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Abstract— We study the sum-rate of the non-coherent, block
Rayleigh fading MAC, with K single-antenna users and a
receiver which employs N ≥ K antennas. We derive the
mutual information I (x1, . . . ,xK ;Y) with independent unitary
isotropically distributed (i. d.) input signals, a setup motivated
by the capacity analysis of point-to-point MIMO channels. The
results are derived in a semi-analytical form and are valid in the
whole SNR region (not only the high-SNR regime).

I. INTRODUCTION

We study the multiple-access channel (MAC), where K
users transmit their data to a common receiver with N ≥ K
receive antennas. The channel model is the classical Rayleigh
block fading model, initiated by Hochwald and Marzetta [2].
We focus on the non-coherent communication scenario where
the users (terminals) are aware of the statistics of the fading
but not of its realization. Instead of using pilot symbols to
estimate the channel, we adopt the subspace-based approach
where no channel estimation is performed and the information
is conveyed by subspaces invariant to fading [1].

Contribution:The contribution of this work is a step towards
the non-coherent MAC capacity characterization, since we
study the mutual information between the users and the
receiver (sum-rate), achievable when the individual users em-
ploy independent, unitary isotropically distributed (i. d.) input
signals. The use of these input signals is motivated by the
capacity analysis of point-to-point MIMO channels undergoing
block Rayleigh fading [2], [1].

The main result of the work is a closed form expression of
the receive signal density, which yields a method that allows
evaluating the mutual information of the non-coherent mul-
tiple access channel with independent, unitary, isotropically
distributed user inputs. The derivation is motivated by recent
results from the literature which present expressions for the
mutual information achieved by IID complex Gaussian inputs
in the point-to-point MIMO setting [4], and by the method
described in [3] for evaluation the receive signal density of
unitary in the same setting. To recall, obtaining closed form
solution of the mutual information of unitary i. d. input signals
is a difficult task, since it is associated with assessing differ-
ential entropies which are difficult to characterize. Moreover,
straight Monte-Carlo computation is not feasible because it
would entail large-dimensional histograms.
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The main value of the obtained results is that they offer the
opportunity to address the performance loss associated with
having no CSI (neither transmit nor receive), and having no
cooperation between the users, compared to the case with full
channel knowledge and full cooperation (coherent MIMO).

II. SYSTEM MODEL

The system model can be written as follows:

Y = SX+W, (1)

where the rows of X ∈ CKxT represent the users’ transmit
vectors, Y ∈ CNxT is the receive matrix, S ∈ CNxK is the
channel matrix, and W ∈ CNxT the noise matrix. Both S
and W have IID zero-mean unit-variance complex Gaussian
entries. According to our setup, the l-th row vector of X,
l = 1, . . . ,K, is given by xl =

√
ρT
K vl, where each vl is

independent and uniformly distributed (thus i. d.) on the unit
sphere in CT . ρ indicates the average SNR per receive antenna.

III. COMPUTATION OF THE MUTUAL INFORMATION

The mutual information between the K users and the
receiver is I (X;Y) = h (Y) − h (Y | X). In the following
we will sketch the derivation of h (Y | X) and h (Y).

Derivation of h (Y | X): For given X, the rows of Y
are independent Gaussian vectors, with identical covariance
matrices

E
[
yH
l yl | X

]
= IT +XHX, (2)

where l = 1, . . . ,K. By using this observation, and after some
linear algebra manipulation, we obtain

h (Y | X) = NE∆+ TN log(πe), (3)

where

∆ = E log det

(
IK +

ρT

K
VVH

)
. (4)

Further, let us denote G = VVH and µ = ρT
K . In order to

evaluate ∆, we need to evaluate the product of the eigen-
values of the Gramm matrix G = VVH, where the rows
of V ∈ CK×T are independent and uniformly distributed
on the unit sphere in CT . Since no general results for the
eigenvalue distribution of this type of matrices are found in
the literature, we proceed by taking the QR decomposition
(rather than the SVD), V = QR, where Q ∈ CT×K is
unitary, and R ∈ CT×K is upper-triangular with non-negative
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diagonal elements. From the Bartlett decomposition we have
that det (G) =

∏K
k=1 r

2
kk,where r2kk are the diagonal elements

of R. From [5] we have that r2kk , k = 2, . . . ,K are
independent and beta distributed with respective parameters
(αk, βk) = (T − k + 1, k − 1), and r211 = 1. Hence, for ∆
we obtain

∆ = E log
K∏

k=1

λk, (5)

where, λk = 1 + µr2kk, k = 1, . . . ,K. With this, ∆ becomes

∆ = log(1 + µ) +
K∑

k=2

∫ µ+1

1

f(λk) log λkdλk, (6)

where the pdf of λk is given by

f(λk) =
1

µ

Γ (αk + βk)

Γ (αk) Γ (βk)

(
λk − 1

µ

)αk−1 (
1− λk − 1

µ

)βk−1

.

(7)
After some manipulation we obtain

∆ = log(1 + µ) +

K∑
k=2

∞∑
i=1

(−1)i−1 µ
i

i

Γ(αk + βk)

Γ(αk)Γ(βk)
B(i+ αk, βk),

(8)

where

B(i+ αk, βk) =

∫ 1

0

xi+αk−1
k (1− xk)

βk−1dxk (9)

is the B-function. Finally for h(Y | X) we obtain

h(Y|X) = N∆+ TN log(πe)

=N log(1 + µ)

+

K∑
k=2

∞∑
i=1

(−1)i−1µ
i

i

Γ(T )

Γ(T − k + 1 + i)Γ(k − 1)

· B(i+ T − k + 1, k − 1)) + TN log(πe). (10)

Derivation of h(Y): The evaluation of h(Y) requires a
closed form solution for the received signal density p(Y). We
start by writing

p(Y|V) =
1

πTN

exp
{
−tr

[
Y(IT +XHX)−1YH

]}
det (IT +XHX)

N
. (11)

By taking the LQ decomposition X = LXQX, and the
eigenvalue decomposition LHL = ULΛUL

H, we obtain

p(Y|V) =

exp

{
−tr

[
YYH −YΦ

(
IK + K

ρT
Λ−1

)−1

ΦHYH

]}
πTN det (IK + ρT

K
VVH)N

,

(12)

where Φ = QH
XUL. This implies that p(Y|V) = p(Y|Λ),

where

p(Y|Λ) =
exp

{
−trYYH

}
πTN det (IK + ρT

K VVH)N
· Ξ, (13)

and

Ξ = E|Λ exp

{
tr

[
YΦ(IK +

K

ρT
Λ−1)ΦHYH

]}
. (14)

The expectation is taken over the i. d. unitary matrix Φ.
If we introduce the SVD YHY = UYAUY, after some
manipulation for Ξ we obtain

Ξ = E|Λ exp
{
tr
[
AΦBΦH

]}
, (15)

where B =
(
IK + K

ρT Λ
−1

)−1

. The derivation is based on the

fact that, since Φ is unitary and i. d, UY
HΦ is also unitary

and i. d.
It will be convenient to transform the non-negative diagonal
matrix A ≥ 0 into a negative-definite matrix by choosing the
scalar a > 0 such that aIT > A. With this one can show that
Ξ becomes

Ξ = exp {tr [aB]}E|Λ exp
{
−tr

[
aIT −AΦBΦH

]}
(16)

Using the results presented in [3](pp.1476-1477 eq.(13,16,21))
for Ξ we obtain

Ξ =
Γ(T ) · · ·Γ(T + 1−K)(−1)K(K−1)/2

Γ(K + 1) · · ·Γ(1)(2π)K
·
∫

dλ1 · · ·
∫

dλK

·
K∏

k=1

[
e−iλk

(−bkσ1 − jλk) · · · (−bkσM − jλk)(−jλk)T−M

]
·
∏
l<k

((λk − jbka)− (λl − jbla))
2. (17)

Finally, for p(Y) we have

p(Y) =
(−1)K(K−1)/2

πTN

exp{−trYYH}
det(IK + ρT

K VVH)N

·Γ(T ) · · ·Γ(T + 1−K)

Γ(K) · · ·Γ(1)
detF, (18)

where F is a K ×K Hankel matrix whose (p, n) entry is

Fpn =j[

M∑
m=1

exp{bnσm}(jbnσm − jbna)
p+n−2

(bnσm)T−M
∏

l ̸=m(bnσm − blσl)

+
f (T−M−1)(λ)

(T −M − 1)!)

∣∣∣∣
λ=0

], (19)

and
f(λ) =

exp {−jλ} (λ− jba)p+n−2

(−bσ1 − jλ) · · · (−bσM − jλ)
. (20)

Having obtained the received signal density, h(Y) can be
evaluated by a Monte-Carlo approach

h(Y) = −
∫

p(Y) log p(Y)dY. (21)
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