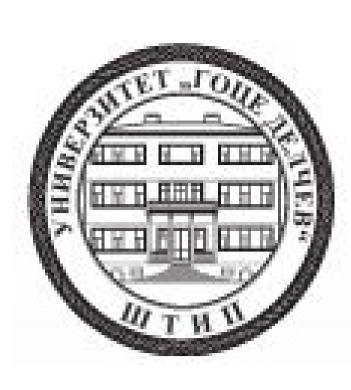
Some random matrix results with application to the multiple access channel

Marija Miteva #, Tome Eftimov* and Zoran Utkovski #*

The study of the capacity bounds for the K-user multiple access channel (MAC), reveals that certain random matrix theory results are of practical relevance to the problem. The result form the point-to-point block Rayleigh fading channel indicate that isotorpically distibuted input signals are capacity achieving in the high-SNR regime. The derivation of the mutual information obtained with these input signals in the MAC case requires analysis of the eigenvalues of Gramm matrices of the type $\mathbf{V}\mathbf{V}^{\mathrm{H}}$, where $\mathbf{V} \in \mathbb{C}^{K \times T}$ and the rows of \mathbf{V} are random vectors which are uniformly distributed on a unit sphere in \mathbb{C}^T



System model

- K single-antenna users;
- one receiver with $N \ge K$ receive antennas;

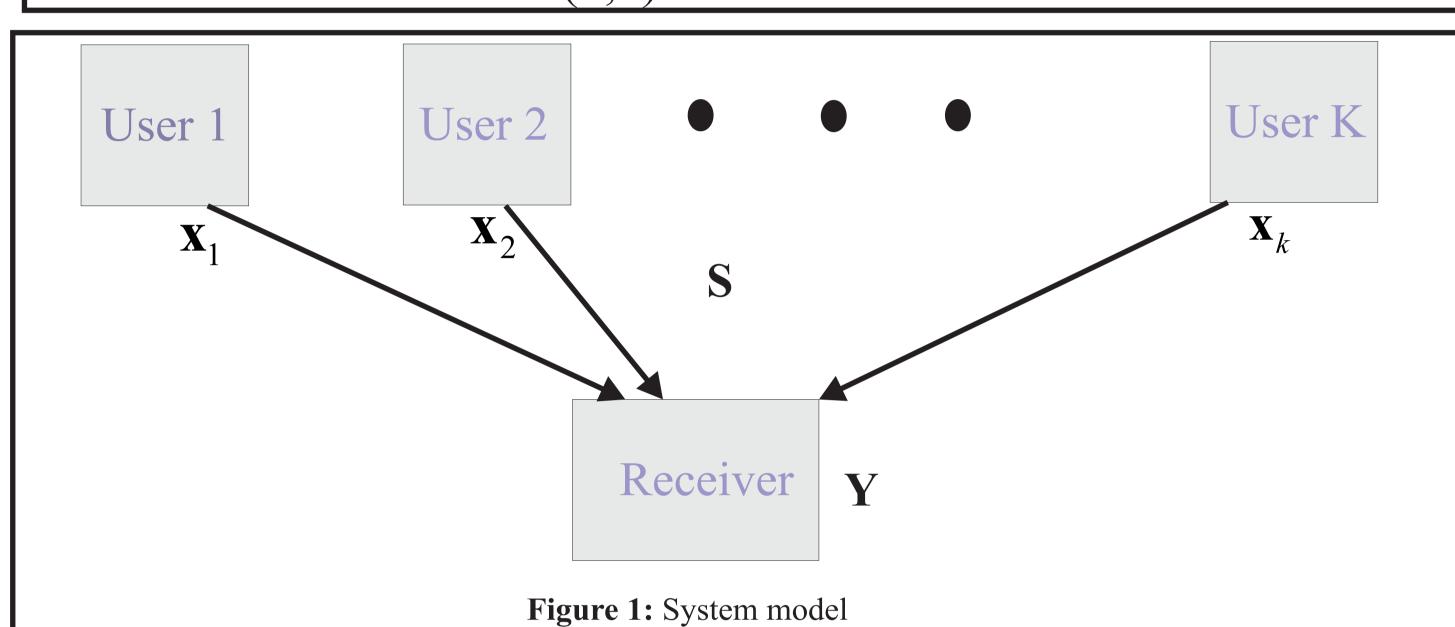
The system model is the following:

$$Y = SX + W$$

where

 $\mathbf{X} \in \mathbb{C}^{K \times T}$, $\mathbf{Y} \in \mathbb{C}^{N \times T}$, $\mathbf{S} \in \mathbb{C}^{N \times K}$ with i.i.d CN(0,1) entries and

 $\mathbf{W} \in \mathbb{C}^{N \times T}$ with i.i.d CN(0,1) entries.



Non-coherent communication

- The channel **S** is unknown;
- Communication based on subspaces;
- Conjecture: The capacity achieving inputs are of the form:

$$\mathbf{x}_{l} = \sqrt{\frac{r T}{K}} \mathbf{v}_{l}$$

where the vectors \mathbf{v}_{i} are independent and uniformly distributed on the unit sphere \mathbb{C}^T .

- r - SNR per receive antenna.

Computation of mutual information

We are interested in the mutual information of non-coherent MAC:

$$I(\mathbf{X};\mathbf{Y}) = h(\mathbf{Y}) - h(\mathbf{Y} \mid \mathbf{X}),$$

in high-SNR regime.

1. Derivation of h(Y)

In the high-SNR approximation, for h(Y) we obtain:

$$h(\mathbf{Y}) \ge (TK - K^2 + NK) \log_2(\frac{rT}{K}) + \log_2|G(T, K)|$$

$$+ (T - K)\mathbb{E}\left[\log_2 \det\left(\mathbf{S}^H\mathbf{S}\right)\right]$$

$$+ (T - K + N)\mathbb{E}\left[\log_2 \det\left(\mathbf{\Sigma}^H\mathbf{S}\right)\right]$$

$$+ (NT - KT + K^2) \log_2(pe),$$

where $V = U \sum_{i=1}^{H} V_{i}^{H}$ is the SVD decomposition.

2. Derivation of h(Y | X)

For h(Y | X) we obtain:

$$h(\mathbf{Y} \mid \mathbf{X}) = NK \log_2(\frac{rT}{K}) + N\mathbb{E}[\log_2 \det(\Sigma \Sigma^H)]$$
$$+TN \log_2(pe)$$

Mutual information

For I(X; Y) we have:

$$I(\mathbf{X}; \mathbf{Y}) \ge K \left(1 - \frac{K}{T} \right) \log_2 \frac{Tr}{K} + \frac{1}{T} \log_2 |G(T, K)|$$

$$-K \left(1 - \frac{K}{T} \right) \log_2 (pe) + \left(1 - \frac{K}{T} \right) \mathbb{E} \left[\log_2 \det(\mathbf{S}^{\mathsf{H}} \mathbf{S}) \right]$$

$$+ \left(1 - \frac{K}{T} \right) \mathbb{E} \left[\log_2 \det(\mathbf{\Sigma} \mathbf{\Sigma}^{\mathsf{H}}) \right].$$

Of interest is to evaluate

$$\Delta = \mathbb{E}[\log_2 \det(\mathbf{\Sigma}\mathbf{\Sigma}^H)]$$

where $V = U \sum_{i=1}^{H} V_{i}^{H}$ is the SVD decomposition.

First, we note that $det(\Sigma\Sigma^H) = det(VV^H)$. We recall that the rows of $\mathbf{V} \in \mathbb{C}^{K \times T}$ are independent and uniformly distributed on the unit sphere

Using the classical QR decomposition of V, we get

$$\det(\mathbf{V}\mathbf{V}^H) = \prod_{k=1}^K R_{kk}^2$$

In the Wishart case, when the row vectors of V are choosen independently from normal distribution, the variables R_{kk}^2 are independent and chi-square distributed with respective parameters b'(T-k+1), k=1,...,K.

In the Gram case, when the row vectors of V are choosen independently and uniformly distributed on the unit sphere in \mathbb{C}^T , the variables R_{kk}^2 are independent and beta distributed with respective parameters

$$(b'(T-k+1),b'(k-1)),k=2...,K$$

(b'(T-k+1), b'(k-1)), k = 2..., K $b' = \frac{b}{2}$, where b=1,2, or 4, which corresponds to the classical matrix models (real, complex and quaternionic).

Let we denote

$$G_{T,K} = \ln \det(\mathbf{V}\mathbf{V}^H) = \ln \prod_{k=1}^K R_{kk}^2 = \sum_{k=2}^K \ln R_{kk}^2$$

Our case corresponds to the Gram case. Using the result from the Gram case, we obtain

$$\mathbb{E}[G_{T,K}] = -\sum_{k=1}^K \sum_{i=1}^\infty \frac{\Gamma(T)}{\Gamma(T-k+1)\Gamma(k-1)} \cdot \frac{\beta(k-1+i,N-k+1)}{i},$$

where $\beta(.,.)$ is beta function.

When $N \to \infty$, and the ratio K/N is fixed, $K/N = c, c \in (0,1)$,

$$\lim_{n} \sup_{K \leq T} |\frac{1}{T} \mathbb{E}[G_{T,K}] + J(1 - \frac{K}{T}) \log_2 e |= 0,$$

where

$$J(u) = u \log u - u + 1$$
, for $u > 0$

$$J(u) = 1$$
, for $u = 0$

$$J(u) = +\infty$$
, for $u < 0$

Finally we have

$$\Delta = \log_2 e \mathbb{E}[G_{T,K}]$$

We derive some results for the eigenvalues of Gram matrices of the type VV^H, where $\mathbf{V} \in \mathbb{C}^{K \times T}$ and the rows of \mathbf{V} are random vectors which are uniformly distributed on a unit sphere \mathbb{C}^T . These matrices are of relevance to the derivation of the mutual informaton of the K-user MAC, obtained with isotropically distributed unitary input signals. As result, we pave the way for the capacity characterization of the non-coherent K-user MAC in the high-SNR regime.