Less invasive cooling strategies for aortic aneurysm surgeries

Academician d-r Zan Mitrev MDFETCS, Tanja Anguseva, MD

Special hospital for surgery "Fillip II" Skopje - Macedonia

June, 2012

History

Dr. C. Walton Lillehei

- 1918-1999
- Bubble oxygenator
- Improvements of the Heart Lung Machine

1953: First Heart Lung Machine John Gibbon, Philadelphia

Greater infrastructure

Hypothermia in cardiovascular surgery

Hypothermia

- Definition: a condition in which an organism's temperature drops below the required level for normal metabolism and body functions.
- Subdivided into four different degrees:

Hypothermia preserves organ functions during cardiac surgery

Protective effects of hypothermia

CNS	Depression of cerebral metabolism; EEG abnormality; decline in cerebral blood flow and cerebral function
Cardiovascular	Tachy/bradycardia, vasoconstriction, ↑CO, HTA, prolonged systole, decreased ventricular arrhythmia threshold
Respiratory	tachypnea., decrease in oxygen compsumption;50% ↓ in carbon dioxide production per 8oC drop in temperature
Renal and endocrine	↑ in renal flow, intact renal autoregulation, decrease in basal metabolism
Neuromuscular	shivering
Metabolism	Decreased metabolism, acidosis, ↑lactates

Adverse consequences of hypothermia

Cardiovascular	Arrhthymias secondary to potassium loss	
	Increased plasma viscosity	
	Vasoconstriction impairing microcirculation	
Coagulation	Impaired coagulation	
	Reduced platelet count	
Renal and metabolic	Reduced glomerular filtration rate	
	Metabolic acidosis	
	Hyperglycaemia secondary to impaired glucose metabolism	
	Effects on pharmacodynamics and pharmacokinetics	
Cerebral	Vasoconstriction during cooling	
	Brain injury from hyperthermia during rewarming	

Perfusion techniques during surgery of thoracic and thoraco-abdominal aorta

Standard rules

- Surface induced hypothermia
- Full cardiopulmonary bypass
- Deep hypothermia with circulatory arrest
- Apico-aortic shunting with heparin coated tubing (Gott shunt)
- Left heart bypass with heparin coated centrifugal pump and tubing
- Partial cardiopulmonary bypass with heparin coated perfusion equipment

Oxford Journals Medicine Multimedia Manual Cardio-Thoracic Surgery Volume 2007, Issue 061910.1510/mmcts.2006.002535

Perfusion techniques during surgery of thoracic and thoraco-abdominal aorta our strategies N=405 pts.

- Moderate mild hypothermia (28-32oC)
- Organ perfusion during whole surgery
- Femoral artery and right atrium cannulation
- Off pump thoracoabdominal surgery-no circulatory support

• Follow-up 1-144 months

Surgery in a ortic dissection n = 301 pts.

88pts in cardiogenic shock 80 pts tamponada and severe metabolic acidosis

CBP time(min) 98 ±23.5 Xclamp time (min) 56.5 ±6.2 Antegrade perfusion (min) 23 ±9 Deepest rectal temperature 30.9 ±2.4

Mortality rate - 4.3% (17 pts)

Surgery in a ortic dissection n = 301 pts.

88pts in cardiogenic shock 80 pts tamponada and severe metabolic acidosis

CBP time(min) 98 ±23.5 Xclamp time (min) 56.5 ±6.2 Antegrade perfusion (min) 23 ±9 Deepest rectal temperature 30.9 ±2.4

Mortality rate - 4.3% (17 pts)

Surgery of a ortic aneurysm n = 104 pts

Preop.

25 thoracoabdominal aneurysms 79 thoracic aneurysms

CBP time (min) 122 ± 23.5 Xclamp time (min) 67.5 ± 6.2 Antegrad perfusion (min) 23 \pm 9 Deepest rectal temperature 29.9 ± 2.4

Post.op

Mortality rate - 6 (5,76%)

Surgery of a ortic aneurysm and a ortic arch n = 14 pts

K.B. 25 y. old
02/2010 - arch mycotic aneurysm
Op. arch replacement with left a.subclavia reimplantation

Cardiosurgery-Skopje

09/2011 – reoperation, rupture on the new created aneurysm and broncho-aortal fistula

9 months surviving period after second operation

Surgery of a ortic aneurysm and a ortic arch n = 14 pts

K.B. 25 y. old
02/2010 - arch mycotic aneurysm
Op. arch replacement with left a.subclavia reimplantation

Cardiosurgery-Skopje

09/2011 – reoperation, rupture on the new created aneurysm and broncho-alveolar fistula 9 months surviving period after second operation

Surgery of a ortic aneurysm and a ortic arch n = 14 pts

1st op. (2001) Sy Leriche - aorto-bilijacal bypass 2nd op. (2004) re-op.extranatomical by-pass right subclavian ar femoro-femoral (due to oclusion of the abdominal aorta – proximal of the previous implanted graft ^{3rd} (2011)op. re-operation –graft right subclavia-femoro-fem. 4th (02/2012)op. aortic arch-descending aneurysm -

Follow up 7 months

Surgery of descending a rta n = 74 pts

A 66-year-old man, dysphagia, breathless period, chest pain, fatigue.

Ultrasound - massive aortic thoracic aneurysm

Medical History – positive for HTA

(2010) Thoracoabdominal aneurysmsurgical technique through median sternotomy partial CBP – T-27,6oC, Ao clamp-45min,CBP 180min

Cardiosurgery-Skopje

18days respiratory machine percutaneus tracheotomy 29th day decannulation 38th day discharged Complication- amputation of the distal phalanga of the left II finger

Off-pump surgery of thoracoabdominal aneurysm-60 old man- urgent case

60 old man-Severe abdominal pain, vomiting, pulsatio in the abdominal region

Pre-op 64 MSCT scan

13 h. respiratory machine 2nd day mobilization
^{3rd} day chest tube out
^{9th} day discharged
No - complications

Post-op 64 MSCT scan

(2008) Replacement of distal thoracal and abdominal aorta Y graft with both illiacal arteries); reimplantation of truncus coeliacus and art.mesenterica

Off-pump surgery of thoracoabdominal aneurysm- urgent case

Preop. 64 MSCT

Postop. 64 MSCT

M.Z. 47y, 2006 – I st op. replacement of acsending aorta (dissection)

2009- Dg- aneurysm of thoraco-abdominal part of the aorta

Postoperatively-Hemodinamicaly stabile Late paraplegia Deep depressive syndrome Exitus lethalis after 6,5 months

3D reconstruction

European Journal of Cardio-thoracic Surgery 35 (2009) 905
Images in cardio-thoracic surgery DeBekay repair for type III thoracoabdominal aortic aneurysm
Zan Mitrev, Vladimir Belostotski, Lidija Veljanovska, Nikola Hristov *
Special Hospital for Surgery "Filip Vtori", Skopje, Macedonia Available

Cardiosurgery-Skopje

Cardiosurgery-Skopje**

Thoracoabdominal aneurysm- urgent case

Pre op.

(03/2012)A.I. 70y old Urgency- blood vomiting CT scan-thoracoabdominal aneurysm with an aorto-esophageal fistula Surgery

Thoracoabdominal aorta replacement with reimplantation of trunc.coeliacus,a.mes.sup

left.a.renalis and distal intercostal arteries
T-33,6oC
Ao.clamp -105min
EKC – 160min

Post op.

Stenting of the aortoesophageal fistula

Thoracoabdominal aneurysmurgent case

Surgery
1.CABGx2 OPCAB
2.Thoracoabdominal
aorta replacement
with replacement
of truncus coeliacus,
a.mes.sup,
both renal arteries

T=34oC hypothermia Ao clamp 166min EKC – 300 min

Cardiosurgery-Skopje

Pre op.

S.O.65y old
Retaint rupture of the thoracoabdominal aneurysm on the suprarenal level
Coronary artery disease

Postop.

Results N=405pts

Complications	Dissections (301pts)	Aneurysm (104pts)
Multiple organ failure	10(3,3%)	11(10,5%)
Cardiac complications	4 (1.3%)	6(5,7%)
Pulmonary complications	13 (4,3%)	6(5,7%)
Stroke	12 (3,9%)	5(4,8%)
Hemorrhage	15 (4,9%)	10(9,6%)
Acute renal insuff. with CVVHD treatment	15(4,9%)	&(6,7%)
Mortality	17(4,3%)	8 (7,6%)

Conclusion:

- Mild-moderate hypothermia is appropriate technique in most of complex surgical aortic procedures.
- Techniques avoiding EKC and hypothermia ensures better clinical outcome in patient with less metabolic disorders.
- Aortic dissections can be operated on mild hypothermia (32 C) with preserved cerebral and systemic organ perfusion.
- Thoracic and thoraco-abdominal aneurysms might be operated in mild hypothermia (30 C) on extracorporeal circulation (cannulating places: femoral vein and right atrium in a condition with or without cardioplegia.

Kao i uvjek - na kraju

I PORED OPERACIJE

PACIJENTU JE IPAK DOBRO

Prof dr.sc. Ino Husedžinović, dr.med.

