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Abstract: The filtering problem in the INS/GPS integrated navigation system is 

investigated in this study. Firstly, the Unscented Kalman Filter is introduced in 

allusion to the nonlinear model of the integrated navigation system. And the 

appropriate modification on UKF which has strong tracking capability is proposed. 

This modified algorithm has high convergence speed to the system errors while its 

precision is similar to that of conventional UKF. Copyright © 2007 IFAC 
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1. INTRODUCTION  


The high performance trafficking equipment and the 

high precise armament system has higher demand to 

the precision and the reliability of the navigation 

performance nowadays (Lin, 1991; Siouris, 2004; 

Dimirovski et al., 2004). The navigation system is 

asked to provide comprehensive precise navigation 

information. The system should be not limited by 

weather condition and work all the day. The system 

may not rely on external information. Strong 

independency and strong fault-tolerant and 

redundancy is also the goal of research on the system. 
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With the improving of modernized technology, many 

new navigation equipments come up. Because the 

combination of GPS (Global Positioning System) and 

INS (Inertial Navigation System) is complementary 

and well matched it has become "the golden 

combination" (He You et al., 2000; Wang et al., 

2004) which many people focuses attention on. It has 

the extremely broad application prospect and plays 

the vital role in military and civil. This kind of 

combination is based on the information fusion 

technology. In the integrated navigation multi-

sensors information fusion system, Kalman Filtering 

is the most successful information fusion disposing 

method. The adaptive Kalman filtering technology in 

this paper can enhance the robustness of the system 

ultimately. 

 

The traditional integrated navigation filter adopts the 

Extended Kalman Filter (EKF) algorithm. But it is 

difficult to debug when using Extended Kalman 

Filter algorithm. It need calculate the Jacobian matrix 



 

     

and the performance of the filter is unstable if the 

partial linearization assumption is not satisfied. 

Aimed at these shortcomings, scholars of Oxford 

propose the UKF (Unscented Kalman Filter) 

algorithm (Julier et al., 1995) in 1990s. UKF is a 

kind of filter method which aims at the nonlinear 

system directly (Julier et al., 2000; Lefebvre et al., 

2002). The differences relative to Extended Kalman 

Filter is that the UKF needs not to use the Jacobian 

matrix to linearize system state and measurement 

representation models. In turn, this avoids the system 

model error produced by the interruption of higher-

order terms and can be as precise as two-order, even 

higher than two-order (as precise as three-step to the 

Gauss noise). It is therefore that it can greatly 

enhance the navigation accuracy of the integrated 

navigation system (Julier and Uhlmann, 1997; Julier 

and Uhlmann, 1997). In addition, UKF introduces the 

so-called unscented transformation. In the process of 

recursion, there are more adjustable parameters 

compare with EKF. Therefore it is free to debug. The 

resemblances between the UKF and the EKF are that 

the two algorithms all carry through the sequential 

estimation to the state mean value and the covariance, 

its recurrence steps of the structure flow process also 

consist of the propagation of the state mean value and 

the covariance and the update of the measurement 

(Julier and Uhlmann, 1997; Wan and Merwe, 2000). 

 

In Kalman filtering process, when the system reaches 

the steady state, the system’s gain matrix will tend to 

the minimum value. Although the residual of the 

system will increase rapidly when the system 

breakdowns, the gain matrix of the system is small 

and cannot adjust the state rapidly. Therefore Kalman 

filters do not have rapid tracking ability when the 

system comes across to a sudden fault. The most 

important reason of the problem is that the gain 

matrix of the system can not adjust timely in 

accordance with the filtering effect and the residual 

error of the system. Therefore the estimated value of 

the filter can not track the state of the system 

precisely (Fu and Deng, 2003; Xia et al., 1994). With 

regards to the algorithm implementation and 

estimated precision, UKF performs considerably 

better than traditional EKF. Nonetheless, the non-

partial sampling leads to estimation errors that are 

bigger when the state of the underlying system is 

high-dimensional. Also UKF has the same problem 

as EKF in tracking ability. Thus, in tracking 

applications, a thorough analysis of the UKF filtering 

performance, theoretical as well as by simulations 

and experiments, is indispensable (Battin, 1987; 

Przemieniecky, 1990; Malysehv et al.; 1992).   

 

 

2. UKF ALGORITHM 


The UKF algorithm is a kind of new nonlinear 

filtering method proposed by Juliear and Uhlman in 

1995 (Julier et al., 1995). For linear system, UKF has 

the same performances as EKF. But UKF has better 

performance to nonlinear system. It needs not the 

linearization to the state equations and measurement 

equations with Jacobian matrix. Therefore the 

truncation error of the high-order terms which 

produces in linearization process is reduced. 

 

The basic idea of algorithm is introduced here. 

Firstly, choose a batch of sampling points which can 

express mean and variance of the system state. Then 

transform these sampling points via non-linearization 

method. The sampling points distribution are close to 

real mean and variance with over two-order precision 

after transforming (Pan et al., 2005). 

 

The considered nonlinear discrete-time system 

(Xionga et al., 2006) is represented by 

( ) ( ( 1), ( 1), 1) ( )

( ) ( ) ( ) ( )

x k f x k u k k w k

z k H k x k v k

     

 
      (1) 

where k R  is the discrete time， R denotes the set 

of natural numbers including zero. ( ) nx k R  the state 

of the system， ( ) mz k R  the estimated measurement 

of the system. The nonlinear mapping ( )f  is assumed 

to continuously differentiable with respect to ( )x k . 

1( ) [0, )w k L  is the process noise sequence of the 

system,  2( ) [0, )v k L  is the measurement noise 

sequence. ( )w k and ( )v k are uncorrelated zero-mean 

Gaussian white noise sequence. Their variances 

satisfies the following expressions,  

for
[ ]

0 for

kT

n k

Q n k
E w w

n k


 


, 

for
[ ]

0 for

kT

n k

R n k
E v v

n k


 


 

where, kQ  is the system’s noise sequence covariance 

matrix and is symmetrical non-negative definite 

matrix. kR is measure noise sequence covariance 

matrix and is symmetrical positive definite matrix. 

 

The procedure for implementing the UKF can be 

summarized as follows. 

 

Step 1: Initialization 

Assume the initial state 0x  of the system to be 

random vector with Gaussian distribution; then we 

obtain the following state initialization condition:  

0 0

0 0 0 0 0

ˆ ( )

ˆ ˆ(( )( ) )T

x E x

P E x x x x



  
                  (2) 

Step 2: Calculating sampling points 

For 1n  , only given the mean x  and the 

covariance xxP  of the input variable, the mean x  and 

the covariance xxP  is approximated by Sigma points. 

We can obtain 2 1n  sampling points as follows from 

the sampling condition function of the symmetrical 

sampling strategy: 

0
ˆx x                                        (3) 

ˆ ( )i xx ix x n l P   , 1, ,i n             (4) 

ˆ ( )i xx i nx x n l P    , 1, , 2i n n     (5) 



 

     

where, l is proportion parameter. It can adjust the 

distance between the sigma points and x . And it only 

influences the error produced by the high-order 

matrix more than second order. xxP is the real 

symmetrical positive definite matrix, we can use 

Cholesky decomposition to obtain the square root 

matrix xxP . While T

xxP A A ,  xx
i

P is the ith row 

of the A matrix, while T

xxP AA ,  xx
i

P is the 

column of the A matrix.    

These sampling points constitute the sets of Sigma 

points of input variable { }i , 1, ,i n , the 

opposite weight i  is  

0
( )

l

l n
 


                               (6) 

( ) ( ) 1

2( )

m c

i i
l n

  


, 1, 2, , 2i n    (7) 

Where, i is the weight of the ith sigma point, and 

2

0

1
n

i

i




 . ( )m

i is the weight of weighted mean. ( )c

i is 

the weight of covariance. we can obtain  
( ) ( )m c

i i  without proportion revision。 

Step 3: Prediction equations 

( | 1) [ ( 1| 1)]i ik k f k k                (8) 

2

0

ˆ( | 1) ( | 1)
n

m

i i

i

x k k k k 


                (9) 

 

 

2

0

T

ˆ ˆ( | 1) ( | 1) ( | 1)

ˆ                            ( | 1) ( | 1)

n
c

i i

i

i k

P k k k k x k k

k k x k k Q

 





    

   


 (10) 

Step 4: Update equations 

ˆˆ( | 1) ( | 1)kz k k H x k k                     (11) 

ˆ ˆ( | 1) ( ) ( | 1) ( )T

kP k k H k P k k H k R         (12) 

ˆ ˆ( | 1) ( | 1) T

xz kP k k P k k H                  (13) 

1( ) ( | 1) ( | 1)xz vvW k P k k P k k               (14) 

 ˆ ˆ ˆ( | ) ( | 1) ( ) ( ) ( | 1)x k k x k k W k z k z k k           (15) 

 ( | ) ( | 1) ( ) ( ) ( )TP k k P k k W k P k W k         (16) 

After once the four steps above are completed, it 

continues further by a cycling execution of the steps 

2, 3 and 4. 




3. ARRIVING AT MODIFIED ADAPTIVE UKF 

ALGORITHM 


Before the system may go wrong, Kalman Filter runs 

steadily and its gain matrix is very small. When the 

system goes wrong, the filter cannot track the state 

effectively. Furthermore, when the uncertainty of the 

model is serious, the filter performance will go bad, 

and even it may go divergent. Thus, we use strong 

tracking Kalman Filter to improve the tracking ability 

of the filter. 

 

The notion of strong tracking filter (STF) has been 

proposed by Zhou Dong-hua (Zhou et al., 1991), and 

it is earlier implemented into the algorithm. 

Compared with common filter, STF has many 

advantages. It has strong robustness in the model 

parameter mismatch and weak sensibility in noise 

and initial value statistic characteristics. Furthermore, 

it has very strong tracking ability to the catastrophe 

state. And it can keep this ability when the filter runs 

up to steady state.  

 

The filter algorithm has very strong tracking ability, 

and also a proper computing complexity. However, 

the fulfilment of the following two conditions is 

prerequisite:  

Condition 1: 

ˆ ˆ[ ( ) ( )][ ( ) ( )] minTE x k x k x k x k              (17) 

Condition 2: 

[ ( )][ ( )] 0TE k k j    , 0,1, 2,k  , 1, 2,j       (18) 

In here, Condition 2 requires the residual sequence to 

be orthogonal everywhere. The uncertainty of model 

makes the state estimation value of the filter deviate 

the state of the system. And it influences the 

amplitude value of the residual. We need adjust the 

gain matrix ( )W k online to keep the residual 

orthogonal. Then it forces the filter to track the real 

state of system. When the model parameters match 

the process parameters precisely, the filter runs 

normally and satisfies Condition 2, and it dose not 

adjust the system. The strong tracking filter plays the 

same role as conventional Kalman filter which is 

satisfied with condition 1. 

 

The main thought of conventional strong tracking 

filter is to make sure the filter convergent reliably, so 

the precision is thought to be decreased in order to 

improve the stability of the filter instead. For 

example, to enlarge the variance matrix of the 

process noise and observation noise, this method can 

make much error, which is not established in the 

model, be included. Then the algorithm is simpler 

and more reliable. 

 

Recently, this line of thinking is implemented in most 

strong tracking Kalman algorithm; it makes the prior 

covariance matrix of the state estimate error multiply 

a weighted coefficient ( )k . This method reduces the 

aged data gradually and counterbalances the 

influence aged data to the filtering value. So it has 

strong tracking ability to mutation state and it can 

keep the tracking ability when the filter is steady. It 

has weak sensibility to initial value and noise 

statistics characteristics.  

 

Thus, on the grounds of the above emphasized 

thought, we investigated modifying the predicted 

covariance matrix of the filter. Then a second-best 

vanishing matrix ( )k is introduced, so that the aged 

data is decreased to satisfy the Condition 2. In order 

to adjust the predicted error covariance matrix of the 

state and the corresponding gain matrix in real-time, 



 

     

one step predicted covariance equation is modified as 

follows 

 

 

2

0

T

ˆ ˆ( | 1) ( ) ( 1| 1) ( | 1)

ˆ                                      ( | 1) ( | 1)

n
c

i i

i

i k

P k k k k k x k k

k k x k k Q

  







     

   


  (19) 

where, 

1 2( ) diag[ ( ), ( ), , ( )]nk k k k             (20) 

According to the prior knowledge, the equation  

1 2 1 2( ) : ( ) : : ( ) : : :n nk k k            (21) 

can be fixed approximately. 

 

In order to ascertain obtaining the time-varying 

second-best vanishing factor and the needed gain 

matrix, the theorem of (Zhou et al., 1994) is 

exploited. 

 

Lemma 1: For a discrete time system model, when 

Kalman Filter with second-best vanishing factor can 

estimate the  system state accurately, in other words, 

the state estimate residuals ˆ| ( ) | | ( ) ( ) | | ( ) |x k x k x k x k    , 

the equation  

T

T

[ ( )][ ( )]

( ) ( , )[ ( ) ( )]

( 2, 1)[ ( 1) ( 1)] ( 1, )

[ ( | 1) ( ) ( ) ( )]

E k j k

H k j k j k j I W k j H k j

k k I W k H k k k

P k k H k W k V k

  

      

        

 

, 

1, 2,j         (22) 

exists and holds true, where  

T( ) [ ( 1)][ ( 1)]V k E k k                     (23) 

Application of the theorem, when choosing proper 

time-gain matrix ( )W k , it gives  

T( | 1) ( ) ( ) ( )] 0P k k H k W k V k              (24) 

Thus, Condition 2 too comes into its fulfilment. 

Introduction of the gain matrix into (24), it gives 

T

T 1

( | 1) ( )[ ( ( ) ( | 1)

                           ( ) ( )) ( )] 0

P k k H k I H k P k k

H k R k V k

  

 
      (25) 

Therefore the sufficient condition for the existence 

of the equation above is  

T 1( ( ) ( | 1) ( ) ( )) ( )] 0I H k P k k H k R k V k    .         (26) 

In other words 

T( ) ( | 1) ( ) ( ) ( )H k P k k H k V k R k   .          (27) 

Upon introduction of (19) into (27) and simplifying 

the obtained equation, one finds  

 

 

2

0

T T

T

ˆ( )[ ( ) ( 1| 1) ( | 1)

ˆ                             ( | 1) ( | 1) ] ( )

( ) ( ) ( ) ( )

n
c

i i

i

i

k

H k k k k x k k

k k x k k H k

V k H k Q H k R k

  





   

  

  



  (28) 

Tracing to the two sides of the equation above, 

applying the characteristics of commutative matrices 

tr[ ] tr[ ]AB BA , it gives  

 

 

2

0

T T

T

ˆtr[ ( ) ( 1| 1) ( | 1)

ˆ             ( | 1) ( | 1) ( ) ( )]

tr[ ( ) ( ) ( ) ( )]

n
c

i i

i

i

k

k k k x k k

k k x k k H k H k

V k H k Q H k R k

  





   

  

  



  (29) 

Defining 

T( ) ( ) ( ) ( ) ( )kN k V k H k Q H k R k              (30) 

 

 

2

0

T T

ˆ( ) ( 1| 1) ( | 1)

ˆ                   ( | 1) ( | 1) ( ) ( )

n
c

i i

i

i

M k k k x k k

k k x k k H k H k

 





    

  


  (31) 

Inserting (30) and (31) into (29), it gives 

tr[ ( ) ( )] tr[ ( )]k M k N k                     (32) 

Choosing  

( ) ( )i ik c k  ， 1, 2, ,i n               (33) 

where, 1i  is foregone constant, ( )c k is 

undetermined multiplier. 

Inserting (33) into (32), it gives 

1

2

( )

( )
tr ( ) tr[ ( )]

( )i

c k

c k
M k N k

c k







  
  
    
 
 
 
 
  

      (34) 

Simplifying the equation, it gives  

1

tr[ ( )]
( )

( )
n

i ii

i

N k
c k

M k





                       (35) 

Modifying (32), the approximate solution of multiple 

second-best vanishing matrix is fixed. 

( ) ( ) 1
( )

1 ( ) 1

i i

i

i

c k c k
k

c k

 





 


, 1, 2, ,i n        (36) 

where ( )c k , ( )N k  and ( )M k  are decided by (35), 

(30) and (31). 

 

In the process of simulation, when the mutation of 

the system state occurs, the state of filter cannot 

change immediately or the amplitude value dose not 

change distinctly, because ( )N k  decides ( )i k  mostly. 

Furthermore, ( )N k  also influences the error variance 

( )V k . When the mutation of the system state occurs, 

it makes ( )V k enlarged. In order to make the filter 

track the state of the system timely, adaptive 

adjusting variable   is introduced into ( )V k . 

Enlarging ( )V k , and enlarging ( )N k , ( )i k is enlarged 

finally. It reflects the change of the system state 

variance timely.  After the adaptive adjusting value is 

introduced, the equation about ( )V k is 



 

     

1 1 ( 1)

( ) ( 1)
( 1, 0 1)

1

T

T

k k

k

V k V k
k

 

  




 


   
  



    (37) 

where, 0 1   is forgetting factor, usually choosing 

0.95. The proposed introduction of forgetting factor 

is to decrease the post aged data, enlarge the 

influence of the latest residual vector and improve the 

tracking ability of the strong tracking filter. The real 

error should be smaller than academic error. Then 

different application situations have different requires 

to tracking performance and filtering performance of 

systems. 

 

From the analysis above, we can obtain the theorem 

as follow. 

 

Theorem 1: The modified adaptive UKF with strong 

tracking for the systems given by (1) has the 

prediction equations as follows. 

The predicted mean are computed as 

( | 1) [ ( 1| 1)]i ik k f k k                (8) 

2

0

ˆ( | 1) ( | 1)
n

m

i i

i

x k k k k 


                (9) 

The predicted covariance are computed as 

 

 

2

0

T

ˆ ˆ( | 1) ( ) ( 1| 1) ( | 1)

ˆ                                      ( | 1) ( | 1)

n
c

i i

i

i k

P k k k k k x k k

k k x k k Q

  







     

   


 (10) 

where,  

1 2( ) diag[ ( ), ( ), , ( )]nk k k k     

and 

1 2 1 2( ) : ( ) : : ( ) : : :n nk k k       

( ) ( ) 1
( )

1 ( ) 1

i i

i

i

c k c k
k

c k

 





 


, 1, 2, ,i n  

where, 1i  is foregone constant. ( )c k is 

undetermined multiplier and  

1

tr[ ( )]
( )

( )
n

i ii

i

N k
c k

M k





 

where, 
T( ) ( ) ( ) ( ) ( )kN k V k H k Q H k R k    

 

 

2

0

T T

ˆ( ) ( 1| 1) ( | 1)

ˆ                   ( | 1) ( | 1) ( ) ( )

n
c

i i

i

i

M k k k x k k

k k x k k H k H k

 





    

  


 

1 1 ( 1)

( ) ( 1)
( 1, 0 1)

1

T

T

k k

k

V k V k
k

 

  




 


   
  



 

where, 0 1   is forgetting factor. 

 

Remark: Solving multiple second-best factors via this 

algorithm, it is simple and fast as well as it is suitable 

and fit for online computing.  When some component 

( )ix k  of the state ( )x k  is easily amenable to mutation 

via prior knowledge, the proportional coefficient of 

the vanishing second-best factor ( )i k  can be 

enlarged accordingly. It conduces to track ( )ix k fast. 

Because ( )ix k  is likely to mutation, i  cannot be 

chosen to be 1. 




4. CONCLUSION 
 

The introduction of the UKF in allusion to the 

nonlinear model of INS/GPS integrated navigation 

system has been explored.  Compared with 

conventional EKF, the UKF can make calculation 

easier and faster thus improving the navigation 

precision effectively.  

 

In order to solve the high dimensional problem of the 

integrated navigation system state model, a modified, 

adaptive UKF algorithm has been instituted as an 

integral part of the navigation system. A stronger 

tracking ability is appended to the navigation system 

due to enhanced tracking ability of the modified 

UKF. In addition, the modified UKF itself possesses 

larger adaptation ability. This algorithm can suppress 

the potential divergence which is pertinent to the high 

dimensional system filtering.  

 

To summarize, theoretically, the UKF is more 

suitable for the nonlinear model of INS/GPS 

integrated navigation system than the EKF; and the 

strong tracking UKF algorithm can supply the 

integrated navigation system with both a higher speed 

and higher precision information. 
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