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Abstract: Bone grafting has come a very long way since a Dutch surgeon used pieces of a dog’s skull to repair a soldier’s 

cranium in the 17
th

 Century. Current technology aims to deliver a scaffold that combines the unique osteogenic properties 

of ceramic biocomposite materials to make the best mimic of physiologic conditions. To do so, a scaffold must provide: i) 

A three-dimensional platform allowing for osteogenic cellular attachment and growth and vascular formation, ii) Struc-

tural integrity while the damaged tissue heals, and iii) Non-toxic integration, degradation or resorption into the host over 

an appropriate time. The combination of inorganic, ceramic materials with cells, polymers and growth factors has come 

very close to creating a bone graft capable of meeting each of these requirements. Recent patents describe new methods to 

forming an ideal osteogenic matrix for both large and small bone repair. Many new technologies have been introduced 

that are very potent in their ability to heal small bone wounds and induce new bone formation, such as porous calcium 

phosphate pastes and hydroxyapatite cements. However, there is still a lack of quality and proven materials for load bear-

ing purposes. This is a reminder of how much there still is to improve upon and that we are still a long way from creating 

bone products that are identical to the natural product. Despite these shortcomings, ceramic biocomposties represent one 

of the most promising materials in the bone graft field and their development and improvement will surely lead to a more 

natural bone replacement. 

Keywords: Bioactive, bioceramic, biocomposite, ceramic, orthopedic implants, stem cell, tissue engineering.  

INTRODUCTION 

 Both the natural science and engineering communities 
have contributed to the rapidly advancing field of bone re-
pair. Bone grafts require particular mechanical properties as 
well as an enormous degree of biocompatibility. Thanks to 
this collaborative effort, many new products are able to offer 
top degrees of both design aspects. In this short review, we 
will present a brief run-up to the current state of bone graft 
technology and analyze patents which we find especially 
exciting for the future of the field. 

 Bone grafting and bone repair have changed dramatically 
since a Dutch surgeon used pieces of a dog’s skull to repair a 
soldier’s cranium in the 17

th
 Century [1]. Autografts, the 

gold standard of tissue transplantation and bone repair, pro-
vide an almost perfect scaffold for bone grafting, as there is 
little to no chance of rejection by the host and an already 
developed structural and vascular network. However, auto-
grafts usually require a second surgery, meaning additional 
wound, prolongated recovery time, more risk of infection, as 
well as being severely limited in supply [1-4]. Allografts also 
provide an excellent material for bone grafting but have the 
added risks of rejection and disease transmission. To over-
come the difficulties with autografts and allografts, scaffolds 
designed to repair and permit regeneration of bone have been 
produced from an array of materials each having a unique set 
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of mechanical and biologically relevant properties. These 
materials include natural polymers (collagen, chitin, algi-
nate), synthetic polymers (Polyglycolic acid (PGA), Poly 
(lactic-co-glycolic acid) (PLGA), Poly (lactic acid) (PLA)), 
metals (titanium, nitinol), and ceramics such as calcium 
phosphates (hydroxyapatite, tricalcium phosphate), calcium 
sulphates, and biological glass Fig. (1). It should be noted 
that there is great diversity between materials even belonging 
to the same product group. For instance, hydroxyapatite is 
rather inert whereas other ceramics are resorbed over a large 
range of times. 

 Current technology aims to deliver a scaffold that com-
bines the unique osteogenic properties of these materials to 
make the best biomimic of physiologic conditions. To do so, 
a scaffold must provide: i) A three-dimensional platform 
allowing for vascular formation and osteogenic cellular at-
tachment and growth, ii) Structural integrity while the dam-
aged tissue heals, and iii) Non-toxic integration, degradation 
or resorption into the host over an appropriate time [5-7]. 

 The first requirement can be met by using biocompatible 
materials that allow for cell growth (an osteoconductive ma-
terial) [1, 5, 8, 9] or by the attachment of signaling molecules 
to the material, which themselves promote the attachment 
and proliferation of relevant cell populations. Adult stem 
cells including bone marrow mesenchymal stem cells 
(MSCs), MSC from adipose tissue, cord blood stem cells, as 
well as differentiated embryonic stem cells (ESCs), when 
combined with an appropriate 3D scaffold, have been shown 
to be capable of producing bone in vivo Fig. (1) [10-16]. 
MSCs can provide a large amount of potential osteogenic 
cells for use in tissue engineering and offer great excitement 
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for the future of bone grafting. Signaling molecules such as 
bone morphogenic proteins (BMP-2, BMP-7/OP-1, OP-2, 
OP-3), transforming growth factor beta (TGF-beta), vascular 
endothelial growth factor (VEGF), fibroblast growth factor 
(FGF), epidermal growth factor (EGF) among many others 
are known osteogenic proteins that are capable of inducing a 
progenitor cell to form bone and/or cartilage tissue Fig. (1) 
[1, 4, 17, 18]. Furthermore, we and others showed that ex-
tracellular matrix independent from other factors can also 

induce differentiation of bone marrow MSC [19-21]. The 
combination of cells, molecules and materials is essential to 
providing a scaffold with osteoconducting and osteoinduct-
ing properties. 

 Equally important to the proliferation of osteogenic cells 
is the development of a functioning vascular supply to the 
growing bone graft, particularly very large ones that become 
necrotic in their centers when wholly dependent on diffusive 
transport of oxygen [22]. Strategies to produce a vascular 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Steps for creating a cell-seeded biocomposite bone implant. Scheme showing the process of preparing a biocomposite bone ma-

terial for implantation using a cell-seeding technique as well as growth factors to promote osteogenic lineage. First, osteogenic cells are ex-

panded in culture to produce sufficient cell number. The cells may be derived from adult stem cells such as bone marrow mesenchymal stem 

cells (MSCs), MSC from adipose, cord blood stem cells, as well as differentiated embryonic stem cells. Each of these cell types has been 

shown to produce bone in vivo. Next, the addition of growth factors may or may not be necessary to drive cellular differentiation, depending 

on the material. For example, bioactive glass is capable of producing ossified tissue without the assistance of exogenous growth factors. The 

cells are then seeded onto the biocomposite bone graft and allowed to expand on and into the material. The material (demineralized cadeveric 

bone, bioactive glass, zirconium, calcium phosphate, etc.) is to be made porous to allow new bone formation in all three-dimensions. The 

implant is then placed at the site of injury and, over time, completely integrates into the host tissue.  
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network include using a mix of MSCs and umbilical cord-
derived endothelial cells to seed a scaffold [23], targeting 
proximal vasculature to integrate and expand into the graft 
using cytokines [24], or simply implanting a vascular bundle 
to the injury and graft site [25]. The construction of a com-
plete vascular system is the single most important factor in 
determining the success of an orthopedic implant. 

 A major concern of bone grafts is the ability to bear sig-
nificant load while the damaged tissue heals [5]. Further-
more, a proper implant should not overtake the loads of 
proximal tissue as this may cause the healthy bone to 
weaken, called stress shielding [26]. Additional to these very 
specific mechanical properties, a scaffold must be porous 
enough to allow osteoblasts or other progenitor cells to popu-
late the entire scaffold and osseointegrate with surrounding 
tissue [5, 27]. The need for vascular networks also requires 
much larger pores in the bone graft material than would oth-
erwise be needed, adding yet another challenge to scaffold 
design [28].  

 The third requirement is possibly the most difficult to 
provide, since bone in-growth occurs differently at all injury 
sites and must be finely tuned so as not to cause more harm 
[2, 3]. A proper scaffold should be completely and totally 
replaced by regenerated tissue, that is, the patient should not 
depend on the mechanics of the scaffold long after implanta-
tion. Rates of degradation of materials vary greatly, as well 
as the location at which they begin to erode (surface, bulk, 
both). Materials that are biodegradable, bioresorbable, bio-
erodible and bioabsorbable must also retain the properties to 
meet the first two requirements [2, 5, 18, 27, 29]. Therefore, 
the search for the perfect bone tissue scaffold will require a 
great deal of arrangement to generate a whole greater than 
the sum of the parts. 

 These materials, which combine structural and biologic 
properties from different materials, are known as biocompo-
sites. Containing cells, signaling molecules, or a combination 
of the two within a structural matrix, biocomposites are bio-
logically active materials with great promise for tissue engi-
neering. Here, we give a brief review of the most current 
technology pertaining to the use of ceramic biocomposites in 
bone grafts. 

RECENTLY ISSUED PATENTS ON CERAMIC BONE 

GRAFT MATERIALS 

Natural Ceramics, Endochondral Ossification and Bioac-

tive Glass 

 The most obvious means of recreating bone is to simply 
replace the tissue with already formed bone. A recent patent 
published May 2010 by inventor Shi titled Allografts Com-

bined with Tissue Derived Stem Cells for Bone Healing, de-
scribes a method of using donor bone for use as a scaffold 
for bone formation from adipose-derived mesenchymal stem 
cells (Table 1) [30]. The bone substrate, which is to be re-
trieved from a cadaveric donor, may be seeded with adipose 
tissue either from the same cadaveric donor or the implant 
recipient. The patent also describes a demineralization proc-
ess to remove blood, lipids and other cellular products that  
 

 

may initiate an immune response, leaving just a matrix for 
the MSCs to adhere to. The bone may then be formed into 
any number of necessary shapes, such as strips and dowels. 
Once the bone is properly prepared, the author recommends 
in vitro culturing of the cells until they have adhered to the 
bone substrate before implantation. This process takes ad-
vantage of a scaffold produced in nature, requiring no out-
side engineering, as well as the advantages of using patient 
MSCs for osteogenesis. The porosity of the bone substrate is 
not well manipulated however, and may not be well suited 
for small repair operations. This method is probably best 
served when relatively large implants are required or when a 
matrix is called for with in vitro study. 

 Another method that uses an equally natural approach is 
presented by Jukes et al., published in PNAS May 2008 [13]. 
Following the model of endochondral ossification, the 
authors use ESCs to first produce a cartilage layer atop a 
ceramic scaffold before implanting the product. Since ESCs 
having up-regulated osteogenic genes do not form bone 
when implanted, as opposed to osteogenic MSCs, it is neces-
sary to follow the course nature uses by differentiating the 
ESCs into chondrocytes. The ESCs are therefore differenti-
ated in vitro towards the chondrogenic lineage and seeded 
onto the ceramic material. Upon implantation, these cartilage 
tissue-engineered constructs do indeed form bone, in stark 
contrast to constructs seeded with ESCs differentiated to-
wards an osteogenic lineage. While this method produces 
bone having a much more natural derivation, the issues sur-
rounding ESCs implantation, such as tissue rejection, persist, 
once again pointing towards the benefit of MSCs use. 

 Synthetically produced materials amass the vast majority 
of biocomposite materials. One such ceramic that offers a 
great deal of excitement is bioactive glass. Discovered in 
1969 and first used in clinical settings in 1985, bioactive 
glasses have a very unique property that promotes os-
teoblasts maturation into ostocytes [31]. The mechanism 
believed to be responsible for this is the constant leeching of 
ions from the dissolution products of the glass that results in 
the up-regulation of certain genes that are implicated in os-
teogenesis (insulin like growth factor II (IGF-II), CD44, c-
Myc, activator protein 1 (AP-1)) [4, 31]. In a patent pub-
lished in January, 2002 by Hench et al. titled Use of Bioac-

tive Glass Compositions to Stimulate Osteoblast Production 
the authors illustrate a more patch like method of applying 
the bioactive ceramic (Table 1). The patent describes the use 
of bioactive glass powder in an aqueous solution combined 
with osteoblasts for the formation of bone tissue. As pub-
lished, the bioactive glass is to contain a majority silicon 
dioxide by weight, as well as sodium oxide, calcium oxide 
and phosphorous oxide and is to be produced as a particulate 
rather than a “fused matrix of particles or a mesh or fabric of 
glass fibers.” This allows for extreme customization in the 
hands of the surgeon or researcher. However, the product is 
only to be used as an initiator to bone formation, not as a 
structural implant due to the lack of strong mechanical prop-
erties. Therefore, the use of bioactive glass in this manner is 
best used for small repairs, tissue culture, or combined with 
some other scaffold material having much better mechanical 
strength. 
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Ceramic-Polymer Composite Materials 

 A good example of a scaffold that is coated with a bioac-
tive material is presented in a patent published March 2009 
by Johnson and Tavakley (Table 2) [18]. Titled Composite 

Scaffold Structure, the authors describe a scaffold design 
having a polymeric core that is discretely coated with cal-
cium phosphate, resulting in a porous scaffold with a high 
amount of surface area. The use of a polymeric core ensures 
the flexibility of the scaffold and allows for a compressive 
strength similar to cartilage, for which the invention was 
designed. The authors outline a variety of materials that may 
be used as the core structure including Poly(lactic acid) 
(PLA), Polyglycolic acid (PGA), Poly(lactic-co-glycolic 
acid) (PLGA), polycaprolactone, and polyanhydrides as well 
as natural materials like collagen, albumin, fibrin and algi-
nate, all of which are bioremovable, that is, they will be 
completely removed through degredation from the final scaf-
fold. The surface coating of calcium phosphate, which facili-
tates the attachment and growth of cells on the scaffold, is 
said to be discrete so as to allow the polymeric core to main-
tain its lower elastic modulus. An entire surface coat would 
render the structure much more brittle, such that it could 
crack or break under normal body stresses.  

 This idea of using mechanical properties of one material 
along with the bioactive properties of another is very similar 
to the actual structure of bone. Bone itself contains a precise 
mixture of collagen fibers weaving through a harder hy-
droxyapatite (HA) phase. This combination allows bone to 
posses both bioactive and mechanical properties. Biomimics 
containing this very make up have been shown to support the 
growth and proliferation of MSCs both in vitro and in vivo 
[6]. In his 2007, manuscript published in Biomaterials, Dr. 
Huanan Wang described a method of designing a porous 
hydroxyapatite-polyamide structure having very similar me-
chanical strengths as bone, including load-bearing bone. His 
groups’ scaffolds were able to produce bone with or without 
seeding of MSCs when implanted into mice. 

 Two patents published in 2007 and 2008 by inventors 
Erbe and Clineff, respectively, present another embodiment 
of a composite containing a polymeric phase (Table 2) [32, 
33]. Both patents describe a resorbable graft having im-
proved flexibility and compressive strength. The bone graft 
material is comprised of an oxidation-reduction reaction 

product of “one metal cation, one oxidizing agent, and one 
oxidizable precursor anion,” such as calcium phosphate, 
combined with a biocompatible, resorbable polymer, such as 
collagen or another structural protein. Another embodiment 
of the material contains a bioactive glass, as well, to promote 
osteoblast growth. The 70/30 volumetric ratio of reaction 
product to polymer creates a unique material having macro, 
meso and micropores due to the reaction product as well as 
beneficial handling and flexibility from the polymer. The 
porosity leads to outstanding imbibition and protein adsorp-
tion, while the flexibility of the material allows a great deal 
of customization in the hands of the surgeon. 

 A patent published in 2004 from inventor Wang intro-
duces another variation on the combination of polymer and 
ceramic calcium phosphate (Table 2) [34]. Here, the polymer 
is used simply to create pores in the ceramic medium. One 
embodiment of the invention calls for a composite mixture of 
calcium phosphate cement, an aqueous medium and a biode-
gradable polymer as a porogen. The porogen can be finely 
tuned to degrade at the exact rate of osteoblast reseeding of 
the calcium phosphate matrix and the inventor even de-
scribes a porogen filled with osteoinductive growth factors. 
This material is once again best suited for small repair jobs 
or coupled with another bone graft system to increase the 
osteoconductiveness of the implant. 

 More recently, a patent published in February 2011 from 
inventor Yayon describes yet another bone graft material 
comprised of an inorganic mineral phase as well as a bioac-
tive polymer (Table 2) [35]. The invention goes one step 
further in the formation of bone to include an anti-resorptive 
agent, such as bisphosphonates. These agents inhibit the re-
cruitment or activity of osteoclasts, the bone resorbing cells 
responsible for the subtractive side of bone remodeling. 
Rather than simply promoting osteoblast activity, the inven-
tors have taken an approach that aims to protect the newly 
formed, delicate bone from the natural process all bone expe-
riences in vivo. The composite material is formed by co-
precipitation of calcium, phosphate, and carbonate ions, one 
amino acid molecule either as a monomer or polymer, a bio-
active agent such as heparin, hyaluronic acid, starch, colla-
gen, chitin or the like, and the anti-resorptive agent. The final 
product is deemed a synthetic apatite having poor crystallin-
ity that highly mimics the structure of natural bone. The in-
ventors specifically avoid hydroxyapatite due to its high de-

Table 1. Natural Ceramic and Bioactive Glass Patents. 

Patent # (Year) Inventor(s) Description 

US20100124776 (2010) 

Shi Y A method for seeding a bone substrate with mesenchymal stem cells (MSCs). The inventor 

describes the digestion of a whole tissue, seeding the cell mixture on a bone substrate, cultur-

ing on the bone substrate and rinsing to remove unwanted cells.  

US20040009598 (2004) 

Hench LL 

Polak JM 

Buttery LDK 

Xynos ID 

Maroothynaden J 

 

Bioactive glass powder combined with osteoblasts in an aqueous solution used as a cement. 
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gree of crystallinity, claiming less organized structures im-
prove solubility in vivo and thus allow the material to be 
used as a powder or paste. 

Osteoinductive Calcium-Phosphate Grafts without Poly-

mers 

 Scaffolds produced purely from calcium phosphate ce-
ramics, without a polymeric phase, are themselves capable of 
supporting MSCs and initiating bone formation [36]. The 
clear advantage of producing a biocomposite containing both 
polymeric and ceramic materials is an elastic modulus much 
lower than the pure ceramic. However, if a ceramic material 
can be made to be as dynamic as a polymer, one could re-
move the polymeric material all together, as it is not the bio-
active phase. A recent patent published in June 2010, de-
scribes such an invention [2]. Authors Day and Erbe reveal a 
dynamic, nonrigid, nanofiber scaffold produced from bioac-
tive materials to be combined with progenitor cells (Table 3). 
These materials may include but are not limited to calcium 
phosphate, hydroxyapatite, and bioactive glass. Used alone 
or in combination with others, the material is spun or blown 
into an interwoven network of 1 to 6 micron diameter fibers, 
depending on desired porosity. Since the scaffold is not 
fused to itself the individual fibers are free to deform and 
shift due to environmental changes. The scaffold is designed 
to be highly dynamic before and during osseointegration. 
This is a very important trait as the injury site will change 
drastically as it heals, possibly over the course of many 
months. The invention may also be coupled with previous 
devices, such as the selectively-expandable bone scaffold 

described in a November 2006 patent published by Edidin, 
which uses an actuator to maximize the dynamic nature of 
the scaffold Table 3 [37]. The flexibility of the authors’ in-
vention, as well as its bioactivity, represents an exciting leap 
with ceramic scaffolds. 

 Another patent which focuses solely on calcium phos-
phate was published May 2011 by inventor Yuan (Table 3) 
[38]. The patent introduces a very porous calcium phosphate 
material made using grains of the raw material ranging from 
0.1 to 1.5 microns in diameter. When sintered with a poro-
gen, the final material contains mainly micropores ranging 
from 0.1 to 1.5 microns in diameter and having a surface 
area percent micropores of 40%. The invention stems from 
the idea that small grain sizes, higher surface area percent-
ages of micropores and higher protein adsorption all increase 
the osteoconductiveness of the material. Here the author 
aims to simply produce a material that can act much quicker 
than less porous calcium phosphate graft materials. Due to 
the sand-like nature of the material, the inventor envisions 
the product being injected into wound sites and rapidly en-
hancing new bone formation. 

Load Bearing Zirconia Grafts 

 Although dynamic, shape-changing ceramic scaffolds 
give highly customizable results, they may not always be 
best suited for major bone grafts, requiring intense load-
bearing properties. One material that is able to withstand 
these stresses is zirconia (zirconium dioxide). Zirconia has 
been extensively studied for orthopedic applications due to 
its high elastic modulus [39]. However, the material itself 

Table 2. Ceramic-Polymer Composite Material Patents. 

Patent # (Year) Inventor(s) Description 

US20090062821 (2009) Johnson JR 

Tavakley A 

Polymer scaffold having a discrete, non-continuous coating of calcium phosphate on the surface. 

US7189263 

(2007) 

Erbe EM 

Clineff TD 

Bagga CS 

Nagvajara G M 

Koblish A 

 

Bioactive ceramic phase such as calcium phosphate, mixed with a biocompatible, resorbable 

polymer, such as collagen. The porous material is greatly flexible and displays high adsorptive 

properties. 

US20080187571 

(2008) 

Clineff TD 

Koblish A 

Bagga CS 

Erbe EM 

Nagvajara G M 

Darmoc MM 

 

Same as above, except with the addition of bioactive glass. 

US20040137032 

(2004) 

Wang FW Calcium phosphate mixed with a biodegradable polymer acting as a porogen. Best suited as a 

cement material. 

US7887831 

(2011) 

Yayon A Composite of synthetic apatite, a bioactive polymer and an anti-resorptive agent, limiting osteo-

clast activity. 
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has a very inert surface, as most ceramics do, which limits 
interaction with surrounding tissue. More specifically, the 
surface does not form biochemical bonds, thus leading to in 

situ slippage [26, 40]. Therefore, to fully take advantage of 
the mechanical strength of zirconia it must first be coated 
with a biologically active material. One interesting approach 
was published in January 2010 in the journal Biomaterials 
by Zhou et al. [41]. The authors present a method of coating 
zirconia with a sheet of cultured MSCs. The process requires 
a monolayer of cells to be rolled up such that it completely 
encapsulates a zirconia implant. The wrapped implants were 
shown to contribute heavily to in vivo bone formation and 
osseointegration when implanted subcutaneously in mice 
following histological analysis. This approach represents a 
novel technique in priming ceramic surfaces for implanta-
tion, but is still far from perfect.  

 In a patent published in May 2007 by inventor Sugaya, 
the author describes a porous, ceria stabilized zirconia for 
use as an osteoinductive scaffold (Table 4) [17]. The use of 
cerium oxide to stabilize zirconia produces an oxygen rich 
layer at the surface of the zirconia about 100 to 300 nm 
thick. This produces a highly biocompatible product, suitable 
for MSC or osteoblast seeding, along with high strength and 
fracture toughness. Another advantage of the dynamic and 
customizable material is that it may be shaped into any num-
ber of appropriate forms. The relatively easy preparation of 
the ceria-stabilized zirconia (plasma spray) allows the mate-
rial to be attractive for both research and tissue repair appli-
cations. The clear drawback of zirconia is that it lacks any 
bioremovable characteristics, resulting in a permanent scaf-
fold structure. However, due to the porosity of the implant, 
osseointegration may completely annul any complications 
due to implant-slippage overtime. 

 Another recent invention that takes advantage of the me-
chanical strength of zirconia as well as the bioactive proper-
ties of calcium phosphate is presented in a patent published 
in May 2010 by Zhang et al. (Table 4) [26]. The inventors 
describe a material having a strong zirconia core and a bioac-
tive, but mechanically weaker, glass surface connected 
through a graded glass-zirconia layer. The material is fabri-
cated in such a way by using a glass-ceramic infiltration 
technique. This method produces a material having an  
 

increasing elastic modulus from the surface to the interior, 
which may then be spun or molded into any number of po-
rous scaffold structures. An advantage of this type of graded 
material is that it provides the scaffold with excellent resis-
tance to contact damage. In fact, when the authors subject a 
sample of their graded material to loading tests they find that 
it is able to resist over three times the load it takes to crack a 
sample of monolithic zirconia. The production of a material 
that has a low modulus, bioactive surface while still having 
high flexural strength is quite advantageous and has numer-
ous applications in the field.  

CURRENT & FUTURE DEVELOPMENTS 

 Biocomposites represent the future of material science in 
the medical setting, especially in orthopedic implantation. 
Porous ceramic scaffolds have already been noted as the 
most suitable material for reproducing the structural integrity 
of ossified tissues. When combined with the bioactive attrib-
utes of calcium phosphate, hydroxyapatite, bioactive glass, 
or other similar ceramics, the composite material is able to 
support progenitor cells and mimic the natural characteristics 
of bone. Whether it is applying new technologies to old 
problems, as Shi was able to accomplish with donor bone, or 
conquering the boundary between polymers and ceramics, 
like Day and Erbe demonstrated with their hydroxyapatite 
“cotton ball”, biocomposites of this nature encompass a 
broad spectrum of regenerative scaffolds and bone grafting 
needs. However, though current technology is able to pro-
duce accurate biomimics of natural bone, there is still much 
to be gained; none of these presented materials is quite able 
to meet the standard of an autograft implant and all would 
require a certain degree of invasiveness to deploy. Further-
more, there is still a large gap to be covered with vascular-
ized implants. That said, overcoming boundaries such as 
immune responses, osseointegration and material resorption 
are all feats to be proud of and to build off of for future gen-
erations of bone grafts.  
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Table 3. Osteoinductive Calcium-Phosphate Grafts Without Polymer Patents. 

Patent # (Year) Inventor(s) Description 

US20100136086 (2010) Day TE 

Erbe EM 

Dynamic, non-rigid nanofiber scaffold made from bioactive ceramic, such as calcium 

phospate, bioactive glass, or hydroxyapatite. 

US20060264945 (2006) Edidin AA 

Ferdinand AE 

Ico CA 

Markworth AD 

Dynamic ceramic scaffold surrounding a mechanical actuator. The actuator allows the 

scaffold to expand into the wound and shrink as it heals. 

US7942934 (2011) Yuan H 

Bruijn JDD 

Porous calcium phosphate scaffold made from granules of calcium phosphate. The 

material’s flow properties resemble those of sand. 
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