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a b s t r a c t

Three variants of a two-dimensional (2-D) model of a building supported by a rectangular, flexible

foundation embedded in nonlinear soil are analyzed. The building, the foundation, and soil have

different physical properties. The building is assumed to be linear, but the foundation and the soil can

experience nonlinear deformations. It is shown that the work spent for the development of nonlinear

strains in the soil can consume a significant part of the input wave energy, and thus less energy is

available for excitation of the building. The results help explain why the damage, during the 1994

Northridge earthquake in California, to residential buildings in the areas that experienced large strains

in the soil was absent or reduced.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Almost complete spatial separation of damaged buildings and
of pipe breaks in the near field following the 1994 Northridge [45]
and the 1933 Long Beach, California [36] earthquakes has brought
out the need to understand the nature of nonlinear response
of soils near the ground surface and its relationship to the
soil–structure interaction (SSI). The absence of damaged buildings
in the heavily shaken areas, where soil experienced large non-
linear strains and deformations, suggests the capacity of some
soils to absorb the energy of incident seismic waves, and thus to
act as a large-scale natural isolation system. Since the areas where
this energy absorption takes place did recur during two consecu-
tive earthquakes [46], the associated nonlinear phenomena
appear to be associated with the local site characteristics, which
do not change for decades, and which therefore should be used,
with essentially no additional cost, in the design of individual
structures and in the more advanced approaches to seismic
zoning [38].

The zones where buildings were damaged during the 1994
Northridge earthquake, or where pipes were broken [42,43], are
not associated with obvious and easily identifiable differences in
the amplitudes of recorded peak accelerations [52], peak velo-
cities [53], or spectral amplitudes of strong ground motion
[30,31], and more subtle and detailed site investigations are
required to identify them. These investigations will require

detailed and multi-parametric site characterizations that combine
the physical properties of the site with the level of its water table
and liquefaction susceptibility [32,33,35,38]. The classical earth-
quake engineering approach correlates damage of structures with
the largest relative response of the equivalent single-degree-of-
freedom system, in a formulation that is typically based only on
the largest relative peak of response [55]. While this approach can
be refined to involve many largest peaks of the relative response
[16,17] in the near field of strong ground shaking, it appears that
the damage is more governed by the strong pulses that emanate
from the broken asperities on the moving fault, and hence by the
power of these pulses and the energy those pulses carry
[37,11–13]. Therefore, we select for our studies the excitation in
terms of simple pulses, to simulate the actions of strong ground
motion near faults.

Following the early observational studies, which correlated the
site properties with damage to typical residential buildings (like
traditional wood houses in Japan) [6,22], studies of nonlinear
response of soils to incident earthquake waves have focused on
the changes in peak amplitudes of ground motion [4,41,57] and
the changes in the site periods [39,40,47]. To understand how the
energy of incident waves is absorbed during passage of large,
near-field pulses it is necessary to work with hysteretic models of
soils and to consider nonlinear representations of wave motion,
which allow creation of strain-localization zones in the soil. To
begin to understand these phenomena, we have started to
analyze such problems incrementally in terms of simple models
based on numerical modeling of two-dimensional SH wave
motion and bilinear representation of nonlinear deformations
[14]. We first considered nonlinear deformations in the soil and
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relative energy absorption during 2-D SSI, when the foundation
and the building are assumed to respond as continuous linear
media [15]. In this paper, we continue and extend such analyses
to (a) nonlinear soil and foundation, and (b) nonlinear soil and
foundation, with a thin, soft layer having low yielding strain and
surrounding the foundation, in both cases with the building
responding in the linear range.

It is known from theoretical investigations of SSI that rigid
foundations are efficient in the scattering of incident seismic
waves, and how this scattering depends on the foundation shape
and its relative stiffness [9,18,29,34,56]. While this scattered
energy is smaller for actual foundations of buildings, because
those are never as rigid as their mathematical models [54], the
scattering from flexible foundations still plays an important role
in bringing about pockets of nonlinear soil deformation, which
then lead to increased effective compliances and to their asym-
metry. Observations of the response of full-scale structures during
strong earthquake shaking show indirectly how prominent these
nonlinearities in the soil structure systems can be [24,48–51].
Observations also show that these nonlinear deformations in the
soil usually occur well before any damage begins in the buildings.
Since this natural energy-absorbing mechanism is beneficial for
reducing the damage in the buildings, it should be studied and
whenever possible incorporated into future design methods.

Advanced large scale numerical simulations have been devel-
oped for analyses of dynamic response of soils, including non-
linear representation and complex geometry of foundations
[7,26,58]. Large numerical models are necessary for engineering
analyses in realistic setting, but detailed interpretation of some of
their results becomes a challenge due to simultaneous action of
their many complex features. With the aim of analyzing and
interpreting only a subset of the phenomena, which accompany
the nonlinear response of soil in the presence of soil–structure
interaction, in this paper we choose only the most elementary
representation of waves in the soil, and adopt the bi-linear
yielding model for the soil. In calculations based on finite
differences this then enables us to study times and places where
strain localizations introduce permanent deformations in the soil.
Our aim is to learn how the permanent deformations in the soil
contribute to the absorption of incident seismic wave energy.

Nonlinear site response is a complex problem, which involves
many geometrical and material parameters in the description of
the governing models, where extrapolations are at best very

difficult due to the chaotic nature of large excitation and large
nonlinear response. Hence, in the following our modest goal will
be merely to illustrate what may occur in the presence of
nonlinearities in the soil and in the foundation during SSI, while
the building remains linear. Comprehensive sensitivity studies of
how these results depend on all governing parameters are beyond
the scope of this paper.

2. Model

In general, during the wave passage, the soil, the foundation,
and the superstructure can all undergo nonlinear deformations,
and after the motion is over they can be left with permanent
strains. Because the aim of this paper is to study only the
nonlinear zones in the soil and in the foundation, the soil and
the foundation will be modeled as nonlinear, while the building
will be forced to remain linear. The three variants of the model to
be considered are shown in Fig. 1a and b. The model in Fig. 1a will
be considered twice, first with linear and then with nonlinear
deformations in the foundation. The incoming wave is taken to be
a half-sine pulse of a plane SH wave, which is intended to model
strong-motion pulses observed in the ground motion near faults
[19]. A dimensionless frequency Z¼ 2a=l¼ a= bstd0

� �
will be used

as a measure of the pulse duration (wavelength), where a is half
the width of the foundation, l is the wavelength of the incident
wave, bs is the shear-wave velocity in the soil, and td0 is the
duration of the pulse.

For completeness of this presentation, in the following we
summarize briefly the finite difference model and its character-
istics, following Gičev and Trifunac [15]. To set up the grid spacing
in the finite difference representation of the model, the pulse is
analyzed in space domain (s), and the displacement in the points
occupied by the pulse is

wðsÞ ¼ A sin½ðps=ðbstd0Þ� ð1Þ

where A is the amplitude of the pulse and s is the distance of the
considered point to the wave front in initial time, in the direction
of propagation. Using the fast Fourier transform, the half-sine
pulse (Eq. (1)) is transformed into wave number domain (k) as
follows:

wðkÞ ¼ F wðsÞ½ � ð2Þ

Fig. 1. Nonlinear soil–flexible foundation–linear structure system: (a) linear or nonlinear foundation and nonlinear soil and (b) foundation surrounded by soft, nonlinear

layer (d¼ hf =10) and nonlinear soil.
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The maximum response occurs for k¼0 (rigid-body motion).
As k increases, the response decreases and diminishes towards
zero as k approaches infinity. We selected the largest wave
number to be considered in this analysis, k¼ kmax, for which the
k-response is at least 0.03 of the maximum response [10]. Then,
for this value of kmax, the corresponding wavelengths and the
corresponding frequencies are

lmin ¼ 2p=kmax ¼ 2pb=omax ð3Þ

Accuracy of the finite difference (FD) grid depends on the ratio
of the numerical and physical velocities of propagation, c=b,
which ideally should be 1. The parameters that influence this
accuracy are as follows: (1) the density of the grid m¼ l=Dx (m is
the number of points per wavelength l, and Dx is the spacing
between the grid points); (2) the Courant number, w¼ bsDt=Dx;
and (3) the angle of the wave incident, y. It has been shown by
Alford et al. [2], Dablain [5], and Fah [8] that the error increases
when m decreases, w decreases, and y is close to 0 or p=2. For
second-order approximation, the above authors recommend
m¼12.

To model soil response numerically, we chose a rectangular
soil box with dimensions Lm ¼ 10a and Hm ¼ Lm=2¼ 5a (Fig. 1 ,b).
For practical reasons, the maximum number of space intervals in
the grid in the horizontal (x) direction is set at 250, and in the
vertical (y) direction at 400 (125 in the soil box and 275 in the
building). The minimum spatial interval for this setup is
Dxmin ¼ Lm=250¼ 95:5=250¼ 0:382 m. For a finer grid, the com-
putational time increases rapidly. With this limitation in mind,
and for Z¼ 2, the largest response is about 3% of the maximum
response and has frequency omax ¼ 980 rad = s [10]. From Eq. (3),
the shortest wavelength is lmin ¼ 1:603 m, and the finest grid
density is m¼ lmin=Dxmin ¼ 1:603=0:382. This corresponds to
about 4 points = lminomminfor this wavelength. Our numerical
scheme is O Dt2,Dx2

� �
, so we need at least m¼12 points/lmin to

resolve the shortest wavelength, lmin. For Z¼ 2 our grid cannot
resolve the shortest wavelength when we have only four spatial
grid points. This implies that the pulse should be low-pass
filtered. A cut-off frequency oc ¼ 200 rad = s was chosen, and
the pulse was low-pass filtered. This implies that lmin ¼ 7:854 m
and the grid density

m¼ lmin=Dxmin ¼ 7:854=0:382� 20 points = lmin4mmin ð4Þ

It can be shown that for Z¼ 0:5 only a negligible amount of the
total power is filtered out, while for Z¼ 2 a considerable amount
is filtered out. Also, it can be shown that for Z¼ 2 the amplitude of
the filtered pulse is smaller than the amplitude of the non-filtered
pulse, which we chose to be A¼0.05 m, while for Z¼ 0:5 the
amplitude is almost equal to the amplitude of the non-filtered
pulse [10]. Numerical tests have shown that the viscous absorbing
boundary rotated towards the middle of the foundation–building
interface reflects only a negligible amount of energy back into the
model [9].

For 2-D problems, the numerical scheme is stable if the time
increment [25] is

Dtrmin½ð1=Dx2þ1=Dy2Þ
1=2b��1 ð5Þ

We assume that the shear stress in the x direction depends
only upon the shear strain in the same direction and is indepen-
dent of the shear strain in the y direction. The motivation for this
assumption comes from our simplified representation of layered
soil, which is created by deposition (floods and wind) into more or
less horizontal layers. The foundation and the soil are assumed to
be ideally elasto-plastic, and the constitutive s�e relationship is
shown in Fig. 2. Further, it is assumed that the contact points
between the soil and foundation remain bonded during the
analysis and that the contact cells remain linear, as does the zone

next to the artificial boundary (the bottom four rows and the left-
most and right-most four columns of points in the soil box of
Fig. 1a and b).

For our problem, the system of three partial differential
equations (for u, v, and w) describing the dynamic equilibrium
of an elastic body is reduced to one equation only (because
u¼ v¼ @=@z¼ 0). Neglecting the body forces in the z direction
(Fz¼0), this equation is

r @
2w

@t2
¼

@txz

@x
þ
@tyz

@y

� �
ð6Þ

Introducing the new variables v¼ @w=@t, exz ¼ @w=@x and
eyz ¼ @w=@y, and dividing Eq. (6) with r, the order (of six) is
reduced to the system of three first-order partial differential
equations:

U ,t ¼ F ,xþG,y, ð7Þ

where

U ¼

v

exz

eyz

8><
>:

9>=
>; F ¼ F ðU Þ ¼

1
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v

0

8><
>:

9>=
>; G ¼ GðUÞ ¼

1
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0

v

8><
>:
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>; ð8Þ

The first equation in Eq. (7) is the dynamic equilibrium of
forces in the z direction with neglected body force Fz. The second
and third equations give the relations between the strains and the
velocity. The abbreviations ex ¼ exz, sx ¼ txz, ey ¼ eyz, and sy ¼ tyz

will be used in the following. The Lax–Wendroff computational
scheme [23] is used for solving Eq. (7) [9].

3. Energy and distribution of permanent strain

In the following examples, we use the properties of the
Holiday Inn hotel in Van Nuys, California [3] to describe the
building, and we consider the response in east–west (longitudi-
nal) direction only. This building was studied extensively using
different models and representations [11,13,20], and the body of
those results can be used to complement future comparisons and
interpretations of its response.

A question arises as to how to choose the yielding strain em

(Fig. 2) to study strain distribution in the system. The displace-
ment, the velocity, and the linear strain in the soil (bs¼250 m/s)
during the passage of a plane wave in the form of a half-sine pulse
are

w¼ A sin pt=td0

� �
ð9Þ

v¼ _w ¼ ðp=td0ÞA cosðpt=td0Þ, ð10Þ

Fig. 2. Constitutive law, s � e, for the soil and foundation.
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ej j ¼ vmax=bs ¼ pA=ðbstd0Þ: ð11Þ

If, for a given input plane wave, we choose the yielding strain
em given by Eq. (11) multiplied by some constant between one and
two, the strains in both directions will remain linear before the
wave reaches the free surface or the foundation, for any incident
angle. This case can be called ‘‘intermediate nonlinearity’’. If we
want to analyze only the nonlinearity due to scattering and
radiating from the foundation, we should avoid the occurrence
of the nonlinear strains caused by reflection from the half-space
boundary. Then we may choose emZmaxð2pA sing=bstd0;
2pA cosg=bstd0Þ. We call this case ‘‘small nonlinearity’’.

If the soil is allowed to undergo permanent strains due to wave
passage of incident waves in the full space, then we may choose
the maximum strain emomaxðpA sing=bstd0;pA cosg=bstd0Þ. This
condition guarantees that in either the x or y direction the soil will
undergo permanent strains during the passage of the plane wave.

Generally, the yielding strain can be written as

em ¼ Cvmax=bs ¼ CpA=ðbstd0Þ ð12Þ

where C is a constant that controls the yielding stress (strain) in
the soil. We then consider the following cases of nonlinearity,
depending upon C (see [15]):

� CZ2: Small nonlinearity. Permanent strain does not occur
until the wave hits the foundation.
� 1rCo2: Intermediate nonlinearity. Permanent strain does

not occur until the wave is reflected from the free surface or is
scattered from the foundation. Permanent strain will or will
not occur after the reflection of the incident wave from the
free surface, depending upon the angle of incidence.
� Co1: Large nonlinearity. Permanent strain occurs after reflec-

tion from the free surface. Permanent strain may or may not
occur before the wave reflects from the foundation surface.

4. Energy distribution in the system

The energy flow through a given area can be defined, in terms
of a plane-wave approximation [1], as

Ea
in ¼ rsbsAsn

Z td0

0
v2 dt ð13Þ

where rs and bs are the density and shear-wave velocity in the
soil and v is the particle velocity, which for the excitation
considered in this paper is given by Eq. (10). Asn is the area
(normal to the direction of the ray) through which the wave is
passing. For our geometrical setting (Fig. 1a, b), the area normal to
the wave passage is

Asn ¼ 2Hm singþLm cosg¼ Lm singþcosg
� �

: ð14Þ

Inserting Eqs. (10) and (14) into (13) and integrating, the
analytical solution for the input wave energy into the model is

Ea
in ¼ rsbsLm singþcosg

� �
ðpA=td0Þ

2td0=2 ð15Þ

As can be seen from Eq. (15), for the defined size of the soil
island, Lm, and the defined angle of incidence, g, the input energy
is reciprocal with the duration of the pulse, which means it is a
linear function of the dimensionless frequency Z. Because for
short pulses in our example calculations are low-pass filtered up
to oc ¼ 200 rad = s, the analytical and the numerical solutions
(13) for input wave energy will not coincide.

Since our system is conservative, the input energy is balanced
by the following:

� Cumulative energy going out from the model, Eout , computed
using Eq. (13).

Fig. 3. Reduction of wave energy entering the linear building for (a) linear foundation, (b) nonlinear foundation, and (c) nonlinear, soft layer surrounding foundation

(d¼ hf =10; eyring ¼ eys=5), for different levels of soil nonlinearity (C¼0.8, 0.9, 1.1, 1.3, 1.5, and 1.73) and for different foundation rigidities expressed via bf ¼250, 300, 500,

and 1000 m/s.
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� Cumulative hysteretic energy (energy spent for creation and
development of permanent strains in the soil), computed from:

Ehys ¼
XTend

t ¼ 0

Dt
XN

i ¼ 1

sxiðDexpiþ0:5DexeiÞþsyiðDeypiþ0:5DeyeiÞ
� �

,

ð16Þ

where Tend is the time at the end of the analysis, N is the total
number of points, sxi,syi are the stresses at the point i in the x

and y directions, respectively, Dexpi ¼ etþDt
xpi �e

t
xpi is the incre-

ment of the permanent strain in the x direction at point i, and
Deypi ¼ etþDt

ypi �e
t
ypi is the increment of the permanent strain in

the y direction at point i.
� Instantaneous energy in the building, consisting of kinetic and

potential energies, which can be computed from

Eb ¼ EkþEp ¼ 0:5DxDyb

XN

i ¼ 1

rv2
i þmðe

2
xþe

2
y Þ

� �
ð17Þ

This balance was discussed by Gičev [10] for a semi-cylindrical
foundation, a pulse with Z¼ 1:5, for incident angle g¼ 301, and a
yielding strain defined by C¼1.5 (Eq. (12)), and it will be assumed
to hold here as well for the rectangular foundation.

To study only the effect of scattering from the foundation,
following Gičev [10] the building will be considered to be high
enough so that the reflected wave from the top of the building
cannot reach the building–foundation contact during the time of
analysis. The analysis is terminated when the wave completely
exits the soil island. In this paper, the hysteretic energy in the soil
and the energy in the building are the subjects of interest. Gičev
[10] studied these two types of energy as functions of the
dimensionless frequency Z. For a semi-circular foundation, he
showed that as the foundation becomes stiffer, a larger part of the
input energy is scattered, and less energy enters the building.

Fig. 3a–c shows the reduction of the energy entering the
building relative to the case when the soil is linear. The results

are shown for four different foundation stiffnesses expressed via
bf ¼250, 300, 500, and 1000 m/s. If the soil is linear, the reduction
multiplier is 1. Fig. 3a is reproduced here from the work of Gičev
and Trifunac [15] to help in the comparison with the results
shown in Fig. 3b and c. It presents results for the foundation,
which always deforms in the linear range. Fig. 3b shows the
results for the foundation material allowed to deform nonlinearly.
Fig. 3c shows the results for a nonlinear foundation surrounded
by a thin, nonlinear layer (Fig. 1b).

In Fig. 3, we illustrate the energy reduction for six values of
C¼0.8, 0.9, 1.1, 1.3, 1.5, and 1.73, as follows for the case of
nonlinear soil, linear foundation, and linear building (Fig. 3a): (1)
For small nonlinearity (e.g., C¼1.73), the ratios Ebuilding

C (C¼1.73)/
Ebuilding

linear soil (C¼1) are close to one for every Z, showing that the
small nonlinearity in the soil does not reduce the energy entering
the building significantly. (2) For intermediate nonlinearity (e.g.,
C¼1.5), the ratios Ebuilding

C (C¼1.5)/Ebuilding
linear soil (C¼1) show that

there is a small reduction of the energy entering the building with
the smallest ratio r�0.94 near Z¼0.2–0.3 and for bf ¼250 m/s in
Fig. 3a. The values of Z¼0.2–0.3 correspond to the excitation with
wavelengths 3–5 times longer than the width of the foundation,
and this corresponds to the cases in which all points along the
contact of soil and foundation are forced to move in phase and
with similar amplitudes. With increasing Z (larger than �0.7), the
reduction decreases and the ratio r in Fig. 3a tends towards 1.
(3) For big nonlinearity (e.g., C¼0.8), the ratios Ebuilding

C (C¼0.8)/
Ebuilding

linear soil (C¼1) show that the reduction of energy entering the
building is significant for all considered values of foundation
stiffness. The ratio r is the smallest for the stiffest considered
foundation (bf ¼1000 m/s). Fig. 3b shows that when the founda-
tion experiences nonlinear deformations, the reduction of the
high frequency energy entering the building is further increased
relative to the case when the foundation remains linear. Fig. 3c
shows significant energy absorption capacity of thin nonlinear
layer surrounding the foundation.

Fig. 4. Reduction of wave energy by scattering, entering the linear building for (a) linear foundation, (b) nonlinear foundation, and (c) foundation surrounded by soft,

nonlinear layer, for different levels of soil nonlinearity (C¼0.8, 0.9, 1.1, 1.3, 1.5, and 1) and for different foundation rigidities expressed via bf ¼300, 500, and 1000 m/s.
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Fig. 5. (a) Model with nonlinear soil, linear foundation, and linear building. Permanent displacements and strains in soils with small (C¼1.73), intermediate (C¼1.5), and large

nonlinearity (C¼0.8). The angle of incidence is g¼pX6(301), amplitude of the pulse A¼0.05 m, and the dimensionless frequency Z¼ hf =ðbstdÞ¼1.5, where hf is the foundation

height. The properties (SH wave velocity, density, width, and height) for the media are nonlinear soil (250 m/s, 2000 kg/m3,1,1), yielding strain em ¼ Cvmax=bs , linear rectangular

foundation (500 m/s, 2000 kg/m3, 19.1 m, 9.55 m), linear building (100 m/s, 270 kg/m3, 19.1 m, 20.03 m). (b) Model with nonlinear soil, nonlinear foundation, and linear building.

Permanent displacements and strains in soils with small (C¼1.73), intermediate (C¼1.5) and large nonlinearity (C¼0.8). The angle of incidence is g¼pX6(301), amplitude of the

pulse A¼0.05 m, and the dimensionless frequency Z¼ hf =ðbstdÞ¼1.5, where hf is the foundation height. The properties (SH wave velocity, density, width, and height) for the media

are nonlinear soil (250 m/s, 2000 kg/m3, 1, 1), yielding strain em ¼ Cvmax=bs , nonlinear rectangular foundation (500 m/s, 2000 kg/m3, 19.1 m, 9.55 m), yielding strain

eyf ¼ emGs=Gf , linear building (100 m/s, 270 kg/m3, 19.1 m, 20.03 m). (c) Model with nonlinear soil, nonlinear foundation, soft layer surrounding the foundation, and linear

building interaction. Permanent displacement and strain in soil with small (C¼1.73), intermediate (C¼1.5) and large nonlinearity (C¼0.8). The angle of incidence g¼pX6(301), the

amplitude of the pulse A¼0.05 m, and the dimensionless frequency Z¼ hf =ðbstdÞ¼1.5, where hf is the foundation height. The properties (SH wave velocity, density, width, height)

for the media are nonlinear soil (250 m/s, 2000 kg/m3, 1, 1). Yielding strain em ¼ Cvmax=bs , nonlinear soil ring around the foundation with thickness hf =10 and yielding strain

eyring ¼ eys=5, nonlinear rectangular foundation (500 m/s, 2000 kg/m3, 19.1 m, 9.55 m), yielding strain eyf ¼ emGs=Gf , linear building (100 m/s, 270 kg/m3, 19.1 m, 20.03 m).
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The results computed for case (3) above are dependent upon
the size of the model box. Before the wave reaches the founda-
tion, it loses energy due to work spent for creation of permanent
strains in the soil. But for our examples, this dependence turns
out to be small. For example, as pointed out in Gičev and Trifunac
[15], for bf ¼250 m/s and Z¼0.3, the case of linear soil gives
Ebuilding

linearsoil¼164,540 J. For soil box Lm¼10a wide and Hm¼5a deep,
the energy entering the building is Ebuilding

C (C¼0.8)¼90,769 J, and
the ratio r¼0.55. For a soil box Lm ¼ 20a wide and Hm ¼ 10a deep,
the energy entering the building is Ebuilding

C (C¼0.8)¼88,884 J, and
r¼0.54, which is about a 2% difference for an approximately 2�2
smaller soil box. From this, one can conclude that if this extreme
case rbf ¼ 250ðC ¼ 0:8,Z¼ 0:3Þ ¼ rmin

bf ¼ 250ðC ¼ 0:8,ZÞ (Fig. 3a) gives
only a 2% difference, at other values of Z we will obtain even
smaller differences due to different sizes of the model. However, if
C becomes smaller (for larger nonlinearities) the dependence on
the model size will become more pronounced.

Next, we illustrate how the level of the nonlinearity affects the
level of scattering. This is shown in Fig. 4a–c. It is seen that the
scattering does not depend much on the level of nonlinearity in
the soil for small and intermediate nonlinearities and is essen-
tially the same as in the case of linear soil. For large nonlinearity,
the effect becomes more significant. The examples in Fig. 4 show
that the stiffness of the foundation is the key factor, which
determines how much energy is scattered from the foundation.

Fig. 5a–c illustrates the permanent displacements (left) and
strains (right) in the soil for nonlinear soil, linear (a) or nonlinear
(b) foundation, (c) nonlinear foundation surrounded by a thin layer
of nonlinear soil, and linear building. The figure shows permanent
displacements (left) and strains (right) in the foundation and the soil
with small (C¼1.73), intermediate (C¼1.5), and large nonlinearities
(C¼0.8). The angle of wave incidence is g¼ p=6 (301), the amplitude
of the pulse is A¼0.05 m, and the dimensionless frequency is
Z¼ hf =ðbstdÞ¼1.5. In all examples, the foundation depth is equal

to its half width, hf ¼ a. The properties for the three media (SH wave
velocity, density, width, height) are in nonlinear soil (250 m/s,
2000 kg/m3, 1, 1), yielding strain em¼Cvmax=bs; in a linear or
nonlinear rectangular foundation (500 m/s, 2000 kg/m3, 19.1 m,
9.55 m), where hf is foundation height, and in a linear building
(100 m/s, 270 kg/m3, 19.1 m, 20.03 m).

Along the model boundaries (four columns and four rows in
the FD mesh), both displacements and strains decrease due to
gradual transition from nonlinear to linear material properties in
the model.

5. Flexible foundation

The 1D nature of the building response on the rigid foundation
eliminates the possibility to excite torsion in the building (rota-
tion about the vertical y-axis in Fig. 1) due to wave passage
effects, and for all incident angles of the wave, g. However, the
wave passage along the base of the building for flexible founda-
tion deforms the building as the wave propagates along the
foundation width. For long waves, this excitation of the building
can be viewed as out of plane motion combined with torsion of
the base. We illustrate this by computing the cord rotation
between the two corner points at the base of the building (points
A and B). We illustrate this cord rotation versus time in Fig. 6, for
the case of nonlinear soil and linear but deformable foundation.
As would be expected this ‘‘torsion’’ becomes small and
approaches zero as bf increases. For the model parameters chosen
in this paper, this torsion also decreases with increasing non-
linearity in the soil response, and is largest for linear soil
response.

The wave passage along the base of the building will increase
the vertical strains, at the base of the building, particularly near
corners (points A and B) and will result in their time and space

Fig. 5. (continued)
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variations. This increase will depend on the relative stiffness of
the building in translation and in torsion, and on the horizontal
wave length of the motion propagating from the foundation into
the building [27,28]. A related discrete model of a rigid ‘‘building’’
on multiple columns suggests that this amplification can be
considerable [21]. We illustrate this qualitatively in Fig. 7, at the
time when the wave begins to enter the building. We show the
amplitudes of vertical strain in a narrow zone above and below
the building foundation interface. It is seen that while the

presence of nonlinear response in the soil, and scattering of
incident waves from the flexible foundation contribute to the
reduction of seismic wave energy entering the building, the
building excitation and its response become more complex and
require analysis in terms of more degrees of freedom.

6. Discussion and conclusions

The examples of nonlinear soil and foundation responses
shown in this paper confirm that the energy entering a building
can be reduced significantly before the waves approach and
then enter the building. Nonlinear soil deformations are thus a
far more efficient ‘‘base isolation’’ system than what can be
accomplished by installing base isolators at the foundation level
or somewhere within the structure. Clearly, it is better (a) to
absorb energy before it enters the foundation and the structure,
and (b) to absorb it in the soil, which has far more powerful
absorbing capacity that any isolator because it can accommodate
large volumes with nonlinear deformations. Finally, the energy
absorption by nonlinear soil response is cheap and maintenance
free.

Nature has already provided us with such a powerful base
isolation system, as evidenced by the documented reduction of
damage to the buildings during the 1994 Northridge [45] and
1933 Long Beach earthquakes [36]. Such reductions obviously
also occurred during many other earthquakes in spite of the fact

Fig. 6. Cord rotations, between points A and B on the building–foundation

interface, for intermediate nonlinearity in the soil (C¼1.5), for large nonlinearity

in the soil (C¼0.8), and for linear deformations in the foundation.

Fig. 7. Distribution of vertical strains eyin the narrow strips above and below the building foundation interface, for Z¼1.5 and large nonlinear response in the soil (C¼0.8),

different rigidities of the foundation expressed via shear wave velocity (bf ¼300, 500 and 1000 m/s), and for linear deformations of the foundation. Two views are shown

for f¼1151 and 2451, measured clockwise from the vertical axis pointing down.
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that those may not have been documented. However, as for any
other energy-absorbing system, the natural soil can also be an
efficient and controllable energy sink only for a range of excita-
tion amplitudes. This range will depend on many local conditions,
and on the proximity to the moving fault and to the zones of
extreme amplification of seismic waves. In terms of what has
been learned following the Northridge earthquake, this useful
range might extend to peak ground velocities of 150–200 cm/s
[45]. Near and beyond these large, strong motion amplitudes, the
soil may begin to break into blocks, moving independently on the
liquefied substratum. The structures will then begin to be
damaged and destroyed by large differential displacements [44]
and rotations of their foundation, due to deformations and forces
larger than those resulting from shaking.

In a real three-dimensional setting, the nonlinear soil response
is obviously far more complex than what has been illustrated in
this paper, but the effects can be expected to be qualitatively the
same. The challenge for the next generation of performance-based
design methods will be to include the soil in the design of the
complete building-soil system and to maximize its energy-
absorption potential for incident strong-motion waves.

Acknowledgments

We are grateful and acknowledge the suggestions made by
two reviewers, whose comments resulted in significant improve-
ments of this paper.

References

[1] Aki K, Richards P. Quantitative seismology, theory and methods. San
Francisco: W.H. Freeman & Co.; 1980.

[2] Alford RM, Kelly KR, Boore DM. Accuracy of finite-difference modeling of the
acoustic wave equation. Geophysics 1974;39:834–42.

[3] Blume et al.. Holiday Inn, in San Fernando, California, earthquake of February 9,
1971. In: Murphy LM, editor. Washington, DC: US Department of Commerce,
National Oceanic and Atmospheric Administration; 1973.

[4] Chin BH, Aki K. Simultaneous study of the source, path and site effects on
strong ground motion during the Loma Prieta earthquake: a preliminary
result on pervasive nonlinear site effects. Bulletin of the Seismological Society
of America 1991;81:1859–84.

[5] Dablain MA. The application of high-order differencing to the scalar wave
equation. Geophysics 1986;51(1):54–66.

[6] Duke CM. Bibliography of effects of soil conditions on earthquake damage.
Berkeley, CA: Earthquake Engineering Research Institute; 1958.

[7] Elgamal A, Linjun Y, Zaohui Y, Conte JP. Three-dimensional seismic response
of humboldt bay bridge-foundation-ground system. Journal of Structural
Engineering—ASCE 2008;134(7):1165–76.

[8] Fah DJ. A hybrid technique for the estimation of strong ground motion in
sedimentary basins. Dissertation. Zurich, Switzerland: Swiss Federal Institute
of Technology; 1992.
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[14] Gičev V, Trifunac MD. Transient and permanent rotations in a shear layer
excited by strong earthquake pulses. Bulletin of the Seismological Society of
America 2009;99(2B):1391–403.
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V. Gičev, M.D. Trifunac / Soil Dynamics and Earthquake Engineering 43 (2012) 261–270270




