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Abstract – This paper presents comparison of existing 
deterministic approaches to solving Kakuro puzzles and provides 
a novel deterministic approach to obtaining an optimal solution 
for such puzzles, i.e. the Reducing Domain Values algorithm. 
This algorithm has been compared to other published 
deterministic approaches and proved to obtain better results in 
terms of time execution for obtaining an optimal solution. This 
provides a great foundation for development of effectual 
deterministic algorithms which would have great impact on 
solving coding theory problems. 
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I. INTRODUCTION 

Kakuro puzzles are considered to be a mathematical 
transliteration to crossword puzzles. They are consisted of an 
n x m grid of black and white cells, where black cells can be 
either empty, having one number or two numbers, indicating 
the row or column sum they indicate, whereas every white cell 
can be typically filled with numbers in range [1; 9]. There are 
also variations of this puzzle that use greater or smaller 
ranges. Hence, the typical maximal sum that can be obtained 
with these puzzles is 45, which gives enough information for 
constructing domain sets of candidate values for the white 
cells to be filled with. Every constructed sum of elements in a 
row or column must satisfy the constraint of unique numbers, 
i.e. none of the numbers must appear more than once in a 
concrete combination sum. Example of Kakuro puzzles are 
shown in Fig. 1 and Fig. 2. 

Kakuro puzzles have been considered as a great logical 
challenge, not only for manual solving, but also for 
developing algorithms that can solve these puzzles as 
effectively as possible in a real-time acceptable manner. There 
have been many approaches that solved these puzzles, both 
with deterministic and metaheuristic methods. 

The main goal of this research study is to present a novel 
method of solving a Kakuro puzzle, namely the Reducing 
Domain Values (RDV) Algorithm. This new algorithm is then 
compared to other deterministic approaches for solving and 
gives detailed and elaborated results that show the relevance 
of the discovery of this novel method. 

II. RELATED WORK 

A Kakuro puzzle consists of several constraints that ought 
to be respected in order to get a unique solution, hence one 
can treat such puzzle as a constraint satisfaction problem, 
which has been recently published [1]. The NP-completeness 
of the Kakuro solving problem has already been proven and 
documented [2], but there have been also some other proofs of 
this NP-completeness that included using SAT solvers for the 
purposes of the research studies [3]. A relatively new study 
presented an approach that significantly reduced the execution 
time of the algorithm by using generalized arc consistent 
(GAC) version of all-different sums constraint, and these 
performances have been compared to MIP [4] and SAT 
techniques [5]. 

Existing algorithms published in the past several years 
solved this problem and presented many deterministic and 
metaheuristic approaches to solving a Kakuro puzzle. One 
such type of a deterministic method with using backtracking 
and simple heuristics and pruning has been shown to be of an 
eminent matter to coding theory problems as well [6]. A 
research study presented several types of algorithms, both 
deterministic and metaheuristic approaches, including stack-
based backtracking solvers, genetic algorithms and tabu 
search [7]. There has also been another metaheuristic 
approach, known as nested Monte-Carlo of level 2 method 
which proved to be effective and performed with accelerations 
in execution [8]. 
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Fig. 1. Example Kakuro puzzle 
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III. STACK-BASED BACKTRACKING SOLVER 

The Stack-Based Backtracking Solver [8] implements a 
simple backtracking technique starting with an empty Kakuro 
grid with domain sets of values available for each of the white 
cells in the grid. It presents a depth first search technique that 
starts with smaller number values and makes assignments of 
these numbers to the white cells, whilst having affinity to 
assign the smallest numbers first, i.e. in the earlier stages of 
the algorithm. It’s based on keeping the grid states on a stack, 
thus repeatedly checking the validity of the grid. When 
assigning the values to the grid, it performs checking of the 
constraint satisfaction for the stored states. If the next value 
needed to be assigned to a cell violates such constraint, then 
it’s excluded for searching, otherwise it’s kept on the stack of 
grid states. Continuing in this fashion, this algorithm checks 
all of the possible states until it finds a certain state that 
satisfies all of the constraint having filled all of the white cells 
with the proper numbers. 

This algorithm can be described in the next detailed steps: 
1. Initialize the stack of states and other iteration 

variables. 
2. Initialize the start state as current state and start cell as 

current cell. 
3. Check if there are empty cells in the grid. Check for 

validity of state. If state is valid, continue to step 4. If 
this is false, then backtrack and try other assignments, 
continuing to step 3.a. Otherwise, continue to step 3.a. 

a. Assign a value to next free cell. 
b. Check for validity of assignment of the value. 

If the check is valid, then push this state on 
the stack and repeat from step 3.a. for another 
free cell. Otherwise, continue with assigning 
another value for the cell. 

4. Print optimal solution. 
There are also several variations to this well-known simple 

algorithm. These are the Run-Based Ordering, Value 

Ordering, Decisive Value Ordering and Project Run Pruning. 
These algorithms are detailed in the next following sections. 

IV. RUN-BASED ORDERING 

This type of backtracking approach uses a simple 
elimination of not needed values that are meant to be assigned 
to the white cells. This means that a kind of heuristics needs to 
be implemented for this to be fulfilled. This heuristics utilizes 
the values that are candidate members in the row and column 
sums. This would mean that for a given white cell, an 
intersection of domain set values is computed and only the 
numbers that are valid candidates for that cell remain in the 
backtracking process. For instance, if there’s a column sum of 
6 containing 3 elements and a row sum of 4 containing 2 
elements, the possible column sums are contained from the 
numbers {1, 2, 3}, whereas the row sum can be obtained by 
the numbers {1, 3} (since 2+2 is not acceptable according to 
the puzzle constraints), so the intersection of the two domain 
sets is {1, 3} and these would be the candidate values for that 
white cell. 

V. VALUE ORDERING 

The Value Ordering variation of the Stack-Based 
Backtracking algorithm consists of having all of the numbers 
in the range [1, 9] in the domain sets for the white cells, but 
with additional heuristics of certain ordering (sorting) of the 
numbers. One such example would be if the domain set 
candidate variables are sorted in descending order, which is 
certainly a poor heuristic, but it is a heuristic that would help 
if the values in the first few cells have greater solution values 
for those cells. This means that this heuristic still stays 
efficiently applicable only for smaller grid sizes and concrete 
types of solutions, which is the same case with the Stack-
Based Backtracking algorithm. 

VI. DECISIVE VALUE ORDERING 

As an addition to the Value Ordering heuristics, the 
heuristic of the Decisive Value Ordering can be defined based 
on research on what solution values are statistically more 
present in the first few white cells. This would mean 
computing some kind of average values for numbers 
appearing in the white cells, and then using this information to 
construct a type of sorting of the domain set elements that 
works best for all of the puzzles that will be processed as 
input to the algorithm. For instance, if the average of values is 
smaller than 5, then the ordering of the values is in increasing 
order. Otherwise, if the average value is greater than 5, then a 
decreasing ordering of values is used. 

VII. PROJECTED RUN PRUNING 

This approach, previously mentioned as a modification to 
the Stack-Based Backtracking method, differentiates from 
previously described techniques in the way of reducing the 

 
Fig. 2. Solution to Kakuro puzzle in Fig. 1. 
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domain sets of values for the white cells. Namely, this method 
introduces a type of pruning that excludes all of the values in 
domain sets that give sums smaller than the required column 
sum or row sum, i.e. if a value of 7 needs to be obtained from 
three numbers, than we know that when getting to the value 
assignment of the triple {1, 2, 3} it doesn’t add up to 7, then 
this combination of values is discarded from search and only 
sums that add up to 7 and greater are included in the search 
space. This proved to be of an eminent improvement of the 
algorithm and gave great accelerations in time execution of 
the algorithm [8]. 

VIII. REDUCING DOMAIN VALUES ALGORITHM 

This novel deterministic algorithm, called the Reducing 
Domain Values algorithm, is an approach that uses a very 
sophisticated heuristics that reduces the domain sets of values 
for the white cells, thus converging to the optimal solution in 
a shorter period of time than other naive backtracking 
approaches. This reduction is done in a continuous manner 
that reduces number of the sets to the point where there’s no 
more numbers to be removed and only one value remains in 
each of the domain sets, i.e. the solution value for the cell. 
This algorithm proved to perform better than other 
deterministic techniques, which is described later in this 
research. 

The Reducing Value algorithm consists of the next simple 
steps: 

1. For each white cell, compute the intersections of 
members in the column and row sums and set these newly 
generated sets to be the new domain sets for the cells. 

2. Perform a check if there’s a white cell that has a domain 
set with more than one candidate value. If this is false and all 
of the domain sets have one value, then proceed to step 5. 
Otherwise, proceed to step 3. 

3. Check for unique numbers in the cells, i.e. numbers that 
are not present in each of the other cells in the same row and 
column. 

4. If there are unique numbers, these values indicate the 
solution values for these cells. Return to step 2. 

5. Print found optimal solution. 

IX. RESULTS 

All of the above mentioned algorithms, including the novel 
Reducing Domain Values (RDV) algorithm, have been 
compared in terms of average time execution for a puzzle. The 
results for the Stack-Based Backtracking, Run-Based 
Ordering, Value Ordering, Decisive Value Ordering and 
Projected Run Pruning have been utilized from the research 
presented in [8], and then these results have been compared 
with the results that were obtained from examining the 
Reducing Domain Values. The RDV algorithm was written in 
Java programming language and tested on a machine having 
Intel® Core i5 processor with frequency of 2.53 GHz, 4GB of 
RAM, and 64bit Windows 8 operating system. Grid sizes of 
2x2, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9 and 10x10 have been tested, 

each of the grids having 0-40% black cells coverage in the 
Kakuro grid. 

The results from the examination of the algorithms and 
their comparison are detailed in diagrams in Fig. 3, Fig. 4 and 
Fig. 5. As results have shown, the RDV algorithm performed 
better than all of the other available deterministic algorithms. 
This is due to the fact that RDV continuously reduces the 
domain sets, thus reducing the search space and leaving the 
solution number as the only label for the white cells of 
interest. 

 

 

 

X. CONCLUSION 

 
Fig. 3. Comparing algorithms for 2x2, 4x4 and 5x5 grids 

in dependence of time execution. 

 
Fig. 4. Comparing algorithms for 6x6, 7x7 and 8x8 grids 

in dependence of time execution. 

 
Fig. 5. Comparing algorithms for 9x9 and 10x10 grids in 

dependence of time execution. 
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This research paper introduced a novel Reducing Domain 
Values algorithm, i.e. a deterministic algorithm that is 
intended to provide an efficient solution and accelerate the 
process of obtaining an optimal solution, thus converging in a 
small amount of time. This Algorithm has been compared to 
other available deterministic approaches and has proved to 
perform better in terms of time execution. This algorithm is a 
great foundation for developing efficient deterministic 
algorithms for game theory, thus applying their principles in 
other fields, such as coding theory. 
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