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Abstract 
 

In the field of mobile robotics, calculating suitable paths, 

for point to point navigation, is computationally difficult. 

Maneuvering the vehicle safely around obstacles is 

essential, and the ability to generate safe paths in a real 

time environment is crucial for vehicle viability. 

A method for developing feasible paths through 

complicated environments using a baseline smooth path 

based on Hermite cubic splines is presented. A method 

able to iteratively optimize the path is also presented. This 

algorithm has been experimentally evaluated with 

satisfactory results. 

Keywords: path planning, Hermite cubic spline, obstacle 

avoidance. 

 

1. Introduction 
 

Path planning with motion modelling is an important 

and challenging task that has many applications in the 

fields of robotics, artificial intelligence (AI), virtual 

reality, autonomous agent simulation, etc. The basic task 

for the motion constraint path planning is to perform 

navigations from one place to another by coordination of 

planning, sensing and controlling whilst maintaining a 

smooth motion trajectory. For point to point navigation, 

calculating suitable paths is computationally difficult. 

Maneuvering the vehicle safely around obstacles is 

essential, and the ability to generate safe paths in a real 

time environment is crucial for vehicle viability. 

Numerous motion planners consider the car-like 

vehicle as a three-dimensional system moving in the plane 

and subjected to constraints on the curvature in addition to 

the non-holonomic constraint of rolling without slipping. 

The pioneering work by Dubins [1] showed that the 

minimal length paths for a car-like vehicle consist of a 

finite sequence of two elementary geometrical 

components: arcs of circle and straight line segments. 

From then, almost all of the proposed motion planners 

compute collision-free paths constituted by such 

sequences [2]. As a result, the paths are piecewise C
2
: they 

are C
2
 along elementary components, but the curvature is 

discontinuous between two elementary components. To 

follow such paths, a real system has to stop at these 

discontinuity points in order to ensure the continuity of the 

linear and angular velocities. Continuous-curvature curve 

generation has become a key problem for on-going 

research in this area. 

A few types of splines have been proposed to solve this 

problem. Gómez-Bravo et al [3] proposed a method for 

continuous curvature B-spline-based path planning for 

parking manoeuvres; Berlung et al [4] used the Bezier 

curve in path planning, having considered minimizing the 

square of the arc-length derivative of curvature along the 

curve. Shimizu et al [5] presented a method that uses 

clothoid curve for smooth path generation for mobile 

robot which is equipped with an omni-directional camera 

and a laser rangefinder. Scheuer [6] and Fraichard [7] also 

used clothoid curves in their vehicle control experiment. 

Unfortunately, clothoids do not have a closed form 

making the control of their shapes difficult and dangerous 

in the presence of obstacles. Other recent works [8], [9] 

adopted cubic splines in their trajectory generation 

algorithm. Later methods progressed to higher order 

polynomials [10]. However, previous work has mainly 

been focused on the static trajectory generation problem 

and on finding feasible solutions for 2D applications. All 

these solutions often require a great deal of computational 

power as they evaluate the entire path space [4], [11]. In a 

real time environment it is beneficial to directly compute 

feasible paths continuously to allow for variations in the 

environment, control error and unmodelled sensor error.  

In this work a practical method for developing feasible 

paths, for nonholonomic car-like robot, through dynamic 

environments using a baseline smooth path based on 

Hermite cubic splines is presented. The developed method 

takes into consideration robot constraints. A method for 

adjusting and bending the spline to avoid obstacles is 

developed. This method is able to iteratively refine the 

path to more directly compute a feasible path and thus 

find an efficient, collision free path in real time through an 

unstructured environment. The efficiency of the proposed 

solution is evaluated in a custom, physics-based 

simulation environment provided by Open Dynamics 

Engine (ODE) [12]. In the simulation a simple car-like 

robot model equipped with 3D scanner and GPS has been 

developed. The generated motion path is smooth and has 

continuous curvature on the whole state space of the 

motion, thus satisfying the major requirements for the 

implementation of such strategies in real-time navigation. 
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2. Path objectives 
 

One of the objectives in this work is to study and 

develop a path planning algorithm for autonomous robot 

navigation or exploration in dynamic environments. The 

task can be divided into three parts: to plan a main path 

according to the pre-information, to keep tracking the 

difference between the map and the real environment, and 

then locally to amend the pre-designed path. This strategy 

can efficiently use the available information and reduce 

the re-planning time. It is supposed that the vehicle 

accepts a sequence of GPS waypoints used to define the 

high level mission. The robot’s task then is to traverse 

through each waypoint. 

The robot uses the 3D scanner to detect the 

surrounding environment and obtain the local information. 

The sensor is fixed to the robot body, and obstacles are 

mapped relative to the robot position and heading. The 

robot then uses the local information to generate the path 

to the destination.  

Therefore, it is naive to pre-plan the entire robot path 

from the outset. Thus, re-planed the path is from the 

current position and heading, and using the most current 

obstacle map and do so in a receding horizon fashion. The 

path is also limited to only look ahead past the next 

waypoint. In this way, the next turn will be feasible and 

once executed, a new path will be generated to maneuver 

the vehicle into a suitable position for the following turn. 

For this reason, only three consecutive waypoints are used 

at a time, the most recently passed, and the following two 

points. This approach can be also used in the cases of 

unknown environments, where no pre-information is 

available before the path planning algorithm has been 

executed. 

 

3. Path planning using Hermite cubic splines 
 

In this paper the implementation of Hermite cubic 

splines as a tool for path planning is adopted. The 

mathematics involved in creating splines (which are 

piecewise polynomial functions), allow easy construction 

of smooth paths through a given, finite set of control 

points. Given 2+1 control points, and knowing the robot 

starting and goal position and orientation, a series of 2 

spline segments are generated, with the three-order 

polynomial functions of variable t (t ∈ [0, 1]), to traverse 

these points, as: 


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where X(t), Y(t) are the coordinates of any point on the 

cubic spline, ax, bx, cx, dx and ay, by, cy, dy are the 

coefficients to determine. 

As the first derivative of the path is proportional to the 

vehicle heading, a non-continuous derivative would result 

in an infeasible path for this type of vehicle, but the 

second derivative is proportional to the vehicle steering 

angle and any discontinuities would force the vehicle to 

stop at each control point to adjust its steering. By 

creating a path with continuous derivatives, a smooth 

vehicle control, to remain in motion throughout the 

vehicle path, is guaranteed. 

For these 2 segments of cubic spline, the required 

number of equations is (82) in order to solve out all the 

coefficients. The known conditions are: 

� the initial and final position and the robot 

orientation in these points; 

� the continuity of positions at (2-1) control points; 

� the continuity of 1
st
 derivatives at (2-1) control 

points; 

� the continuity of 2
nd

 derivatives at (2-1) control 

points; 

The total number of know conditions is (62+2) which 

remove (62+2) degrees of freedom from the 8N ones. 

The number of remained degrees of freedom is 2(2-1). 

This number is exactly the same as the unknown x-, y-

coordinates of (2-1) control points. One set of points 

determines one path. By searching for the suitable control 

points, a feasible cubic splines path can be determined. 

Considering just the local parameterization of the i
th

 

cubic spline sequence in only the x direction, we will 

have: 
32)( tdtctbatx iiiii +++=  (2) 

 

Any cubic equation can be used to construct a cubic 

spline by identifying the constants ai, bi, ci and di; 

however, the natural Hermite cubic polynomial has a 

unique property where it satisfies all four of the following 

boundary conditions: 
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If equate the 2nd derivatives p=1 for the (i-1)th 

segment, p=0 for the ith segment we will have: 
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At the first point, 0)0('' 0 =x . So c0=0 and 3(y1-y0)-

2D0-D1=0, so: 

 

)(32 0110 xxDD −=+  (6) 

 

Similarly for the end section 0)1('' =2x . So 

2cm+6dm=0 from which 

 

)(32 11 −− −=+ 2222 xxDD  (7) 

 

Gather all this together the solution of the spline path in 

the matrix form, will be: 
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As mentioned previously, obstacles are mapped from 

various sensors and stored into the map Fig. 1. It should 

be noted that each obstacle must be inflated by at least 

half the width of the vehicle to guarantee that a collision 

does not occur (in the future discussion, talking about 

obstacles, the inflated obstacles will be considered). 

Considering this, and knowing the start and goal positions 

and orientations, for each pair of segments, the initial path 

composed of Hermite cubic splines (depicted in blue in 

Figure 1) is constructed.  

 

4. Calculation of the spline path length and 

curvature 
 

The fundamental properties of the spline path defined 

as above are its length and curvature. The calculation of 

the path’s length is done by integrating the path arcs 

length elements. Considering a path that each path 

segment is given in parametric form x=f(t), y=g(t). Then 

the length l of each path segment is given by: 

 

 
Figure 1. Spline path passing through the initial 

control points (blue). The introduction of additional 

control points can keep the initial path away from 

obstacles and decrease the path length (green). 

 

 ( ) ( )∫ +=
1

0

22
)(')(' dttgtfl  (9) 

 

provided that f and g have continuous derivative in the 

interval [0, 1]. 

The curvature is a measurement of the rate of curving 

or simply how much the curve bends. Considering that the 

path is a curve that is traced at unit speed and is 

parameterized in term of the arc length s. 
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The unit tangent vector 

 
ds

sdr
st

)(
)( =  (11) 

 

is in direction of the curve for which s grows, as it can be 

seen in Figure 2. The angle of this vector in relation to the 

positive x-axis is denoted θ. The signed curvature is 

defined as: 

 
ds

d
sk

θ
=)(  (12) 

 

The normal vector n(s) forms the counterclockwise 

oriented frame with t(s). From this definition, the sign of 

curvature changes if the direction in which the curve is 

traced changes, but the curvature vector k(s)n(s) does not 

depend on the direction. The figure also depicts the 

osculating circle in the point P. 

This is the circle that best approximates the curve in this 

point. The radius of the osculating circle can be calculated 

as: 
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Figure 2. Definition of path curvature 
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The osculating circle is not defined for points where k=0. 

So, in this case, where the path is constructed of Hermite 

cubic splines, the curvature is given by: 

 
2/3

2
.

2
.

......

)()(

)()()()(





 +

−
=

txty

tytxtytx

k  (14) 

 

5. Path refinement and optimization 
 

After the construction of the initial spline path it is 

useful to include additional points along the straight line 

path, connecting the initial control points. 

The quantity and number of these points depend 

greatly on the relationship between the individual path 

lengths and the obstacles distribution. By including 

additional points, the initial path is kept closer to the 

nominal straight line path and it is therefore shorter. These 

points are only used for the initial path optimization and 

will not be rigid constraints in the final path. For 

demonstration, in the previous example depicted in Figure 

1, we have included two additional points PS1 and P2G 

which are midpoints of the first and third path segments 

respectively. The path containing these points is depicted 

in green. As one may observe, addition of such points can 

iron the path and can be very useful in the environments 

where the robot has to traverse a corridor or a narrow 

passage.  

In order to evaluate the quality of the paths, the 

following optimization function is introduced: 

 

min

min

2

min R

Rr
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dl

l
f

m
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+=
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where the lmin is the Euclidian distance between Start and 

Goal, α is a weight constant of the distance from robot to 

obstacles, k is a weight constant of the minimum radius 

for robot driving, l is the path length, which is computed 

by Eq. 9,  dmin is the minimal distance between any point 

on the path and the obstacles, given by: 

 

22

min )()(minmin oPoP
PathPOo

YYXXd −+−=
∈∈

   (16) 

 

where P denotes any point on the path, O is the set of all 

obstacles in the environment. Rmin is the minimum radius 

along the whole path and Rrmin is the minimum turning 

radius, the robot can deal with. By minimizing this 

function, it is possible to shorten the path length, keep the 

robot as far as possible away from obstacles and smooth 

enough. Eventually the optimal path is a compromise of 

all the requirements. This optimization function strictly 

penalizes the trajectories that cause collision with the 

obstacles. 

If it has been determined that the path collides with an 

obstacle, the spline has to be manipulated to avoid that 

obstacle. The proposed method is based on adding of an 

additional control point to the spline segments between 

the intersection points, to guide the path around the 

obstacle. As multiple collisions may have occurred, we 

will have a list of collision points. In order to minimize 

the computational time this method first calculates the 

convex hull of the obstacle. Then it calculates the pair of 

intersection points of the spline path and the convex hull 

of the obstacle. First point corresponds to the entry point 

of the spline into the convex hull and the second one, to 

the exit point, where the spline goes out of the hull area.  

 

 
Figure 3. Initial spline path (brown) intersects the 

safety margin (dark green polygon) of the obstacle 

(grey). The computed convex hull (red polygon). 

Modified path after the first optimization is presented 

in blue, the final save path obtained after the second 

optimization is depicted in green. 

The method then adds an additional point, Pa, on the 

segment, between the entry point (Pe) and the exit point 

(Px)(Figure 3). Then this is moved point perpendicularly 
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to the segment xe P P , by a predefined small distance 

(dm) at each iteration, in both directions. The point Pa is 

continually updated, evaluated and checked against the 

obstacle’s hull, until Pa is free of collision. This means 

that a path through Pa will no longer collide with the 

obstacle at that point. Pa is than added to the list of path 

control points. A new spline (depicted in blue in Figure 3) 

is computed through these points still having the desired 

characteristics but also passing through the new point. For 

each new spline the process is repeated. If the new spline 

still intersects the hull (Pe2 ,Px2), the collision will be 

shorter and closer to the edge of the hull. Thus the 

algorithm will continue to displace the spline around the 

remaining portion of the hull. Because the points are fit 

with cubic functions, a large number of control points 

within close proximity to each other can cause large 

deviations in the path and increasing of its curvature. 

To avoid this, when adding a new point, any other 

control point within a given radius is removed. Therefore, 

in the example in Figure 3, the new added point Pa2, 

obtained in the second optimization step, replaces the 

point Pa1, calculated in the previous step. 

 

6. Motion dynamics 
 

Representing all the motion characteristics by 

analytical equations can be unpractical and out of the 

scope of this paper. A simplified motion model is 

considered in the current work. The developed moving 

robot model has two degrees of freedom and the dynamics 

of the model can be represented as a set of motion’s 

equations in terms of mass, accelerations and steering 

angles as well as external force conditions, such as ground 

friction. The dynamics of a moving robot must follow the 

basic law of motion dynamics, which may be represented 

as a set of general ordinary differential equations in the 

form: 

( )δ,,
'

2

2

XXf
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Xd
=  (17) 

where, RXX ∈
.

,  is the motion state of the robot and its 

first derivative, and δ is the motion control input. We can 

recast the equation for our motion optimization problem 

in the form: 
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where,
∧∧

∧

θ,,
.

aX  are approximate values of motion velocity, 

acceleration and direction of motion (i.e. a steering angle) 

respectively, and the motion control δ is a function of 

acceleration a and moving direction θ. A desired or 

predicted motion state of the moving object is pre-

estimated by a set of approximate functions according to 

the state of moving object and the environment conditions 

related to the surrounding obstacle–space. The actual 

motion track is then computed. The difference between 

the predicted motion and the actual motion will be used 

for estimating the control input to mobile robot system. 

 

7. Simulation experiments 
 

In order to test the path planning algorithm a physics-

based simulation environment provided by ODE has been 

developed. For the scope of this work a four wheels 

mobile robot which has a similar structure to the normal 

car is considered (i.e. two front steering wheels and two 

driven rear wheels). It is equipped with 3D scanner and 

GPS. All wheels have the same diameter and two rear 

wheels are conventional fixed wheels on the same axle 

and two front wheels are centered orientation wheels. The 

wheels are modeled using ODE's basic collision primitive, 

cylinder, and they are connected to the base body using 

motorized hinge joints with a horizontal rotational axis 

(vertical rotation plane). ODE also provides the possibility 

to set a desired velocity with a maximum force for each 

wheel.  

The steering angle can be expressed as: 

 

)/tan( RLa=φ  (19) 

 

where L is the robot length and R is the distance from the 

middle point PM of the rear wheels to the instantaneous 

center of curvature (ICC). The axes of all four wheels pass 

through the ICC during the driving. 

Due to the fixed rear wheels, the robot is not permitted 

to change its orientation on the spot like the omni-

directional robots. This special mechanical structure gives 

the constraint of the minimum radius or the maximum 

steering angle, 

 

minmax )()( RtRort ≥≤ φφ  (20) 

 

The nonholonomic constraint for this kind of robot is 

expressed as: 

M
M

PP xy
..

/tan =θ  (21) 

 

The angle θ stands for the orientation of the robot frame. 
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This constraint says that the direction of the translational 

velocity is the tangent direction of the path. The physical 

meaning of this constraint is that there is no possible 

motion in the axial direction. In other words, as long as 

the translational direction of the robot is coincident with 

the tangent direction of path, the nonholonomic constraint 

is naturally met. Testing environment cluttered with 

random positioned obstacles, was created, start and goal 

robot positions and orientations were set up (Figure 4). 

 

 
Figure 4. 3D simulation environment 

 

The map with the obstacles and safety margins around, as 

well as the spline path computed in real-time using the 

algorithm presented in this work are depicted in Figure 5. 

The average end-position error along the whole path is 

less than 30 mm. 

 
Figure 5. Calculated spline path after two optimization 

steps 

 

8. Conclusion and future work 
 

A novel motion constraint path planning approach for 

real-time navigation of mobile robots is proposed in this 

paper. The algorithm is able to produce a collision-free, 

time-optimal smooth motion trajectory. A 3D simulation 

has been conducted and the result is quite promising. The 

simulation result is quite satisfactory. The next step for 

our research is to refine the algorithm and look at path 

planning with more complex behaviors in simulated 

environments. 
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