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Abstract: Falls are an everyday potential health hazards that all of us are 
exposed to. A fall can cause injuries or hurt people especially the elderly. 
Critical injuries provoked by falls are among the major causes of 
hospitalization in elderly persons, diminishing their quality of life and often 
resulting in a rapid decline in functionality or death. Rapid response can 
improve the patients outcome, but this is often lacking when the injured 
person lives alone and the nature of the injury complicates calling for help. 
This paper presents pervasive alert system for fall detection using common 
commercially available Android-based smart phone with an integrated tri-
axial accelerometer. The focus of this research was developing the most 
successful algorithm for detecting falls and distinguishing them from non-
falls. Hybrid algorithm concentrating on acceleration magnitude and angle 
change was developed for fall detection. We implement a prototype system 
on the Android phone and conduct experiments to evaluate its 
performances on real-world falls. Experimental results show that the system 
achieves strong detection performance and power efficiency.  
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1 Introduction 
 
Fall is a major care and cost burden to the health and social services 
worldwide [1, 2]. Falls and fall-induces injury are more often among the 
elderly people due to their stability problems and fragile bones. Although 
most falls produce no serious consequence, 5–10% of community-dwelling 
older adults who fall each year do sustain serious injuries such as fractures, 
head injuries or serious laceration, that reduce mobility and increase the risk 
of premature death [3], [4]. Besides the physical injuries the falls can also 
elicit dramatic psychological consequences such as decreased 
independence [5] and increased fear of falling [6], [7]. This can lead to an 
avoidance of activity that can bring about a pattern of deterioration, social 
isolation and decreased quality of life [8], [9]. 
Treatment of the injuries and complications associated with falls costs the 
U.S. over 20 billion dollars annually [10]. This situation deteriorates as the 
elderly population surges. According to the scientific reports from the World 
Health Organization (WHO) during the next 3 to 4 decades, there will be a 
very significant increase (about 175%) in the number of elderly persons, 
particularly the older aged. Moreover, there will be large increases in the 
numbers of some very vulnerable groups, such as the oldest old living 
alone, especially women; elderly racial minorities living alone and with no 
living children; and unmarried elderly persons with no living children or 
siblings. With the population aging, both the number of falls and the costs to 
treat fall injuries are likely to increase. 
Falls may be very risky or even fatal especially for old people living alone. 
Indeed, major concerns for these adults include the risks associated with 
falling and whether there will be someone there to help them in case of an 
emergency. There is therefore a demand and need for an automatic 
pervasive fall detection system in which a patient can summon help even if 
they are unconscious or unable to get up after the fall.  
In order to find falls effectively and timely,  many fall detection methods have 
been developed and shown their well performance [11], [12], [13], [14]. The 
current fall detection methods can be basically classified in three types: 
acoustic based, video based and wearable sensor based system. The 
acoustic based system means detecting a fall via the analyzing on the audio 
signals. This is achieved by having a device, usually implanted in the floor, 
monitor sound and other vibrations. In generally, this method is not very 
precise, and is used as an assistant way to the other methods [15], [16]. The 
video based system means capturing the images of human movement via 
one or several cameras, mounted in fixed locations, and then determining 
whether there is a fall occurred based on the variations of some image 
features [17], [18], [19], [20]. The wearable sensor based system means 
embedding some micro sensors into clothes, to monitor the human activities 
in realtime, and find the occurrence of a fall based on the changes of some 
movement parameters [21], [22], [23]. As long as a person wear such a 
clothes, he will be monitored anywhere. 



The major problem with existing systems is that they require some 
application specific hardware or software design, which increases the cost 
and sometimes require a training period for the users. The main objective of 
this work is to design pervasive alert system for fall detection using common 
commercially available Android-based smart phone with an integrated tri-
axial accelerometer. Our system eliminates the middle man call centre 
service and therefore the extra monthly fee. It offers a manual cancellation 
button in the event of a false alarm or minor fall that the user was able to 
recover from. Another advantage of our system is that it allows mobility 
beyond the range of the house. Our device also offers a wide range of 
selectable alert methods should the user be hearing-impaired, seeing-
impaired or otherwise. 
 
 
2 System design and architecture 
 
To be able to detect falls, the device first has to be able to sense motion and 
the different measurable qualities involved with motion. Sensing in the 
device begins with a digital tri-axis accelerometer, which measures 
acceleration along the three coordinate axes. Using the data acquired, the 
algorithm should be able to distinguishing falls from non-falls. 
Upon identifying a fall, the device initiates a continuous audible, tactile, and 
visual warning. The user is then given a window of time (20 seconds) in 
which to cancel the alert in the instance that the fall is not serious and the 
user is able to regain their composure on their own. If left un-cancelled, the 
fall is considered serious and an alert is sent out. 
Accelerometer provides the acceleration readings in directions of x-, y-, and 
z-axis. Accelerations in these directions are represented by Ax, Ay and Az, 
respectively. For generality, we assume the directions of x-, y-, and z-axis 
decided by the posture of the phone. The x-axis has positive direction 
toward the right side of the device, the y-axis has positive direction toward 
the top of the device and the z-axis has positive direction toward the front of 
the device. Vector AT represents the total acceleration of the phone body. Its 
amplitude can be obtained by Eq. 1. 
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A mobile phone’s orientation can be determined by yaw, pitch, roll values 
that are denoted as θx, θy and θz, respectively. We can further obtain the 
amplitude of Av, the acceleration at the absolute vertical direction, from Eq. 
2. 
|Av| = |Ax*sinθz + Ay*sinθy – Az*cosθy*cosθz| (2) 
 
We consider that a fall starts with a short free fall period, which is 
characterized by the acceleration magnitude (Eq. 1) decreasing significantly 
below the 1G threshold. The impact of the body on the ground causes a 
large spike in acceleration. The tests have shown that the minimum value 



for the upper threshold is around 2.6G. After the impact there is a period 
when the person may struggle to regain composure. After that, if the person 
is seriously injured in the fall he usually remains on the ground for a period 
of time. In this period of time the acceleration magnitude returns to a normal 
level. Also there is a notable change in the smartphone’s orientation before 
and after the fall. 
The algorithm monitors the acceleration magnitude of the mobile device to 
check if the acceleration magnitude breaks the predefined upper threshold, 
which is an indicator of a possible fall. If the upper threshold is broken, then 
the algorithm waits up to 20 seconds for the acceleration magnitude to 
return to a relatively normal level. If the magnitude doesn’t return to normal 
after 20 seconds it is assumed that the large spike in acceleration was 
caused by some other daily activity, like jogging or biking. On the other side, 
if the magnitude returns to normal level in less than 20 seconds then it is 
assumed that the person has potentially stopped struggling and is 
immobilized after the fall. Then the algorithm checks to see if the person’s 
orientation has changed. If that is true, then a fall is detected. 
To determine the change in the person’s position we are using the vectors 
of gravity. The algorithm uses two readings of the force of gravity: the vector 
of gravity recorded 1.5 seconds before the detection of a large spike in 
acceleration and the vector of gravity recorded after the fall, when the 
acceleration returns to normal level. The angle between these two vectors is 
calculated and if it’s in the range between 0.98 and 1.87 radians then a fall 
is detected. 
To determine the detection of falls, it has to circumvent the so-called false 
positives, which can range from a jump, going down/up stairs or even sitting 
in a chair. In order to circumvent these obstacles, the system was tested 
and evaluated under several situations. After detailed analysis of the 
collected data, the threshold value was defined. 
This algorithm only uses the angle of change in the gravity regarding the 
phone’s position, and not the actual position of the phone in the moment 
when the person lies on the ground after the fall. Because of this, there is no 
restriction for the phone to be in a certain orientation. The algorithm works 
well regardless of the smartphone’s position, i.e. it doesn’t matter whether 
the smartphone can is placed horizontally, vertically or in some other 
position in the pocket; with the screen towards the body or against, or even 
if it is placed upside down. 
 

 
3 Experimental evaluation and results 
To evaluate the proposed methodology we have developed an application 
called Fall Monitor (Figure 1 and 2).  
 



 
Figure 1 Main application interface 

 
Figure 2 Screen of the application for alerting contacts, application settings and alerting 

message setting 

For the evaluation purposes 20 persons aged between 24 and 37 were 
equipped with the mobile phone fixed with elastic band on their waist. They 
were asked to perform 20 times the following several activities: lying down, 
getting up (from the bed), sitting on chair, getting up from the chair, walking, 
running, climbing stairs, going down stairs. Each of the test subjects was 
asked to simulate 40 times various situations of falling (from stand position, 
pushed down, slipping, falling forward, falling backward, falling aside, from 
the chair etc.). 

The overall results for each activity for all test subjects are presented in 
the Table 1. 



 
Table 1 Results from the experimental fall detection using a confusion matrix with various 

activities 

Activity Fall detected Number of 
trials 

Percentage of correct 
action recognition Yes No 

Falling 796 4 800 99,50% 

Lying down on the bed 21 379 400 94,75% 

Getting up from the 
bed 

7 393 400 98,25% 

Sitting on chair 9 391 400 97,75% 

Getting up from the 
chair 

2 398 400 99,50% 

Walking 12 388 400 97,00% 

Running 47 353 400 88,25% 

Climbing stairs 22 378 400 94,50% 

Going down stairs 23 377 400 94,25% 

 
To make the application operable during a longer period of time, four 

steps are taken to reduce power consumption: (1) the monitoring daemon 
runs in the background while other components of the program halt; (2) the 
sampling frequency can be adjusted; (3) the pattern matching process is 
launched only after daemon-collected data exceeds the preset threshold; 
and (4) hardware such as the screen is activated only when necessary. 

 
4 Conclusion 
The main contributions of this paper are the following: 

− We propose utilizing mobile phones as the platform for pervasive 
fall detection system development using mobile phones to integrate 
comprehensive fall detection and emergency communication. 

− We design an algorithm for fall detection systems using mobile 
phones. It is an acceleration-based detection approach whose only 
requirement is that a mobile phone has an accelerometer. 

− We design and implement a pervasive fall detection system, on the 
mobile phone-based platform to conduct fall detection. It has few false 
positives and false negatives; it is available in both indoor and outdoor 
environment; it is user-friendly, and it requires no extra hardware and 
service cost. It is also lightweight and power-efficient. 

− We conduct experiments to evaluate detection accuracy. The 
experimental results show that our detection system achieves good 
performance in terms of low false negative and low false positive in fall 
detections. 

This system is applicable not only to elderly but also to healthy 
individuals performing various activities walking, running, climbing, cycling, 
rolling, etc. experiencing falls due to various causes such as: unexpected 
health problems, inattention, dangerous environment, car accidents, attacks, 
etc. 
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