

ARCS-09

PROCEEDINGS OF THE
2009 INTERNATIONAL

CONFERENCE ON
AUTOMATION, ROBOTICS AND

CONTROL SYSTEMS

Editors:
Ken Chen, Kamal A.F. Moustafa,

Dimitrios A. Karras

Orlando, Florida, USA
July 13-16 2009

©ISRST 2009

ISBN: 978-1-60651-008-7

Contents

On Control of a Class of Overhead Cranes via Monte Carlo Simulation1

Kamal A.F. Moustafa, Farag Omar, Khalifa H. Harib

On the Central Exponents of Discrete Linear System ..6

Adam Czornik, Aleksander Nawrat

A Distributed Recursive Cooperative Control Design for Networked Mobile

Robots with Limited Communications ...10

Jing Wang, Morrison S. Obeng

Modeling and Control of Underactuated Redundant Manipulators ..16

Ashish Singla, Bhaskar Dasgupta, Ashish Tewari

The Integrated OPN and UML Approach for Developing an Agile

Manufacturing Control System ...24

Ming-Shan Lu, Lu-Kuo Tseng

Experienced Outcomes from the Improvements made to the USAR robot32

R. Stopforth, G. Bright, R. Harley

Performance Analysis of Chaotic Lorenz System ..38

Aisha Tahir

Controller Dynamic Switching for Robotic Wheelchair Navigation ..44

Wanderley Cardoso Celeste, Teodiano Freire Bastos-Filho, Mario Sarcinelli Filho

A Three-step Localization Method for Mobile Robots ...50

Lei Zhang, Rene Zapata

Middleware-level Techniques to Solve the Conflict Problem between Multiple

Tasks on Robotics System ..57

Soo-Hwan Park, Kyoung-Soo We, Chang-Gun Lee

Self-reconfiguring hexapod robot OSCAR using organically inspired approaches

and innovative robot leg amputation mechanism ...62

Bojan Jakimovski, Benjamin Meyer, Erik Maehle

Division of two Polynomial Matrices Using the Fundamental Matrix Approach70

G.F. FRAGULIS, B.G. MERTZIOS

Real-Time Spline Trajectory Creation and Optimization for Mobile Robots75

Saso Koceski, Natasa Koceska, Pierluigi Beomonte Zobel, Francesco Durante

2009 International Conference on Automation, Robotics and Control Systems (ARCS-09)

VI

Trajectory planning to autonomous robotic in unstructured

environment by PCA-Neurofuzzy method ...81

Diogo F. L. Filho, Eduardo L.L. Cabral

Lyapunov-Based Optimal Quantum Pure State Control Strategy ..89

Shuang Cong, Yuan-yuan Zhang

Vision-Based Control of a Robot to Swing-Up and Stabilize an Inverted Pendulum97

Abbas Chatraei, Saeideh Izadi

Efficient Path Planning with Neuro-Genetic-Fuzzy Approach ..103

THONGAM KHELCHANDRA, JIE HUANG

Force/Vision-Guided Grasping for an Autonomous Dual-Arm Mobile Manipulator

Crew Assistant for Space Exploration Missions ...109

E. Zereik, A. Sorbara, G. Casalino, F. Didot

Modeling & Attitude Stabilization of a Coaxial Double Rotor Micro Flying Robot117

Yongheng Zhang, Nasser Houshangi

A Self-Organizing Autonomous Prediction System for Controlling Mobile Robots123

Josh R. de Leeuw, Kenneth R. Livingston

Using A* for Simultaneous Allocation of Multi-Robot Tasks ...130

Fang Tang, Spondon Saha

A Survey of Multi-Robot Cooperation in Space ...138

Jurgen Leitner

Analytical Structure and Stability Analysis of a Fuzzy Two-Term

Controller with Multi-Fuzzy Sets ...146

Arpita Ghosh, T. K. Das, S. K. Mandal, B. M. Mohan

Strict Lyapunov Functions for Nonlinear Discrete-time Systems ..154

Fengjun Tang, Cui Guozhong, Jiao Yulan, Wang Ailan

Solid Structure Assembly by Robot Swarms ..156

Amro Fawzy, Samah Senbel, Abdel-Menem Wahdan

Numerical Methods for a Periodic Optimal Control Problem ..160

Lijin Wang, Fengshan Bai

Robust Adaptive Control of Unknown Parametric Robotic Manipulators

with Uncertain Load Using General Regression Neural Network ..168

Sourav Dutta

2009 International Conference on Automation, Robotics and Control Systems (ARCS-09)

VII

System Modelling and PID Control System of Four Rotor Helicopter176

Saurav Kumar Singh, Dipti Ranjan Biswal, Amit Kumar, Sanjay Kumar Kar

Design of Automatic Glideslope and Flarepath controllers of

terminal flight phase for an Unmanned Aerial Vehicle ..184

Senthil Kumar K, Hariharan K, P. Niraimathi

Morphing a Mobile Robot Network to Dynamic Task Changes Over Time and Space…….....192

S. TOPAL, I. ERKMEN, A.M. ERKMEN

Towards Full Autonomous Development of a Fixed-Wing Unmanned Air Vehicle200

Senthil Kumar K, Uthirabalan R, Shiladitya Bhowmick

2009 International Conference on Automation, Robotics and Control Systems (ARCS-09)

VIII

Real-Time Spline Trajectory Creation and Optimization for Mobile Robots

Saso Koceski, Natasa Koceska, Pierluigi Beomonte Zobel, Francesco Durante

Department of Mechanical, Energy and Management Engineering, University of L'Aquila,

67040 Località Monteluco, Roio Poggio (AQ), Italy

Abstract

In the field of mobile robotics, calculating suitable paths,

for point to point navigation, is computationally difficult.

Maneuvering the vehicle safely around obstacles is

essential, and the ability to generate safe paths in a real

time environment is crucial for vehicle viability.

A method for developing feasible paths through

complicated environments using a baseline smooth path

based on Hermite cubic splines is presented. A method

able to iteratively optimize the path is also presented. This

algorithm has been experimentally evaluated with

satisfactory results.

Keywords: path planning, Hermite cubic spline, obstacle

avoidance.

1. Introduction

Path planning with motion modelling is an important

and challenging task that has many applications in the

fields of robotics, artificial intelligence (AI), virtual

reality, autonomous agent simulation, etc. The basic task

for the motion constraint path planning is to perform

navigations from one place to another by coordination of

planning, sensing and controlling whilst maintaining a

smooth motion trajectory. For point to point navigation,

calculating suitable paths is computationally difficult.

Maneuvering the vehicle safely around obstacles is

essential, and the ability to generate safe paths in a real

time environment is crucial for vehicle viability.

Numerous motion planners consider the car-like

vehicle as a three-dimensional system moving in the plane

and subjected to constraints on the curvature in addition to

the non-holonomic constraint of rolling without slipping.

The pioneering work by Dubins [1] showed that the

minimal length paths for a car-like vehicle consist of a

finite sequence of two elementary geometrical

components: arcs of circle and straight line segments.

From then, almost all of the proposed motion planners

compute collision-free paths constituted by such

sequences [2]. As a result, the paths are piecewise C
2
: they

are C
2
 along elementary components, but the curvature is

discontinuous between two elementary components. To

follow such paths, a real system has to stop at these

discontinuity points in order to ensure the continuity of the

linear and angular velocities. Continuous-curvature curve

generation has become a key problem for on-going

research in this area.

A few types of splines have been proposed to solve this

problem. Gómez-Bravo et al [3] proposed a method for

continuous curvature B-spline-based path planning for

parking manoeuvres; Berlung et al [4] used the Bezier

curve in path planning, having considered minimizing the

square of the arc-length derivative of curvature along the

curve. Shimizu et al [5] presented a method that uses

clothoid curve for smooth path generation for mobile

robot which is equipped with an omni-directional camera

and a laser rangefinder. Scheuer [6] and Fraichard [7] also

used clothoid curves in their vehicle control experiment.

Unfortunately, clothoids do not have a closed form

making the control of their shapes difficult and dangerous

in the presence of obstacles. Other recent works [8], [9]

adopted cubic splines in their trajectory generation

algorithm. Later methods progressed to higher order

polynomials [10]. However, previous work has mainly

been focused on the static trajectory generation problem

and on finding feasible solutions for 2D applications. All

these solutions often require a great deal of computational

power as they evaluate the entire path space [4], [11]. In a

real time environment it is beneficial to directly compute

feasible paths continuously to allow for variations in the

environment, control error and unmodelled sensor error.

In this work a practical method for developing feasible

paths, for nonholonomic car-like robot, through dynamic

environments using a baseline smooth path based on

Hermite cubic splines is presented. The developed method

takes into consideration robot constraints. A method for

adjusting and bending the spline to avoid obstacles is

developed. This method is able to iteratively refine the

path to more directly compute a feasible path and thus

find an efficient, collision free path in real time through an

unstructured environment. The efficiency of the proposed

solution is evaluated in a custom, physics-based

simulation environment provided by Open Dynamics

Engine (ODE) [12]. In the simulation a simple car-like

robot model equipped with 3D scanner and GPS has been

developed. The generated motion path is smooth and has

continuous curvature on the whole state space of the

motion, thus satisfying the major requirements for the

implementation of such strategies in real-time navigation.

2009 International Conference on Automation, Robotics and Control Systems (ARCS-09)

75

2. Path objectives

One of the objectives in this work is to study and

develop a path planning algorithm for autonomous robot

navigation or exploration in dynamic environments. The

task can be divided into three parts: to plan a main path

according to the pre-information, to keep tracking the

difference between the map and the real environment, and

then locally to amend the pre-designed path. This strategy

can efficiently use the available information and reduce

the re-planning time. It is supposed that the vehicle

accepts a sequence of GPS waypoints used to define the

high level mission. The robot’s task then is to traverse

through each waypoint.

The robot uses the 3D scanner to detect the

surrounding environment and obtain the local information.

The sensor is fixed to the robot body, and obstacles are

mapped relative to the robot position and heading. The

robot then uses the local information to generate the path

to the destination.

Therefore, it is naive to pre-plan the entire robot path

from the outset. Thus, re-planed the path is from the

current position and heading, and using the most current

obstacle map and do so in a receding horizon fashion. The

path is also limited to only look ahead past the next

waypoint. In this way, the next turn will be feasible and

once executed, a new path will be generated to maneuver

the vehicle into a suitable position for the following turn.

For this reason, only three consecutive waypoints are used

at a time, the most recently passed, and the following two

points. This approach can be also used in the cases of

unknown environments, where no pre-information is

available before the path planning algorithm has been

executed.

3. Path planning using Hermite cubic splines

In this paper the implementation of Hermite cubic

splines as a tool for path planning is adopted. The

mathematics involved in creating splines (which are

piecewise polynomial functions), allow easy construction

of smooth paths through a given, finite set of control

points. Given 2+1 control points, and knowing the robot

starting and goal position and orientation, a series of 2

spline segments are generated, with the three-order

polynomial functions of variable t (t ∈ [0, 1]), to traverse

these points, as:





























=









1

)(

)(2

3

t

t

t

dcba

dcba

tY

tX

yyyy

xxxx
 (1)

where X(t), Y(t) are the coordinates of any point on the

cubic spline, ax, bx, cx, dx and ay, by, cy, dy are the

coefficients to determine.

As the first derivative of the path is proportional to the

vehicle heading, a non-continuous derivative would result

in an infeasible path for this type of vehicle, but the

second derivative is proportional to the vehicle steering

angle and any discontinuities would force the vehicle to

stop at each control point to adjust its steering. By

creating a path with continuous derivatives, a smooth

vehicle control, to remain in motion throughout the

vehicle path, is guaranteed.

For these 2 segments of cubic spline, the required

number of equations is (82) in order to solve out all the

coefficients. The known conditions are:

� the initial and final position and the robot

orientation in these points;

� the continuity of positions at (2-1) control points;

� the continuity of 1
st
 derivatives at (2-1) control

points;

� the continuity of 2
nd

 derivatives at (2-1) control

points;

The total number of know conditions is (62+2) which

remove (62+2) degrees of freedom from the 8N ones.

The number of remained degrees of freedom is 2(2-1).

This number is exactly the same as the unknown x-, y-

coordinates of (2-1) control points. One set of points

determines one path. By searching for the suitable control

points, a feasible cubic splines path can be determined.

Considering just the local parameterization of the i
th

cubic spline sequence in only the x direction, we will

have:
32)(tdtctbatx iiiii +++= (2)

Any cubic equation can be used to construct a cubic

spline by identifying the constants ai, bi, ci and di;

however, the natural Hermite cubic polynomial has a

unique property where it satisfies all four of the following

boundary conditions:

iiiii

iii

iiiii

ii

dcbDx

bDx

dcbax

ax

32)1('

,)0('

,)1(

,)0(

1 ++==

==

+++=

=

+

 (3)

By re-arranging and writing 1)1(+= ii xx , we will have:

11

11

)(2

2)(3

++

++

++−−=

−−−=

=

=

iiiii

iiiii

ii

ii

DDxxd

DDxxc

Db

xa

 (4)

2009 International Conference on Automation, Robotics and Control Systems (ARCS-09)

76

If equate the 2nd derivatives p=1 for the (i-1)th

segment, p=0 for the ith segment we will have:

[]
[]

[]
)(34

2)(32

)(26

2)(32

262

1111

11

11

11

11

−++−

++

−−

−−

−−

−=++⇒

−−−

=++−−+

−−−⇒

=+

iiiii

iiii

iiii

iiii

iii

xxDDD

DDxx

DDxx

DDxx

cdc

 (5)

At the first point, 0)0('' 0 =x . So c0=0 and 3(y1-y0)-

2D0-D1=0, so:

)(32 0110 xxDD −=+ (6)

Similarly for the end section 0)1('' =2x . So

2cm+6dm=0 from which

)(32 11 −− −=+ 2222 xxDD (7)

Gather all this together the solution of the spline path in

the matrix form, will be:



























−

−

−

−

−

=





















































−

−−

)(3

)(3

)(3

)(3

)(3

21

141

141

141

12

1

2

13

02

01

1

2

1

0

22

22

2

2

xx

xx

xx

xx

xx

D

D

D

D

D

MMM

 (8)

As mentioned previously, obstacles are mapped from

various sensors and stored into the map Fig. 1. It should

be noted that each obstacle must be inflated by at least

half the width of the vehicle to guarantee that a collision

does not occur (in the future discussion, talking about

obstacles, the inflated obstacles will be considered).

Considering this, and knowing the start and goal positions

and orientations, for each pair of segments, the initial path

composed of Hermite cubic splines (depicted in blue in

Figure 1) is constructed.

4. Calculation of the spline path length and

curvature

The fundamental properties of the spline path defined

as above are its length and curvature. The calculation of

the path’s length is done by integrating the path arcs

length elements. Considering a path that each path

segment is given in parametric form x=f(t), y=g(t). Then

the length l of each path segment is given by:

Figure 1. Spline path passing through the initial

control points (blue). The introduction of additional

control points can keep the initial path away from

obstacles and decrease the path length (green).

 () ()∫ +=
1

0

22
)(')(' dttgtfl (9)

provided that f and g have continuous derivative in the

interval [0, 1].

The curvature is a measurement of the rate of curving

or simply how much the curve bends. Considering that the

path is a curve that is traced at unit speed and is

parameterized in term of the arc length s.

 







=

)(

)(
)(

sy

sx
sr (10)

The unit tangent vector

ds

sdr
st

)(
)(= (11)

is in direction of the curve for which s grows, as it can be

seen in Figure 2. The angle of this vector in relation to the

positive x-axis is denoted θ. The signed curvature is

defined as:

ds

d
sk

θ
=)((12)

The normal vector n(s) forms the counterclockwise

oriented frame with t(s). From this definition, the sign of

curvature changes if the direction in which the curve is

traced changes, but the curvature vector k(s)n(s) does not

depend on the direction. The figure also depicts the

osculating circle in the point P.

This is the circle that best approximates the curve in this

point. The radius of the osculating circle can be calculated

as:

2009 International Conference on Automation, Robotics and Control Systems (ARCS-09)

77

Figure 2. Definition of path curvature

)(

1

sk
R = (13)

The osculating circle is not defined for points where k=0.

So, in this case, where the path is constructed of Hermite

cubic splines, the curvature is given by:

2/3

2
.

2
.

......

)()(

)()()()(





 +

−
=

txty

tytxtytx

k (14)

5. Path refinement and optimization

After the construction of the initial spline path it is

useful to include additional points along the straight line

path, connecting the initial control points.

The quantity and number of these points depend

greatly on the relationship between the individual path

lengths and the obstacles distribution. By including

additional points, the initial path is kept closer to the

nominal straight line path and it is therefore shorter. These

points are only used for the initial path optimization and

will not be rigid constraints in the final path. For

demonstration, in the previous example depicted in Figure

1, we have included two additional points PS1 and P2G

which are midpoints of the first and third path segments

respectively. The path containing these points is depicted

in green. As one may observe, addition of such points can

iron the path and can be very useful in the environments

where the robot has to traverse a corridor or a narrow

passage.

In order to evaluate the quality of the paths, the

following optimization function is introduced:

min

min

2

min R

Rr
k

dl

l
f

m

⋅+







+=

α (15)

where the lmin is the Euclidian distance between Start and

Goal, α is a weight constant of the distance from robot to

obstacles, k is a weight constant of the minimum radius

for robot driving, l is the path length, which is computed

by Eq. 9, dmin is the minimal distance between any point

on the path and the obstacles, given by:

22

min)()(minmin oPoP
PathPOo

YYXXd −+−=
∈∈

 (16)

where P denotes any point on the path, O is the set of all

obstacles in the environment. Rmin is the minimum radius

along the whole path and Rrmin is the minimum turning

radius, the robot can deal with. By minimizing this

function, it is possible to shorten the path length, keep the

robot as far as possible away from obstacles and smooth

enough. Eventually the optimal path is a compromise of

all the requirements. This optimization function strictly

penalizes the trajectories that cause collision with the

obstacles.

If it has been determined that the path collides with an

obstacle, the spline has to be manipulated to avoid that

obstacle. The proposed method is based on adding of an

additional control point to the spline segments between

the intersection points, to guide the path around the

obstacle. As multiple collisions may have occurred, we

will have a list of collision points. In order to minimize

the computational time this method first calculates the

convex hull of the obstacle. Then it calculates the pair of

intersection points of the spline path and the convex hull

of the obstacle. First point corresponds to the entry point

of the spline into the convex hull and the second one, to

the exit point, where the spline goes out of the hull area.

Figure 3. Initial spline path (brown) intersects the

safety margin (dark green polygon) of the obstacle

(grey). The computed convex hull (red polygon).

Modified path after the first optimization is presented

in blue, the final save path obtained after the second

optimization is depicted in green.

The method then adds an additional point, Pa, on the

segment, between the entry point (Pe) and the exit point

(Px)(Figure 3). Then this is moved point perpendicularly

2009 International Conference on Automation, Robotics and Control Systems (ARCS-09)

78

to the segment xe P P , by a predefined small distance

(dm) at each iteration, in both directions. The point Pa is

continually updated, evaluated and checked against the

obstacle’s hull, until Pa is free of collision. This means

that a path through Pa will no longer collide with the

obstacle at that point. Pa is than added to the list of path

control points. A new spline (depicted in blue in Figure 3)

is computed through these points still having the desired

characteristics but also passing through the new point. For

each new spline the process is repeated. If the new spline

still intersects the hull (Pe2 ,Px2), the collision will be

shorter and closer to the edge of the hull. Thus the

algorithm will continue to displace the spline around the

remaining portion of the hull. Because the points are fit

with cubic functions, a large number of control points

within close proximity to each other can cause large

deviations in the path and increasing of its curvature.

To avoid this, when adding a new point, any other

control point within a given radius is removed. Therefore,

in the example in Figure 3, the new added point Pa2,

obtained in the second optimization step, replaces the

point Pa1, calculated in the previous step.

6. Motion dynamics

Representing all the motion characteristics by

analytical equations can be unpractical and out of the

scope of this paper. A simplified motion model is

considered in the current work. The developed moving

robot model has two degrees of freedom and the dynamics

of the model can be represented as a set of motion’s

equations in terms of mass, accelerations and steering

angles as well as external force conditions, such as ground

friction. The dynamics of a moving robot must follow the

basic law of motion dynamics, which may be represented

as a set of general ordinary differential equations in the

form:

()δ,,
'

2

2

XXf
dt

Xd
= (17)

where, RXX ∈
.

, is the motion state of the robot and its

first derivative, and δ is the motion control input. We can

recast the equation for our motion optimization problem

in the form:

()

()



















−






=∆

∆+





=

∧∧
∧

∧

∧

θδδδ

δδ

,,,,,

,,

..

.

2

2

aXXfXXf

XXf
dt

Xd

 (18)

where,
∧∧

∧

θ,,
.

aX are approximate values of motion velocity,

acceleration and direction of motion (i.e. a steering angle)

respectively, and the motion control δ is a function of

acceleration a and moving direction θ. A desired or

predicted motion state of the moving object is pre-

estimated by a set of approximate functions according to

the state of moving object and the environment conditions

related to the surrounding obstacle–space. The actual

motion track is then computed. The difference between

the predicted motion and the actual motion will be used

for estimating the control input to mobile robot system.

7. Simulation experiments

In order to test the path planning algorithm a physics-

based simulation environment provided by ODE has been

developed. For the scope of this work a four wheels

mobile robot which has a similar structure to the normal

car is considered (i.e. two front steering wheels and two

driven rear wheels). It is equipped with 3D scanner and

GPS. All wheels have the same diameter and two rear

wheels are conventional fixed wheels on the same axle

and two front wheels are centered orientation wheels. The

wheels are modeled using ODE's basic collision primitive,

cylinder, and they are connected to the base body using

motorized hinge joints with a horizontal rotational axis

(vertical rotation plane). ODE also provides the possibility

to set a desired velocity with a maximum force for each

wheel.

The steering angle can be expressed as:

)/tan(RLa=φ (19)

where L is the robot length and R is the distance from the

middle point PM of the rear wheels to the instantaneous

center of curvature (ICC). The axes of all four wheels pass

through the ICC during the driving.

Due to the fixed rear wheels, the robot is not permitted

to change its orientation on the spot like the omni-

directional robots. This special mechanical structure gives

the constraint of the minimum radius or the maximum

steering angle,

minmax)()(RtRort ≥≤ φφ (20)

The nonholonomic constraint for this kind of robot is

expressed as:

M
M

PP xy
..

/tan =θ (21)

The angle θ stands for the orientation of the robot frame.

2009 International Conference on Automation, Robotics and Control Systems (ARCS-09)

79

This constraint says that the direction of the translational

velocity is the tangent direction of the path. The physical

meaning of this constraint is that there is no possible

motion in the axial direction. In other words, as long as

the translational direction of the robot is coincident with

the tangent direction of path, the nonholonomic constraint

is naturally met. Testing environment cluttered with

random positioned obstacles, was created, start and goal

robot positions and orientations were set up (Figure 4).

Figure 4. 3D simulation environment

The map with the obstacles and safety margins around, as

well as the spline path computed in real-time using the

algorithm presented in this work are depicted in Figure 5.

The average end-position error along the whole path is

less than 30 mm.

Figure 5. Calculated spline path after two optimization

steps

8. Conclusion and future work

A novel motion constraint path planning approach for

real-time navigation of mobile robots is proposed in this

paper. The algorithm is able to produce a collision-free,

time-optimal smooth motion trajectory. A 3D simulation

has been conducted and the result is quite promising. The

simulation result is quite satisfactory. The next step for

our research is to refine the algorithm and look at path

planning with more complex behaviors in simulated

environments.

10. References

[1] L. E. Dubins. On curves of minimal length with a

constraint on average curvature and with prescribed initial

and terminal positions and tangents. Amer. J.

Math.,79:497-516, 1957.

[2] F. Lamiraux and J.-P. Laumond. Smooth Motion

Planning for Car-Like Vehicles. IEEE Trans. of Robotics

and Automation, 17(4):498-502, 2001.

[3] Gómez-Bravo, F., Cuesta, F., Ollero, A., and Viguria,

A. 2008. Continuous curvature path generation based on

ß-spline curves for parking manoeuvres. Robot. Auton.

Syst. 56, 4 (Apr. 2008), 360-372.

[4] T. Berglund, H. Jonsson, and I. Soderkvist, “An

obstacle-avoiding minimum variation b-spline problem,”

Proceedings of the 2003 International Conference on

Geometric Modeling and Graphics, 2003.

[5] Shimizu, M. Kobayashi, K. Watanabe, K.,

Clothoidal Curve-based Path Generation for an

Autonomous Mobile Robot, In Proc. of the 2006

International Joint Conference SICE-ICASE, 478-481,

2006.

[6] A. Scheuer and Th. Fraichard, “Planning Continuous-

Curvature Paths for car-Like Vehicles,” IEEE-RSJ Int.

Conf. On Intelligent Robots and Systems, November 4-8,

1996. vol. 3, pp. 1304-1311.

[7] Th. Fraichard and J. M. Ahuactzin, “Smooth Path

Planning for Cars,” IEEE Int. Conf. On Robotics and

Automation May 21-26, 2001.

[8] B. Nagy and A. Kelly, “Trajectory Generation for Car-

Like Robots Using Cubic Curvature Polynomials,” in

Field and Service Robots 2001, Helsinki, Finland June 11,

2001.

[9] M. Saska, M. Macas, L. Preucil, L. Lhotska, Robot

Path Planning using Particle Swarm Optimization of

Ferguson Splines. In ETFA 2006 Proceedings [CD-

ROM]. Piscataway: IEEE, 2006, ISBN 1-4244-0681-1

[10] S. Thompson and S. Kagami, “Continous curvature

trajectory generation with obstacle avoidance for car-like

robots,” Proceedings of the 2005 International Conference

on Computaional Intelligence for Modelling, Control and

Automation and International Intelligent Agents, Web

Technologies and Internet Commerce, 2005.

[11] Z. shiller and Y.-R. Gwo, “Dynamic motion planning

of autonomous vehicles,” IEEE Transactions on Robotics

and Automation, vol. 7, no. 2, p. 241, 1991.

[12] Smith, R.: Open Dynamics Engine - ODE

http://www.ode.org (2008)

2009 International Conference on Automation, Robotics and Control Systems (ARCS-09)

80

