
XLVIII INTERNATIONAL SCIENTIFIC CONFERENCE ON
 INFORMATION, COMMUNICATION

AND ENERGY SYSTEMS AND TECHNOLOGIES

26 - 29 June 2013, Ohrid, Macedonia

Proceedings of Papers

VOLUME 1

Bitola, 2013

Solving Kakuro puzzle – comparison of deterministic
approaches

Stojanche Panov1 and Saso Koceski2

Abstract – This paper presents comparison of existing
deterministic approaches to solving Kakuro puzzles and provides
a novel deterministic approach to obtaining an optimal solution
for such puzzles, i.e. the Reducing Domain Values algorithm.
This algorithm has been compared to other published
deterministic approaches and proved to obtain better results in
terms of time execution for obtaining an optimal solution. This
provides a great foundation for development of effectual
deterministic algorithms which would have great impact on
solving coding theory problems.

Keywords – Backtracking algorithms, Coding theory,
Deterministic algorithms, Kakuro puzzles.

I. INTRODUCTION

Kakuro puzzles are considered to be a mathematical
transliteration to crossword puzzles. They are consisted of an
n x m grid of black and white cells, where black cells can be
either empty, having one number or two numbers, indicating
the row or column sum they indicate, whereas every white cell
can be typically filled with numbers in range [1; 9]. There are
also variations of this puzzle that use greater or smaller
ranges. Hence, the typical maximal sum that can be obtained
with these puzzles is 45, which gives enough information for
constructing domain sets of candidate values for the white
cells to be filled with. Every constructed sum of elements in a
row or column must satisfy the constraint of unique numbers,
i.e. none of the numbers must appear more than once in a
concrete combination sum. Example of Kakuro puzzles are
shown in Fig. 1 and Fig. 2.

Kakuro puzzles have been considered as a great logical
challenge, not only for manual solving, but also for
developing algorithms that can solve these puzzles as
effectively as possible in a real-time acceptable manner. There
have been many approaches that solved these puzzles, both
with deterministic and metaheuristic methods.

The main goal of this research study is to present a novel
method of solving a Kakuro puzzle, namely the Reducing
Domain Values (RDV) Algorithm. This new algorithm is then
compared to other deterministic approaches for solving and
gives detailed and elaborated results that show the relevance
of the discovery of this novel method.

II. RELATED WORK

A Kakuro puzzle consists of several constraints that ought
to be respected in order to get a unique solution, hence one
can treat such puzzle as a constraint satisfaction problem,
which has been recently published [1]. The NP-completeness
of the Kakuro solving problem has already been proven and
documented [2], but there have been also some other proofs of
this NP-completeness that included using SAT solvers for the
purposes of the research studies [3]. A relatively new study
presented an approach that significantly reduced the execution
time of the algorithm by using generalized arc consistent
(GAC) version of all-different sums constraint, and these
performances have been compared to MIP [4] and SAT
techniques [5].

Existing algorithms published in the past several years
solved this problem and presented many deterministic and
metaheuristic approaches to solving a Kakuro puzzle. One
such type of a deterministic method with using backtracking
and simple heuristics and pruning has been shown to be of an
eminent matter to coding theory problems as well [6]. A
research study presented several types of algorithms, both
deterministic and metaheuristic approaches, including stack-
based backtracking solvers, genetic algorithms and tabu
search [7]. There has also been another metaheuristic
approach, known as nested Monte-Carlo of level 2 method
which proved to be effective and performed with accelerations
in execution [8].

1Stojanche Panov is with the Faculty of Computer Science at
‘Goce Delchev’ University - Stip, blvd. Krste Misirkov bb., 2000
Stip, R. Macedonia, E-mail: stojance.panov@ugd.edu.mk.

2Saso Koceski is with the Faculty of Computer Science at ‘Goce
Delchev’ University - Stip, blvd. Krste Misirkov bb., 2000 Stip, R.
Macedonia, E-mail: saso.koceski@ugd.edu.mk.

Fig. 1. Example Kakuro puzzle

269

III. STACK-BASED BACKTRACKING SOLVER

The Stack-Based Backtracking Solver [8] implements a
simple backtracking technique starting with an empty Kakuro
grid with domain sets of values available for each of the white
cells in the grid. It presents a depth first search technique that
starts with smaller number values and makes assignments of
these numbers to the white cells, whilst having affinity to
assign the smallest numbers first, i.e. in the earlier stages of
the algorithm. It’s based on keeping the grid states on a stack,
thus repeatedly checking the validity of the grid. When
assigning the values to the grid, it performs checking of the
constraint satisfaction for the stored states. If the next value
needed to be assigned to a cell violates such constraint, then
it’s excluded for searching, otherwise it’s kept on the stack of
grid states. Continuing in this fashion, this algorithm checks
all of the possible states until it finds a certain state that
satisfies all of the constraint having filled all of the white cells
with the proper numbers.

This algorithm can be described in the next detailed steps:
1. Initialize the stack of states and other iteration

variables.
2. Initialize the start state as current state and start cell as

current cell.
3. Check if there are empty cells in the grid. Check for

validity of state. If state is valid, continue to step 4. If
this is false, then backtrack and try other assignments,
continuing to step 3.a. Otherwise, continue to step 3.a.

a. Assign a value to next free cell.
b. Check for validity of assignment of the value.

If the check is valid, then push this state on
the stack and repeat from step 3.a. for another
free cell. Otherwise, continue with assigning
another value for the cell.

4. Print optimal solution.
There are also several variations to this well-known simple

algorithm. These are the Run-Based Ordering, Value

Ordering, Decisive Value Ordering and Project Run Pruning.
These algorithms are detailed in the next following sections.

IV. RUN-BASED ORDERING

This type of backtracking approach uses a simple
elimination of not needed values that are meant to be assigned
to the white cells. This means that a kind of heuristics needs to
be implemented for this to be fulfilled. This heuristics utilizes
the values that are candidate members in the row and column
sums. This would mean that for a given white cell, an
intersection of domain set values is computed and only the
numbers that are valid candidates for that cell remain in the
backtracking process. For instance, if there’s a column sum of
6 containing 3 elements and a row sum of 4 containing 2
elements, the possible column sums are contained from the
numbers {1, 2, 3}, whereas the row sum can be obtained by
the numbers {1, 3} (since 2+2 is not acceptable according to
the puzzle constraints), so the intersection of the two domain
sets is {1, 3} and these would be the candidate values for that
white cell.

V. VALUE ORDERING

The Value Ordering variation of the Stack-Based
Backtracking algorithm consists of having all of the numbers
in the range [1, 9] in the domain sets for the white cells, but
with additional heuristics of certain ordering (sorting) of the
numbers. One such example would be if the domain set
candidate variables are sorted in descending order, which is
certainly a poor heuristic, but it is a heuristic that would help
if the values in the first few cells have greater solution values
for those cells. This means that this heuristic still stays
efficiently applicable only for smaller grid sizes and concrete
types of solutions, which is the same case with the Stack-
Based Backtracking algorithm.

VI. DECISIVE VALUE ORDERING

As an addition to the Value Ordering heuristics, the
heuristic of the Decisive Value Ordering can be defined based
on research on what solution values are statistically more
present in the first few white cells. This would mean
computing some kind of average values for numbers
appearing in the white cells, and then using this information to
construct a type of sorting of the domain set elements that
works best for all of the puzzles that will be processed as
input to the algorithm. For instance, if the average of values is
smaller than 5, then the ordering of the values is in increasing
order. Otherwise, if the average value is greater than 5, then a
decreasing ordering of values is used.

VII. PROJECTED RUN PRUNING

This approach, previously mentioned as a modification to
the Stack-Based Backtracking method, differentiates from
previously described techniques in the way of reducing the

Fig. 2. Solution to Kakuro puzzle in Fig. 1.

270

domain sets of values for the white cells. Namely, this method
introduces a type of pruning that excludes all of the values in
domain sets that give sums smaller than the required column
sum or row sum, i.e. if a value of 7 needs to be obtained from
three numbers, than we know that when getting to the value
assignment of the triple {1, 2, 3} it doesn’t add up to 7, then
this combination of values is discarded from search and only
sums that add up to 7 and greater are included in the search
space. This proved to be of an eminent improvement of the
algorithm and gave great accelerations in time execution of
the algorithm [8].

VIII. REDUCING DOMAIN VALUES ALGORITHM

This novel deterministic algorithm, called the Reducing
Domain Values algorithm, is an approach that uses a very
sophisticated heuristics that reduces the domain sets of values
for the white cells, thus converging to the optimal solution in
a shorter period of time than other naive backtracking
approaches. This reduction is done in a continuous manner
that reduces number of the sets to the point where there’s no
more numbers to be removed and only one value remains in
each of the domain sets, i.e. the solution value for the cell.
This algorithm proved to perform better than other
deterministic techniques, which is described later in this
research.

The Reducing Value algorithm consists of the next simple
steps:

1. For each white cell, compute the intersections of
members in the column and row sums and set these newly
generated sets to be the new domain sets for the cells.

2. Perform a check if there’s a white cell that has a domain
set with more than one candidate value. If this is false and all
of the domain sets have one value, then proceed to step 5.
Otherwise, proceed to step 3.

3. Check for unique numbers in the cells, i.e. numbers that
are not present in each of the other cells in the same row and
column.

4. If there are unique numbers, these values indicate the
solution values for these cells. Return to step 2.

5. Print found optimal solution.

IX. RESULTS

All of the above mentioned algorithms, including the novel
Reducing Domain Values (RDV) algorithm, have been
compared in terms of average time execution for a puzzle. The
results for the Stack-Based Backtracking, Run-Based
Ordering, Value Ordering, Decisive Value Ordering and
Projected Run Pruning have been utilized from the research
presented in [8], and then these results have been compared
with the results that were obtained from examining the
Reducing Domain Values. The RDV algorithm was written in
Java programming language and tested on a machine having
Intel® Core i5 processor with frequency of 2.53 GHz, 4GB of
RAM, and 64bit Windows 8 operating system. Grid sizes of
2x2, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9 and 10x10 have been tested,

each of the grids having 0-40% black cells coverage in the
Kakuro grid.

The results from the examination of the algorithms and
their comparison are detailed in diagrams in Fig. 3, Fig. 4 and
Fig. 5. As results have shown, the RDV algorithm performed
better than all of the other available deterministic algorithms.
This is due to the fact that RDV continuously reduces the
domain sets, thus reducing the search space and leaving the
solution number as the only label for the white cells of
interest.

X. CONCLUSION

Fig. 3. Comparing algorithms for 2x2, 4x4 and 5x5 grids

in dependence of time execution.

Fig. 4. Comparing algorithms for 6x6, 7x7 and 8x8 grids

in dependence of time execution.

Fig. 5. Comparing algorithms for 9x9 and 10x10 grids in

dependence of time execution.

271

This research paper introduced a novel Reducing Domain
Values algorithm, i.e. a deterministic algorithm that is
intended to provide an efficient solution and accelerate the
process of obtaining an optimal solution, thus converging in a
small amount of time. This Algorithm has been compared to
other available deterministic approaches and has proved to
perform better in terms of time execution. This algorithm is a
great foundation for developing efficient deterministic
algorithms for game theory, thus applying their principles in
other fields, such as coding theory.

REFERENCES

[1] Simonis, Helmut. "Kakuro as a constraint problem." Proc.
seventh Int. Works. on Constraint Modelling and Reformulation
(2008).

[2] Seta, T. A. K. A. H. I. R. O. "The complexity of CROSS SUM."
IPSJ SIG Notes, AL-84 (2002): 51-58.

[3] Ruepp, Oliver, and Markus Holzer. "The computational
complexity of the KAKURO puzzle, revisited." Fun with
Algorithms. Springer Berlin/Heidelberg, 2010.

[4] Achterberg, Tobias, Thorsten Koch, and Alexander Martin.
"MIPLIB 2003."Operations Research Letters 34.4 (2006): 361-
372.

[5] Eén, Niklas, and Niklas Sörensson. "An extensible SAT-solver."
Theory and Applications of Satisfiability Testing. Springer
Berlin/Heidelberg, 2004.

[6] Davies, R. P., P. A. Roach, and S. Perkins. "Automation of the
Solution of Kakuro Puzzles." Research and Development in
Intelligent Systems XXV(2009): 219-232.

[7] Davies, Ryan P. "An investigation into the solution to, and
evaluation of, Kakuro puzzles." Unpublished M Phil thesis.
University of Glamorgan (2009).

[8] Cazenave, Tristan. "Monte-Carlo Kakuro." Advances in
Computer Games(2010): 45-54.

272

