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1. Abstract 

We study response of a shear beam to seismic excitations at its base.  

The research is conducted using computer simulation of the wave propagation on a numerical model. 

The wave equation is solved using the method of finite differences (FD) where the spatial and 

temporal derivatives are approximated with finite differences. We used  formulation of the wave 

equation via the particle velocities, strains, and stresses. Integrating particle velocities in time, we 

obtained displacements at spatial points.  The main goal in this research is to study phenomena 

occurring due to three different types of boundary conditions, Dirichlet, Neumann, and moving 

boundary when simple half-sine pulse propagates through 1D medium modeled as a shear beam.  

Key words:Wave propagation, particle velocity, stress, strain, boundary conditions, numerical 

simulation. 

 

2.Introduction 

In the problems dealing with infinite region, as the wave propagation problems in 

seismology, it is impossible and useless to model the whole region. Instead, we model and 

study only one part of the whole region, the region of interest. To analyze only one part of the 

whole region we need to utilize so called artificial boundaries (Fujino and Hakuno, 1978; 

Tsynkov, 1998). They are not physical boundaries, but artifacts used to simulate wave 

propagation outside of the numerical model.  

Opposite of the problems dealing with wave propagation in infinite domain, there is a wide 

research field in the earthquake engineering treating response of structures with finite 

dimensions to seismic excitations. In this problem, the boundaries bounding the structure are 

physical or real. In this case, the response of the structure inside depends upon the solution at 

the boundaries. Different boundary conditions imply different response of same structure 

excited by same excitation. 

To show the influence of the boundary conditions on the response of the structures, in this 

paper we study several aspects of the response of a simple shear beam (1D medium) model of 

a structure excited by simple half-sine pulse. Although the shear beam model is one of the 

simplest mathematical models of the real 3-D structures (buildings, bridges, chimneys, 

multilayered soil etc), through numerical simulation on this model, many physical 

phenomena of the linear (Gicev and Trifunac, 2010) and nonlinear (Gicev and Trifunac, 

2006, 2009) response of the structure can be studied (Trifunac, 2006; Safak, 1998). Based on 



these studies we learned under what conditions, where, and when peaks of the response of the 

structure to seismic excitation occur (Gicev and Trifunac, 2006, 2007). 

The boundaries occuring in wave propagation problems can be classified into three groups 

(Kausel and Tassoulas, 1981): 

- elementary (non-transmitting) boundaries, 

- consistent (global) boundaries, 

- imperfect (local) boundaries. 

In this paper we study the features of the response due to  three types of boundaries. First, we 

analyze the non-transmiting (totally reflecting) elementary boundaries. For that purpose we 

study two cases of shear beam model. In both cases,  at the bottom end we prescribe zero 

motion (Dirichlet boundary condition or fixed boundary). In the first case, at the top end of 

our shear beam model, we imply prescribed zero displacement (Dirichlet, fixed) boundary 

condition, while in the second case we imply prescribed zero derivative of displacement 

(Neumann, free-stress)  boundary condition. In both cases, the boundaries are perfect 

reflectors, e.g. the wave energy is totally reflected from the boundaries into the inner region 

of the shear beam. 

3.The model 

The model in this paper is a shear beam excited at its bottom by prescribed motion in form of 

half-sine pulse. After the motion is prescribed at the bottom, we take that the bottom end does 

not move and the displacement is zero during whole simulation. The shear beam is divided on 

m equal intervals (m = 200 in this paper). The governing equation of the problem is the wave 

equation implemented with numerical scheme in our model. This numerical scheme causes 

propagation of the prescribed half-sine pulse along the shear beam with velocity of 

propagation 𝛽 = √
𝜇

𝜌
 , where 𝜇 is shear modulus and 𝜌 is density of the material of the shear 

beam. These parameters characterize the material from which the shear beam is made. 

The wave equation in onedimensional (1D) space is 

𝜌
𝜕2𝑈

𝜕𝑡2
=
𝜕𝜎

𝜕𝑥
         (1) 

where 𝜎 = 𝜇𝜀 is shear stress and 𝜀  is shear strain (Fig.1). 

For establishing ‘marching in time’ procedure, we need to reduce the order of (1) in a system 

of partial differential equations (PDE) of first order.  

Taking 𝑉 =
𝜕𝑈

𝜕𝑡
  and taking into account above stress-strain relation, the equation (1) reads 

𝜕𝑉

𝜕𝑡
=
1

𝜌

𝜕

𝜕𝑥
(𝜇𝜀)         (2) 



If we differentiate both sides of identity 
𝜕𝑈

𝜕𝑡
=
𝜕𝑈

𝜕𝑡
 with respect to x and change order of 

differentiation of  left and right side we get: 

𝜕

𝜕𝑡
(
𝜕𝑈

𝜕𝑥
) =

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑡
)        (3) 

Substituting 𝜀 =
𝜕𝑢

𝜕𝑥
, taking into account definition of vand plugging in (3) we get: 

𝜕𝜀

𝜕𝑡
=
𝜕𝑉

𝜕𝑥
         (3а). 

On this way the original second-order wave equation is reduced on system of two first-order 

PDEs: 

𝜕𝑉

𝜕𝑡
=
𝜇

𝜌

𝜕𝜀

𝜕𝑥
         (4а) 

𝜕𝜀

𝜕𝑡
=
𝜕𝑉

𝜕𝑥
         (4b) 

Suitable for establishing of ‘marching in time’ procedure. 

Equations (4) in vector form are: 

{𝑈}′𝑡 = {𝐹}′𝑥         (5) 

where {𝑈} = {
𝑉
𝜀
} and {𝐹} = {

𝜇𝜀

𝜌

𝑉
}. 

Fig.1 Linear stress-strain dependance 
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Fig.2 Allowable motion of a beam with applied fixed boundary conditions at both ends 

а) Shape of deformed beam in arbitrary time instant 

b) Time history at arbitrary point of the beam. 

 



 
 

Dirichlet boundary condition implies zero displacements. The allowable shape of 1D beam 

with applied Dirichlet boundary conditions at both ends is presented on Fig. 2a. The time 

history of the displacement at arbitrary point of the beam under forced vibrations is presented 

on Fig. 2b.    

4. Numerical examples 

We consider a beam with height H=50 m, divided on 200 equal space intervals. Wave with 

half-sine form is generated at bottom end (x=0) and starts to propagate along the beam 

towards the top. Velocity of propagation of the wave is 300m/s, the amplitude of the pulse is 

A = 0.1m, and duration of the pulse is td = 0.1s (Fig. 3). 

After applying of the pulse at the bottom (t >td), the bottom end remains motionless, e.g, 

fixed Dirichlet boundary condition is prescribed at the bottom end. While the pulse occupies 

a point of the beam, its displacement is: 

𝑢 = 𝑎 ∗ 𝑠𝑖𝑛
𝜋𝑡

𝑡𝑑
         (6) 

where 𝑎 = 0.1𝑚 is 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑎𝑛𝑑 𝑡𝑑 = 0.1𝑠 is duration of the pulse. 

Fig.3 Incident wave with half-sine wave form 



 

Differentiating (6) with respect to time, we get the particle velocity which for our example is: 

𝜕𝑢

𝜕𝑡
= 𝑣 =

𝑎𝜋

𝑡𝑑
∗ 𝑐𝑜𝑠

𝜋𝑡

𝑡𝑑
=
0.1𝜋

0.1
𝑐𝑜𝑠

𝜋𝑡

𝑡𝑑

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑣𝑚𝑎𝑥 =

0.1𝜋

0.1
= 𝜋    (7) 

To obtain the strain, we multiply and divide the argument of sine function in (6) by velocty of 

propagation:  

𝑢 = 𝑎 ∗ 𝑠𝑖𝑛
𝜋𝑡𝛽

𝑡𝑑𝛽
         (6а) 

Taking that 𝛽𝑡𝑑 = 𝐿 is length of the pulse and 𝛽𝑡 = 𝑥 is spatial coordinate along the length 

of the  pulse, (6а) becomes 

𝑢 = 𝑎 ∗ 𝑠𝑖𝑛
𝜋𝑥

𝑡𝑑𝛽
         (6b) 

Differentiating  (6b) with respect to x, we get the strain 

𝜕𝑢

𝜕𝑥
= 𝜀 =

𝜋𝑎

𝑡𝑑𝛽
∗ 𝑐𝑜𝑠

𝜋𝑥

𝑡𝑑𝛽

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝜀𝑚𝑎𝑥 =

𝜋𝑎

𝑡𝑑𝛽
=
𝑣𝑚𝑎𝑥

𝛽
=
𝜋

𝛽
    (8) 

If  𝛽 = 300𝑚/𝑠, the maximum value of the strain is 𝜀𝑚𝑎𝑥 =
𝜋

𝛽
=

𝜋

300
~0.01 what can be seen 

also from our numerical results in Figs. 4c1 and 4c2 bellow. 

 

4.1 Results 

On following figures we presented the results obtained by numerical simulation of the 

propagation of wave in form of half-sine pulse (Fig.3). 

 



Fig.4  Displacement, particle velocity, and strain at x=H/2 vs. time for β=300m/s, Dirichlet 

(a1, b1 и c1) and Neumann (a2, b2 и c2) boundary conditions 

 

 

 

 

 

 

On Fig.4 the response of the point at the middle of the beam (point100, x=H/2=25m) is 

shown. The response is shown via displacements u,  particle velocities, v, and strains 𝜀 at that 

point versus time, t. On left side of this figure we show the response for fixed boundary, u=0, 

at the top x = H = 50m (Dirichlet, Figs.4a1, 4b1, and 4c1), while on the right side the 

response for  stress-free boundary, 𝜀 =
𝜕𝑢

𝜕𝑥
= 0, at the top (Neumann, Figs. 4a2, 4b2, and 4c2) 
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is shown. Comparing displacements (Figs 4а1 and4а2) it can be noticed that in case of fixed 

(Dirichlet) boundary at top, after reflection the pulse changes sign and it comes in the middle 

of the beam (point 100) with opposite (negative) displacement than in the first passage 

through that point (second peak on Fig. 4a1 is with negative sign). In case of free-stress 

(Neumann) top boundary after reflection from the top the pulse does not change the sign and 

it comes at the point 100 with same (positive) displacements as in the first passage. The 

situation is the same with particle velocity (half-cosine pulse, Figs 4b1 nad 4b2). 

 

 

 

 

Dislike displacements and particle velocities, the strains, ε, after reflection from the fixed 

(Dirichlet) top does not change sign (all half-cosines on Fig. 4c1 start with negative and 

finish with positive signs). For stress-free (Neumann) top end, after reflection the strains 

change signs (Fig.4c2). So, if we analyze Fig. 4c2, we can notice that the first half-cosine 

pulse going upward passing through point 100 starts with negative values, while after 

reflection from the top it changes sign and comes at point 100 with opposite values (first 

positive and then negative). Then it reflects from bottom end (Dirichlet), do not changes sign, 

so the third half-cosine is the same as second, then it reflects from top (Neumann), changes 

sign so the fourth half-cosine is opposite of third etc. One can learn from the above analysis 

that fixed end (Dirichlet boundary condition) changes sign of the of displacement, u and 

particle velocity, v, while does not change sign of strain, ε after reflection. Opposite, stress-

free (Neumann boundary condition) does not changes sign of displacements, u, and particle 

Fig.5  Moving the beam as a function of no dimensional time t and no dimensional height ɳ 

for two visual angle. Dirichlet (a1 and a2) and Neumann (b1 and b2) boundary conditions 

 



velocities, v, while changes sign of the strains, 𝜀, after reflection. Common for both boundary 

conditions is that after multiple reflections, the amplitudes of the pulse are the same (in 

absolute values). The above analysisis summarized on Fig.5. It is 3D view of displacement of 

the shear beam versus scaled, dimensionless time and space.   

In the real world, dislike the fixed (Dirichlet) boundary at the bottom, the structures are not 

fixed in the ground (zero motion), but rather there is some nonzero motion (moving 

boundary) at the bottom during the passage of the wave through soil-structure interface. Also 

the real structures, at the top end are not bounded and can freely move (Neumann boundary 

condition).  

Fig.6 Displacement, particle velocity, and strain in case of moving boundary at bottom and      

stress-free boundary at top. 

- a1,b1 andc1 at x=H/2 (point 100),  

- a2, b2 andc2 at x=3H/4(point 150) 

 

-  
Response of such a structure analized with 1-D shear beam model is shown on Fig.6. At top 

row  (Figs. 6а1, b1, c1) the displacement,  particle velocity and strain at the middle of the 

beam, x = H/2 = 25m (point 100), vs time are presented. Comparing Figs 4a2,b2,c2 with Figs 

6a1,b1,c1 one can notice that the shape is the same (in both sets at the top there there is 

stress-free, Neumann boundary condition). The different are boundary conditions at bottom. 

While the Figs. 4a2,b2,c2 show the response for fixed bottom boundary, the Figs 6a1,b1,c1 

show the response of the beam for moving bottom boundary. The moving boundary is type of 

Dirichlet boundary which prescribes motions, not derivatives of motions like Neumann 

boundary and that is the reason why Figs. 6a1,b1,c1 resemble Figs. 4a2,b2,c2 in shape.Only 

at moving boundary the motion is not zero as in case of fixed boundary. As a consequence 

 



after each reflection from bottom, part of the wave energy is transmitted in the soil and only a 

part is being reflected back in the beam which propagates upward. On this way, after each 

reflection from the bottom, the wave remaining in the beam (structure) is weakened.  

On Figs.6a2,b2,c2 we can see the phenomenon of wave interference in point 150 close to the 

top (x=3H/4=37.5m). Part of the pulse going upward interferes with part of the pulse going 

downward abd they add up. This is obvious at strains (Fig.5c2) where the strain amplifies 

almost twice. This is the reason for generating high stresses𝜎 = 𝜇𝜀 that can be reason for 

collapse of the structure. 

 

 

 

 

 

 

Finally, on Fig.7,  a 3-D view of propagation of the the wave versus dimensionless time, τ, 

and dimensionless space,   is presented. As can be seen from this figure, after each passing 

of the wave through soil-structure interface, the reflected wave in the beam is weaker as a 

consequence of transmitting of the wave energy in the soil. The ratio of the reflected and 

transmitted wave depends upon the physical properties of the soil and structure and can be 

determined through reflection, kr , and transmision coeficient, kt (Gicev, 2005). 

5. Conclusion 

Fixed end (Dirichlet boundary condition) changes sign of displacement, u and particle 

velocity, v, while does not change sign of the strain, ε, after reflection.Opposite, stress-free 

Fig.7 Displacement of the beam versus dimensionless time, and dimensionless height, 

fortwoviewangles. Moving(realistic) boundary on soil-structure interface ( = 0). 

Characteristicpoints: =0: soil-structure interface (movingboundary), =1: top of the beam 

(structure), Neumann (stress-free) boundarycondition) 

 



(Neumann boundary condition) does not change sign of displacement, u, and particle 

velocity, v, while it changes sign of the strain, ε, after reflection. Common for both boundary 

conditions is that after multiple reflections, the pulse amplitudes are unchanged. For moving 

boundary at soil-structure interface, after each passage of the wave through it, the reflected 

wave remaining in the structure is attenuated, indicating that part of the energy is refracted in 

the soil. The ratio of the reflected and refracted wave depends on the physical properties of 

the soil and the structure and can be determined with the coefficients of reflection and 

transmission. 
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