Springer, (1999).

[24] P. Junod, S. Vaudenay: Perfect Diffusion Primitives for Block Ciphers. Building Efficient
MDS Matrices, In SAC’04. LNCS 3357, (2004), 84− 99.

[25] P. Junod, S. Vaudenay, FOX: A New Family of Block Ciphers, In SAC 2004, LNCS 3357,
(2005), 114129.

[26] F. J. MacWilliams, N. J. A. Sloane: The Theory of Error-Correcting Codes, North-
Holland Mathematical Library Series, (1977), North Holland Publishing Co.



11

[27] V. Markov, A. Nechaev: Generalized BCH-theorem and linear recursive MDS-codes,

ACCT (2010).

[28] V. Rijmen, B. Preneel, A. Bosselaers, E. DeWin: The Cipher SHARK, In D. Goll-
mann, editor, Fast Software Encryption. Proceedings, LNCS 1039, (1996), 99− 111.

[29] M. Sajadieh, M. Dakhilalian, H. Mala, P. Sepehrdad: Recursive Diffusion Layers for

Block Ciphers and Hash Functions, In: Canteaut, A. (ed.) FSE 2012, LNCS 7549, (2012),
385− 401.

[30] C. P. Schnorr, S. Vaudenay: Parallel FFT-hashing, In R. Anderson, editor, FSE 1993,

LNCS 809, (1994), 149− 156.
[31] C. P. Schnorr, S. Vaudenay: Black Box Cryptanalysis of hash networks based on mul-

tipermutations, In A. De Santis, editor, Advances of Cryptology - EUROCRYPT’94, LNCS

950, (1995), 47− 57.
[32] J. A. Thas: M.D.S. Codes and Arcs in Projective Spaces: A Survey, Le Matematiche

47(Fasc. II), (1992), 315− 328.
[33] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson: Twofish: A

128-bit block cipher, In The First AES Candidate Conference, NIST, (1998).

[34] C. E. Shannon: Communication Theory of Secrecy Systems, Bell System Technical Journal
28(4), (1949).

[35] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata: The 128-bit blockcipher

CLEFIA (extended abstract), In: A. Biryukov (ed.) FSE 2007, LNCS 4593, (2007) 181195.
[36] J. Stern, S. Vaudenay: CS-Cipher, In J. Kelsey, B. Schneier, D. Wagner, C. Hall, editors,

FSE 1998, LNCS 1372, (1998), 189− 204.

[37] S. Vaudenay: On the Need for Multipermutations: Cryptanalysis of MD4 and SAFER, In
B. Preenel, editor, Fast Software Encryption. Proceedings, LNCS 1008, (1995), 286− 297.

[38] S. Wu, M. Wang, W. Wu: Recursive Diffusion Layers for (Lightweight) Block Ciphers and

Hash Functions, In L. R. Knudsen, H. Wu (Eds.) SAC 2013, LNCS 7707, (2013), Springer
Berlin Heidelberg,355− 371.

[39] A. A. Zain, B. S. Rajan: Algebraic characterization of MDS group codes over cyclic
groups, IEEE Transactions on Information Theory 41(6), (1995), 2052− 2056.
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