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ABSTRACT 

Two basic attacks of cryptographic primitives are the linear 
and the differential cryptanalysis. To fight these attacks, 
building blocks of cryptographic primitives must have some 
desirable properties. Prop ratio tables and correlation matrices 
are important tools for linear and differential cryptanalysis, 
hence one have to take care on resistance of these attack when 
designing of cryptographic primitives. In this paper we 
present the analysis of correlation matrices and prop ratio 
tables of quasigroups of order 4 as building blocks. 

I. INTRODUCTION 

Most of the successful attacks on block ciphers are different 
variants of linear or differential cryptanalysis. These attacks 
are also applicable, more or less successfully, on stream 
ciphers and cryptographic hash functions. 
 Linear cryptanalysis, introduced by M. Matsui [1], 
exploits the high probability occurrences of linear expressions 
involving plaintext bits, ciphertext bits and/or sub-key bits of 
cipher. It is a known plaintext attack, because the attacker 
must have information on a random set of plaintexts and 
corresponding ciphertexts (but cannot select plaintexts he 
wants to). The basic idea of this attack is to approximate the 
operation of a portion of the cipher with an expression that is 
linear, where the linearity refers to a mod-2 bitwise operation 
(XOR). If the cipher has a tendency for expression that hold 
with high or low probability, this is an evidence that the 
cipher exhibits non-random behaviour. If some expression 
hold with probability 1, then it is a perfect representation of 
the linear relationship in the cipher, and if some expression 
hold with probability 0, then it is a perfect representation of 
the affine relationship in the cipher, so the cipher has a 
catastrophic weakness. 
 Differential cryptanalysis, introduced by E. Biham and 
A. Shamir [2], is a chosen plaintext attack/chosen ciphertext 
attack, because the attacker is able to choose pairs of 
plaintexts such that there is a specified difference ΔX between 
members of the pair. For any particular cipher, the plaintext 
pair difference must be carefully chosen, if the attack has to 
be successful. The attacker then trace a path of highly 
probable difference through all rounds of the cipher until the 
difference of the corresponding ciphertext pairs ΔY, termed a 
differential characteristic, has suitable value. The resulting 
pair of differences (ΔX, ΔY)  is called a differential.  In an 
ideally randomizing cipher, the probability that a particular 
output difference ΔY occurs given a particular input 
difference ΔX is 1/2n, where n is the number of input bits. 
Statistics of the differentials can discover where the cipher 

exhibits non-random behaviour resulting with recovering of 
the encryption key. A difference can be defined in several 
ways: XOR difference with eXclusive OR (XOR) operation 
([2]); modular difference with integer modular subtraction 
operation (X. Wang and H. Yu [3] for hash functions), etc. 
Statistical properties of differentials depend upon the nature 
of non-linear components of the cryptographic primitive, 
usually S-boxes, so they must be examined.  
 There are many generalisations of differential and linear 
attacks, like: truncated and higher order differentials (L. 
Knudsen [4]), impossible differential cryptanalysis (A. 
Shamir [5]), boomerang attack (D. Wagner [6]), rectangle 
attack (E. Biham and all [7]), differential-linear cryptanalysis 
(M. E. Hellman and S. K. Langford [8]), non-linear 
cryptanalysis (L. Knudsen and M. Robshaw [9]), chosen 
plaintext linear cryptanalysis (L. Knudsen and J. M. 
Mathiassen [10]) etc. 
 Because of the importance of the linear and the 
differential cryptanalysis, new designs are expected to be 
accompanied by evidence that the algorithms are resistant to 
them. For example, AES with underlying Rijndael ([11,12]) 
have been proven secure against those attacks. So, if someone 
chooses to use quasigroups as non-linear component of some 
cryptographic primitive, the first thing he/she has to do is 
examination of its resistance to those attacks. One can use 
correlation matrices and prop ratio tables as tools for this 
assignment. 

II. CORRELATION MATRICES 

The correlation matrix of Boolean mappings is a useful 
concept, introduced by J. Daemen and all [13], in 
demonstrating and proving properties of Boolean functions 
and mappings. This is useful because most components of 
cryptographic primitives are Boolean mappings. The elements 
of the correlation matrices consist of the correlation 
coefficients associated with linear combinations of input bits 
and linear combinations of output bits. Linear cryptanalysis 
can be seen as the exploitation of correlations between linear 
combinations of bits of different intermediate encryption 
values in a block cipher calculation, so correlation matrices 
are therefore the natural representation for the description and 
understanding of the mechanisms of linear cryptanalysis. 
 A Boolean function f is a function . A 
Boolean mapping or vector-valued Boolean function h is a 
mapping  and it can be decomposed into m 
component Boolean functions (h

22: Ζ→Ζnf

mnh 22: Ζ→Ζ
0, h1, ..., hm-1).  
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Definition 1. The correlation coefficient associated with a 
pair of Boolean functions f (a) and g (a) is denoted by C (f, g) 
and is given by 

                                  (1) 12 g (a)] - P[f (a) =  C (f, g) =

The correlation coefficient ranges between  –1 and 1 and if it 
is different from 0, the functions are said to be correlated. 
 A selection vector w is a binary vector that selects all 
components i of a vector that have wi = 1. By  wTa  can be 
represented the linear combination of the components of a 
vector a selected by w.  
 Let  be a real-valued function defined by 

, so in regards of a linear Boolean function,  

w

)(ˆ af
)()1()(ˆ afaf −=

Ta becomes . The bitwise sum of two Boolean 
functions corresponds to the bitwise product of their real-
valued counterparts, i.e., . 

awT

)1(−

)(ˆ)(ˆ)(ˆ)( agafagaf =+
 The inner product of real-valued functions is defined by, 

                   ∑=
a

agafagaf )(ˆ)(ˆ)(ˆ),(ˆ                          (2) 

It can easily be shown that 
C ( ) )(ˆ),(ˆ2, agafgf n−=  

The real-valued functions corresponding to the linear Boolean 
functions form an orthogonal basis with respect to the defined 
inner product: 
                   )(2)1(,)1( vunavau TT

+=−− δ                       (3) 

where δ (w) is the real-valued function equal to 1 if w is the 
zero vector and 0 otherwise. 
 All correlation coefficients between linear combinations 
of input bits and that of output bits of the mapping h can be 
arranged in a correlation  2m × 2n – matrix  Ch. The element 
Cuv in the row u and the column v is equal to 
C ( )awahu TT ),( . The rows in this matrix can be interpreted 
as 

                                             (4) aw

w

h
uw

ahu TT

C )1()1( )( −=− ∑
In words, this means that the real-valued function 
corresponding to a linear combination of output bits can be 
written as a linear combination of the real-valued functions 
corresponding to a linear combination of input bits. 
 Correlation matrices can be applied to express 
correlations in iterated transformations, such as most block 
ciphers (see [13,14] for more information). Linear crypta-
nalysis are possible if there are predictable input-output 
correlations over all but a few rounds significantly larger than 
2n/2, where n is the block length of the block ciphers [14]. An 
input-output correlation is composed of linear trails and, in 
order a crypto primitive to be resistant against this attack, a 
necessary condition is that there are no linear trails with 
correlation coefficients higher than 2n/2. 

III. PROP RATIO TABLES 

Differential cryptanalysis exploits difference propagation and 
so, as a tool for its examination, one can uses 2m × 2n  prop 
ratio tables ([14]).  
 Let  a and  a*  be  n-dimensional vectors with bitwise 
difference  a + a* = a’. Let  b = h(a), b* = h(a*)  and   b’= 
b + b*.  Hence, the difference a’ propagates to the difference 
b’ through mapping h and this can be represented by   (a’ ┤ 
h ├ b’).  

 Definition 2.  The prop ratio  Rp   of a difference 
propagation  (a’ ┤ h ├ b’)  is given by 

      Rp (a’ ┤ h ├ b’) = ( )∑ +′++′−

a

n ahaahb )()(2 δ      (5) 

The prop ratio ranges between 0 and 1 and if a pair is chosen 
uniformly from the set of all pairs (a, a*) with   a + a* = a’,  
The equality h(a) + h(a*) = b’ is true with some probability.  
It can be easily seen that ∑

b
pR (a’ ┤h├ b’) = 1.  If  Rp(a’ 

┤h├ b’) = 0, the difference propagation  (a’ ┤ h├ b’)  is 
called invalid. The input difference   a’ and the output 
difference  b’ are said to be incompatible through h.  
Difference propagation is composed of differential trails.   

 Definition 3. The restriction weight of a valid difference 
propagation  (a’ ┤ h├ b’)  is the negative of the binary 
logarithm of the prop ratio, i.e., 

               wr (a’ ┤ h├ b’) = – log2  Rp (a’ ┤ h├ b’)           (6) 

The restriction weight ranges between  0  and  n – 1  and can 
be seen as the amount of information (in bits) that is restricted 
by  (a’ ┤ h├ b’)   on  a.  If  h  is linear,  wr (a’ ┤ h├ b’) = 
0, so it can be seen that this difference propagation does not 
restrict or gives away information on a. 
 The correlation matrix and the prop ratio table of a 
mapping h are connected through the following theorem (J. 
Daemen [14]). 
 Theorem 1. The table of prop ratios and the table 
containing the squared elements of the correlation matrix of a 
Boolean mapping h are linked by, 

              Rp (a’ ┤ h├ b’) =          (7) ∑ ′+′− −
wu

uw
buawm C

TT

,

2)1(2

and, dually, by 
               = 2

uwC ∑
′′

′+′− −
ba

buawn TT

,
)1(2 Rp (a’ ┤ h├ b’)           (8) 

 Differential cryptanalysis attacks are possible if there are 
predictable difference propagations over all but a few rounds 
that have prop ratio significantly larger than  21-n,  where n is 
the block length in the block ciphers [14]. To be resistant 
against this attack, necessary condition is that there are no 
differential trails with predicted prop ratio higher than  21-n. 
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IV. PROP RATIO TABLES AND CORRELATION MATRICES OF 
QUASIGROUPS OF ORDER 4 

One can use quasigroups as non-linear building blocks of 
cryptographic primitives.  

 Definition 4.  A quasigroup  (Q,*)  is a groupoid (i.e., 
algebra with one binary operation * on the set Q) satisfying 
the law: 

           ( )( )( vyuvuxQyxQvu )==∈∃∈∀ *&*,!,      (9) 

To any finite quasigroup (Q,*) given by its multiplication 
table, a Latin square can be associated, consisting of the 
matrix formed by the main body of the table, since each row 
and column is a permutation of Q. 
 In this paper we examined the prop ratio tables and the 
correlation matrices of quasigroups of order 4. There are 576 
different quasigroups of order 4 (we take ) and they 
can be ordered by lexicographic ordering (that corresponds to 
the rows of the main body of the multiplication table, taken 
upside down). Every quasigroup (Q, *) of order 4 can be 
represented as vector-valued Boolean function  

and for (x

2
2Ζ=Q

2
2

4
2: Ζ→Ζh

0, x1), (x2, x3) and (y0, y1) in Q= , h(x2
2Ζ 0, x1, x2, x3) 

= (x0, x1)* (x2, x3)= (y0, y1). 
 
 Example 1.  The quasigroup of lexicographic order 113 
is given by the next table  
 

* 0 1 2 3 
0 0 3 1 2 
1 3 0 2 1 
2 1 2 0 3 
3 2 1 3 0 

 
and it has a prop ratio table given below (the input differences 
in integer representation are listed above and the output 
differences at the left) 
 

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
2 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
3 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0

 
and a correlation matrix 
 

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

 
 There are 144 out of 576 quasigroups of order 4 that have 
a prop ratio table with all nontrivial difference propagations 
with prop ratio 1 and restriction weight of 0, and correlation 
matrix with every nonzero output selection vector correlated 
only to one input selection vector with correlation 1, as the 

quasigroup from Example 1. They correspond to the set of 
linear quasigroups in D. Gligoroski and all [15], and they are 
represented by their lexicographic order in the following list: 

{1, 4, 11, 14, 21, 24, 26, 27, 37, 40, 43, 46, 51, 54, 57, 60, 70, 
71, 77, 80, 82, 83, 92, 93, 100, 101, 110, 111, 113, 116, 126, 
127, 132, 133, 138, 139, 146, 147, 157, 160, 163, 166, 169, 
172, 179, 182, 189, 192, 196, 197, 203, 206, 212, 213, 222, 
223, 228, 229, 234, 235, 243, 246, 252, 253, 259, 262, 269, 
272, 274, 275, 284, 285, 292, 293, 302, 303, 305, 308, 315, 
318, 324, 325, 331, 334, 342, 343, 348, 349, 354, 355, 364, 
365, 371, 374, 380, 381, 385, 388, 395, 398, 405, 408, 411, 
414, 417, 420, 430, 431, 438, 439, 444, 445, 450, 451, 461, 
464, 466, 467, 476, 477, 484, 485, 494, 495, 497, 500, 506, 
507, 517, 520, 523, 526, 531, 534, 537, 540, 550, 551, 553, 
556, 563, 566, 573, 576}  

Because of the nature of their prop ratio tables, their 
correlation matrices and their linearity, they should not be 
used as a non-linear building block of any cryptographic 
primitive. 

Example 2.  The quasigroup with lexicographic order 231 is 
given by the table  
 

* 0 1 2 3 
0 1 2 3 0 
1 2 3 0 1 
2 0 1 2 3 
3 3 0 1 2 

 
and it has a prop ratio table 
 
h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 ½ 0 ½ 0 ½ 0 ½ 0 0 1 0 
1 0 ½ 0 ½ ½ 0 ½ 0 ½ 0 ½ 0 0 ½ 0 ½
2 0 0 1 0 0 ½ 0 ½ 0 ½ 0 ½ 1 0 0 0 
3 0 ½ 0 ½ ½ 0 ½ 0 ½ 0 ½ 0 0 ½ 0 ½

 
 One can see from this table that there are 3 nontrivial 
difference propagations with prop ratio 1 and restriction 
weight of 0. The input difference 0010 (=2) always 
propagates to output difference 10 (=2), 1000 (=12) always 
propagates to output difference 10 (=2) and the input 
difference 1110 (=14) always propagates to output difference 
00 (=0). For example, the input difference 0010 is for the 
pairs: 0*0 = 1 and 0*2 = 3; 0*1 = 2 and 0*3 = 0; 1*0 = 2 and 
1*2 = 0; 1*1 = 3 and 1*3 = 1; 2*0 = 0 and 2*2 =  2; 2*1 = 1 
and 2*3 = 3; 3*0 = 3 and 3*2 = 1; and 3*1 = 0 and 3*3 = 2.  
Their output difference is 10.  
 The correlation matrix for this quasigroup is 
 
h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 
2 0 0 0 0 0 0 ½ ½ 0 0 -½ ½ 0 0 0 0 
3 0 0 0 0 0 0 -½ ½ 0 0 -½ -½ 0 0 0 0 
 
 One can see that there exists a nonzero output selection 
vector (01) that is correlated only to one input selection vector 
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(1101) with correlation -1. This means that the second bit y1 
of the output can be represented by affine function from the 
input bits, i.e., . 3101 1 xxxy ⊕⊕⊕=
 There are 432 out of 576 quasigroups of order 4 that have 
prop ratio table with 3 nontrivial difference propagations with 
prop ratio 1 and restriction weight of 0. Other nontrivial 
difference propagations are with prop ratio ½ and restriction 
weight of 1. They correspond to the set of nonlinear 
quasigroups in [15].  
 216 quasigroups of this set have correlation matrix with 
one nonzero output selection vector that is correlated only to 
one input selection vector with correlation -1, as quasigroup 
from Example 2, and they are represented in the following 
list: 
{149, 150, 151, 152, 153, 154, 158, 159, 161, 162, 164, 165, 
173, 174, 175, 176, 177, 178, 180, 181, 185, 186, 190, 191, 
193, 194, 199, 200, 204, 205, 207, 208, 209, 210, 211, 214, 
217, 218, 219, 220, 227, 230, 231, 232, 233, 236, 237, 238, 
241, 242, 247, 248, 249, 250, 251, 254, 260, 261, 263, 264, 
265, 266, 268, 273, 276, 277, 278, 283, 287, 288, 289, 290, 
295, 296, 298, 301, 304, 306, 307, 311, 313, 314, 319, 320, 
321, 322, 326, 332, 333, 335, 336, 337, 338, 339, 340, 347, 
350, 351, 352, 353, 356, 357, 358, 361, 362, 367, 368, 372, 
373, 375, 376, 377, 378, 379, 382, 389, 390, 391, 392, 393, 
394, 396, 397, 403, 404, 406, 407, 409, 410, 415, 416, 418, 
419, 421, 422, 427, 428, 429, 432, 433, 434, 435, 436, 443, 
446, 447, 448, 449, 452, 455, 456, 457, 458, 459, 460, 465, 
468, 471, 472, 475, 478, 479, 480, 481, 482, 487, 488, 491, 
492, 493, 496, 498, 499, 501, 502, 509, 510, 511, 512, 515, 
516, 518, 519, 521, 522, 524, 525, 529, 530, 535, 536, 538, 
539, 541, 542, 547, 548, 549, 552, 557, 558, 559, 560, 561, 
562, 564, 565, 571, 572, 574, 575}. 
 The others 216 quasigroups of this set of 432 nonlinear 
quasigroups have correlation matrix with one nonzero output 
selection vector that is correlated only to one input selection 
vector with correlation 1, as quasigroup from Example 3, and 
they are represented in the following list: 
{2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 
25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 
47, 48, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 64, 65, 66, 
67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 84, 85, 86, 87, 88, 
89, 90, 91, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 
107, 108, 109, 112, 114, 115, 117, 118, 119, 120, 121, 122, 
123, 124, 125, 128, 129, 130, 131, 134, 135, 136, 137, 140, 
141, 142, 143, 144, 145, 148, 155, 156, 167, 168, 170, 171, 
183, 184, 187, 188, 195, 198, 201, 202, 215, 216, 221, 224, 
225, 226, 239, 240, 244, 245, 255, 256, 257, 258, 270, 271, 
279, 280, 281, 282, 291, 294, 299, 300, 309, 310, 316, 317, 
327, 328, 329, 330, 341, 344, 345, 346, 359, 360, 363, 366, 
369, 370, 383, 384, 386, 387, 399, 400, 401, 402, 412, 413, 
423, 424, 425, 426, 437, 440, 441, 442, 453, 454, 462, 463, 
469, 470, 473, 474, 483, 486, 489, 490, 503, 504, 505, 508, 
513, 514, 527, 528, 532, 533, 543, 544, 545, 546, 554, 555, 
567, 568, 569, 570}.  
 
Example 3.  The quasigroup with lexicographic order 109 is 
given by the table  
 

* 0 1 2 3 
0 0 3 1 2 
1 2 1 3 0 
2 1 0 2 3 
3 3 2 0 1 

 
and it has a prop ratio table 
 
h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 1 0 ½ ½ 0 0 ½ ½ 0 
1 0 ½ ½ 0 0 ½ ½ 0 ½ 0 0 ½ ½ 0 0 ½
2 0 0 0 1 1 0 0 0 0 ½ ½ 0 0 ½ ½ 0 
3 0 ½ ½ 0 0 ½ ½ 0 ½ 0 0 ½ ½ 0 0 ½

 
and a correlation matrix 
 
h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
2 0 0 0 0 0 ½ ½ 0 0 0 0 0 0 ½ -½ 0 
3 0 0 0 0 0 -½ ½ 0 0 0 0 0 0 ½ ½ 0 

 
 One can see that there exists nonzero output selection 
vector (01) that is correlated only to one input selection vector 
(1011) with correlation 1. This means that the second bit y1 of 
output can be represented by linear function from the input 
bits, i.e., 3201 xxxy ⊕⊕= . 
 From viewpoint of the linear and the differential 
cryptanalysis, even those nonlinear quasigroups can be 
exploited for an attack if they are used only once. Namely, 
they do not fulfil the necessary condition for linear and 
differential cryptanalysis resistance: for prop ratio table the 
maximal prop ratio for every column, except the first one, 
should be ½, and for correlation matrix the maximal 
correlation coefficient for every row, except the first one, 
should be ½.  
 These weaknesses can be outperformed and resistance to 
those attacks can be gained by usage of quasigroup 
transformations, for example, e-transformations (see [16] and 
[17]). The usage of higher order quasigroups gives also better 
performances in respect of resistance to linear and differential 
attacks. It can be seen from Example 4, where we have 
presented the prop ratio table and the correlation matrix of 
random quasigroup of order 8. A quasigroup of order 8 can be 
represented as vector-valued Boolean function .  3

2
6
2: Ζ→Ζh

Example 4.  We examined the quasigroup of order 8, given 
by the table  

* 0 1 2 3 4 5 6 7 
0 5 2 4 6 1 7 0 3 
1 6 0 7 5 3 1 4 2 
2 2 7 1 4 0 6 3 5 
3 7 4 0 1 2 3 5 6 
4 3 1 6 0 7 5 2 4 
5 1 3 5 2 4 0 6 7 
6 0 5 2 3 6 4 7 1 
7 4 6 3 7 5 2 1 0 
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and it has prop ratio table with maximum prop ratio 11/32 
(without first column) and is not smaller than 21-3 = 1/4. Any 
nontrivial difference propagation is with prop ratio smaller or 
equal to 11/32 (Appendix A). 

The correlation matrix has maximum correlation coeffi-
cient ½ (without first row) and is not smaller than 2-3/2≈ 
0.3536. Any nonzero output selection vector is correlated 
with minimum 26 up to maximum 37  input selection vectors 
with correlation coefficient at most ½ (Appendix A). 

V. CONCLUSION 

Two basic attacks of cryptographic primitives, especially of 
block ciphers, are the linear and the differential cryptanalysis; 
consequently, the new designs are expected to be 
accompanied by evidence that they are resistant to them. One 
can use as tools the prop ratio tables and the correlation 
matrices for examining of the non-linear parts of the 
cryptographic primitives. If someone decides to use 
quasigroups of order 4, he/she must consider their prop ratio 
tables and correlation matrices. There are 144 out from 576 
quasigroups of order 4 that have linear properties, evident by 
their prop ratio tables and correlation matrices. The other 432 
quasigroups have nonlinear properties, but if applied only 
once they still do not fulfil the necessary condition for linear 
and differential cryptanalysis resistance.  
 By using quasigroup transformations, for example, e-
transformations, and quasigroups of higher order (or both), 
these weaknesses can be outperformed.  
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APPENDIX A 

The prop ratio table of Example 4: 
h 0 1    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 1 0 0 0 0 0 0 0 0 1/4 1/16 3/16 3/32 5/32 3/32 5/32 0 1/8 5/32 5/32 5/32
1 0 5/32 1/4 1/32 5/32 1/16 7/32 1/8 1/8 5/32 1/16 3/32 1/32 1/4 5/32 1/8 1/4 1/16 3/16 1/16 1/8
2 0 1/4 3/32 1/32 1/8 1/8 9/32 3/32 3/16 1/16 7/32 1/32 1/8 3/16 3/32 3/32 3/32 5/32 1/8 1/8 1/16
3 0 3/32 5/32 5/16 3/32 3/16 0 5/32 5/16 1/32 5/32 3/16 1/8 1/32 5/32 0 3/32 5/32 1/32 7/32 5/32
4 0 1/16 1/8 1/16 7/32 7/32 5/32 5/32 1/8 3/16 1/16 1/8 5/32 5/32 1/32 5/32 5/32 0 5/32 3/16 3/16
5 0 3/32 3/16 5/32 1/4 1/32 3/16 3/32 1/8 5/32 1/8 5/32 1/32 1/8 3/32 3/16 7/32 1/8 1/8 1/32 5/32
6 0 1/4 1/32 7/32 1/32 7/32 1/16 3/16 1/8 1/16 7/32 3/32 3/16 1/16 3/32 5/32 1/16 5/32 3/16 5/32 1/32
7 0 3/32 5/32 3/16 1/8 5/32 3/32 3/16 0 3/32 3/32 1/8 1/4 1/32 9/32 1/8 1/8 7/32 1/32 1/16 1/8

   
 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 

0 1/32 1/4 1/8 0 1/8 5/32 5/32 1/8 3/16 1/32 7/32 0 3/16 3/32 1/32 3/32 11/32 1/8 1/8 0 1/16 7/32
1 1/8 1/16 1/8 1/8 3/16 1/16 3/16 1/8 3/16 1/16 1/16 1/16 1/8 3/32 3/32 3/16 1/16 2/32 9/32 3/16 1/16 3/32
2 3/16 3/32 5/32 3/32 3/32 1/8 5/16 1/16 1/16 7/32 1/32 9/32 1/8 3/32 1/16 1/4 1/32 1/16 3/32 5/32 1/16 3/32
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3 3/32 5/32 3/32 3/32 3/32 5/32 1/32 3/16 1/8 1/8 3/16 5/32 1/16 7/32 1/16 3/32 1/16 7/32 1/8 1/32 5/16 3/32
4 3/32 1/8 3/32 5/32 1/16 5/32 1/8 1/8 3/32 1/16 7/32 3/32 3/16 1/8 9/32 1/32 1/8 1/16 3/32 7/32 1/8 1/8 
5 3/16 1/16 3/32 3/32 1/4 1/8 1/32 1/16 7/32 5/32 1/16 1/32 1/8 1/16 9/32 1/16 5/32 5/32 1/8 5/32 1/16 3/16
6 1/8 5/32 1/8 1/8 5/32 1/8 1/32 3/16 3/32 1/4 1/32 3/16 1/16 1/8 1/16 1/4 1/8 1/8 1/16 1/8 3/16 1/16
7 5/32 3/32 3/16 5/16 1/32 3/32 1/8 1/8 1/32 3/32 3/16 3/16 1/8 3/16 1/8 1/32 3/32 5/32 3/32 1/8 1/8 1/8 

 
 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

0 5/32 1/4 1/16 7/32 1/32 0 1/8 1/16 3/16 1/8 1/16 3/16 1/4 0 1/8 1/4 1/8 5/32 5/32 3/32 3/32
1 5/32 3/16 1/16 3/32 5/32 1/8 5/32 5/32 3/16 1/32 3/16 1/8 1/32 1/8 3/32 3/32 3/16 5/32 1/16 3/16 3/32
2 0 3/16 7/32 0 9/32 1/8 5/32 3/16 3/32 1/8 1/32 1/8 5/32 1/16 3/32 1/16 11/32 1/16 5/32 1/8 3/32
3 1/16 0 5/32 3/16 5/32 3/16 1/16 3/32 3/32 7/32 5/32 1/8 1/16 1/8 3/16 3/32 1/32 1/8 3/16 1/32 7/32
4 3/32 3/32 1/8 1/8 3/32 1/16 1/4 5/32 3/32 1/16 1/8 5/32 3/32 3/16 1/8 3/32 1/32 1/8 1/16 9/32 3/32
5 3/32 5/32 1/16 3/16 3/32 1/8 3/32 1/16 5/32 5/32 3/16 1/32 3/16 1/4 3/32 1/8 3/32 1/8 1/32 1/8 5/32
6 3/16 1/32 7/32 3/32 3/32 3/16 1/32 5/32 1/8 1/8 1/32 5/32 3/16 3/16 3/32 3/32 1/8 5/32 1/8 1/16 5/32
7 1/4 3/32 3/32 3/32 3/32 3/16 1/8 1/8 1/16 5/32 7/32 3/32 1/32 1/16 3/16 3/16 1/16 3/32 7/32 3/32 3/32

 
  The correlation matrix of Example 4: 

h 0 1    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 1/8 -1/8 0 1/8 0 -1/4 1/8 0 0 -3/8 -1/8 0 
2 0 0 0 0 0 0 0 0 0 -1/8 0 1/8 0 1/8 0 -1/8 0 0 1/8 -1/8 0 
3 0 0 0 0 0 0 0 0 0 0 -1/8 1/8 -1/8 -1/8 0 1/4 0 0 0 0 -1/4
4 0 0 0 0 0 0 0 0 0 1/4 -1/8 1/8 1/8 -1/8 1/4 0 0 -1/4 1/4 0 0 
5 0 0 0 0 0 0 0 0 0 1/8 1/4 -1/8 0 -1/8 1/4 1/8 0 -1/4 -1/8 -1/8 0 
6 0 0 0 0 0 0 0 0 0 1/8 1/8 0 -1/8 -1/4 -1/4 -1/8 0 0 1/8 -1/8 0 
7 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 1/4 0 0 0 0 1/4

 
  21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 -1/4 1/8 1/8 0 -1/8 -1/4 -1/8 1/8 0 1/8 -1/4 0 0 0 0 1/8 -1/8 1/8 -1/8 0 -1/8 1/8 
2 0 -1/8 1/8 0 1/8 -1/8 0 0 -1/8 1/8 0 0 1/8 -1/4 -1/8 1/8 -1/4 -1/8 0 0 1/2 0 
3 0 0 -1/4 0 0 -1/8 1/8 1/8 3/8 0 0 0 1/8 0 -3/8 0 -1/8 0 -1/8 0 -1/8 -1/8 
4 -1/4 1/4 0 0 0 -1/8 -1/8 -1/8 -1/8 0 0 0 1/8 1/8 0 -1/4 -1/8 -1/8 -1/4 0 1/8 0 
5 0 -1/8 1/8 0 1/8 1/8 0 -1/4 -1/8 -1/8 1/4 0 1/8 1/8 0 1/8 0 1/4 -1/8 0 -1/4 1/8 
6 0 -1/8 1/8 0 -1/8 -1/4 1/8 1/8 -1/4 -1/8 0 0 0 1/8 -1/8 1/8 1/8 -1/4 0 0 -1/8 0 
7 0 0 1/4 0 0 -1/4 0 0 1/4 0 0 0 0 -1/8 1/8 -1/4 0 1/8 1/8 0 0 -1/8 

    
 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 -1/8 -1/8 1/4 0 0 1/8 -1/8 1/8 1/8 1/4 0 0 1/8 0 -1/8 0 -1/8 -1/4 -1/8
2 1/4 -1/8 1/8 -1/8 -1/8 0 1/8 1/8 0 -1/8 0 1/4 1/8 0 1/4 1/8 -1/8 1/8 1/8 0 0 
3 0 -1/8 0 0 -1/8 0 1/8 -1/4 -1/8 0 1/8 0 1/8 0 -1/8 1/8 -1/4 -1/8 1/4 0 1/8
4 -1/8 -1/8 0 1/8 0 0 -1/8 -1/8 0 -1/4 1/8 1/8 -1/4 0 -1/8 0 1/8 1/8 0 -1/8 0 
5 1/8 -1/8 1/8 0 0 0 -1/8 0 -1/8 1/8 0 1/8 0 0 1/4 0 -1/4 1/8 1/8 1/8 1/8
6 -1/8 -1/4 -1/8 0 1/8 0 0 0 0 -1/8 -1/8 1/8 1/8 0 1/8 -1/8 1/4 -1/4 1/8 1/8 1/4
7 -1/8 -1/4 0 1/8 -1/8 0 0 1/8 3/8 1/4 -1/4 1/8 -1/8 0 0 -1/8 -1/8 0 0 1/8 1/8
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