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INTEGRO-DIFFERENTIAL METHOD FOR PERMANENT MAGNET
MODELING IN 3-D SPACE USING EDGE FINITE ELEMENTS
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Abstract. In this paper, an integro-differential method for the modeling of
permanent magnets in 3-D space using edge finite elements is presented. The
value of the coercive magnetic force H. is integrated over the entire permanent
magnet surface area. This procedure results in direct computation of the equiv-
alent source current Tom, which is afterwards assigned to surface edges of the
permanent magnet. The proposed method exhibits accurate results with less
computation effort and an improved convergence rate of the iterative solver.
Also, presented in this Paper is a comparison of the results for a simple test
model obtained by the integro-differential method and those obtained by the
Biot-Savart Law and the current-sheet method. A comparison between nu-
merical results and measured results for more complicated application model
is also given.

1. Introduction

The use of permanent magnets (PMs) in electrical devices has greatly increased in recent
years. Furthermore, new materials like ceramic magnets have appeared on the scene and are
commonly available at a relatively low price. It is becoming increasingly important, therefore
to accurately compute the magnetic field phenomena of PMs.

Due to the existence of a non-explicit field source, the computation of magnetic field phe-
nomena of PM depends on the modeling method used. The easiest and most widely employed
method for modeling PM devices is the current-sheet method, which however, has a major

disadvantage: it is applicable for only' simple geometrical PM shap'es. Ir_nprovements of this

nately, only after many approximations and much effort [1], [2].
Mainly because of its computational advantages, the FEM based on edge finite elements
has recently become widely employed. On the other hand, the problem of satisfaction of the

conductors, resulting in a large number of iterations and long computation time,

In this paper, the authors present an integro-differential method for 3-D modeling of PM
using edge finite elements. This method, which was previously proposed for nodal FEA (3],
is extended and applied on edge finite elements. Due to the different nature of nodal and

improvement of the convergence rate of the iterative solver with highly accurate results.

2. Integro-differential Method and Its Numerical Implementation

The rationale for the integro-differential method for modeling of PMs using nodal finite el-
ements has been already introduced [3]. Therefore, here we will only address a number of
peculiarities which arise from the edge finite element implementation of this method.

2.1. Mathematical Background

In nodal FEA the generated finite element mesh is node oriented. In edge FEA, on the other
hand, the developed mesh must be edge oriented. This means that the basic computation
“cell” is an edge of the mesh not a node. In addition, the unknown variables, boundary con-
ditions and source vectors have to be assigned directly to edges of the mesh, not to the nodes.
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This conclusion is also valid for the source current values, which in edge FEA can be assigned
directly to mesh edges as source current intensity values, or indirectly by means of the current
vector potential [4]. Using the current-sheet method, only simple PM shapes can be modeled.
Another problem is satisfaction of the solenoidal character of the source current which can
be strongly emphasized in cage of ultra-thin conductors and complicated PM shapes. Use
of ultra-thin conductors in the current-sheet method is imperative, however, if an accurate
analysis is called for. Decreasing the thickness of the current-sheet towards zero results in
increasing the accuracy of the results. Theoretically, for conductor thickness equal to zero, an
approximation will be the best. This is impossible for the current.sheet method, however, as
area carrying current degenerates toward zero. As we can see further, this is possible using

H=yB)B-H,, (1)

where v is the reluctivity coefficient, and H, is the coercivity. Substituting ( 1) in the Ampere’s
Law we obtain the following equation

VXy(B)B = J, +VxH,. (2)

In case of a linear magnetic circuit, the reluctivity coefficient » has to be computed only once
by the following equation -
= ¢

v Br ’ ) (3)

where B, is the residual magnetization. For nonlinear magnetic circuits, however, the demag-
netization curve must be shifted to the right equal to the amount of the coercivity H,, and
the reluctivity coefficient must be recomputed at each nonlinear step as

yB)= 2 iy (4)

In (2), the second term on the left side, V x H,, is the equivalent current density value of the
permanent magnet J,,,, whose numerical implementation we will briefly describe in the next

paragraph.

2.2. Numerical Implementation

Using magnetic vector potential formulation and applying the Galerkin Method with vectorial
shape functions N; as a trial functions, the governing equation for magnetostatic problems
without source current has the following configuration

/V N[V x (vV x A)] dV = /V N; (VxH,)dv, (5)

where V is the total volume of the analyzed region. Applying the Stokes’ Theorem on the left
hand side of (5) we obtain

/VchdV=/Hc-dS, 6)
v S

where dS is the vectorial surface area of each finite element. This procedure must be performed
for each finite element “inside” the PM area. Since the outward normals of two adjoining
surfaces always have opposite directions, the integral for each surface that lies “inside” PM is
ca,;lceled. Therefore, the integration is reduced only on the surface area of the PM. Rewriting
(6) as

[ch-dS=chS, )

where S is the vector with intensity S equal to the triangular surface area of each finite
element lying on the PM surface and with the same direction as the outward normal on that
surface, another important conclusion emerges. That is, all surfaces which have the outward
normal collinear with the direction of the coercivity vector H. must be excluded from the
analysis, reducing the computational region. Finally, using (7) we can compute the intensity
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Fig. 1. Analyzed models
a) simple test model with definition of the equivalent source current Jom, normal vector n and
triangular surface area S b) application model
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Fig. 2. Comparison of results Fig. 3. Convergence rate

and direction of the equivalent source current vector I, defined by the vector product (7) (see
Fig. 1a) using the following equation:

=(chn)s' (8)

Afterwards, vector I, must be assigned to surface edge e with length l.. The triangular surface

area S and its normal vector n can easily be computed using two of its three edges as shown
in Fig. la.

I.

3. Simple Test Model

A simple test model was constructed (see Fig. la) of a rectangular PM with dimensions
20 [mm] x 20 [mm] x 40 [mm)], relative permeability v, = 1.07 and coercivity H, = {0,0, H,,}
= {0,0,870000} [A/m]. The model was analyzed using the proposed integro-differential
method, the current-sheet method and the Biot-Savart-Law. In case of the current-sheet
method, four different current sheets were developed with thicknesses: 0.2 [mm], 0.3 [mm],
0.5 [mm] and 1.0 [mm)]. The obtained results for the z-component of magnetic flux density
vector B along central axis of the model - vertical line z = 0 [mm] ~ 50 [mm] are presented
in Fig. 2. From Fig. 2 it is clear that the accuracy of the proposed method is greater than
that of the current-sheet method. In addition, the proposed method exhibits improvements
in the convergence rate. This can be understood from the results given in Table 1 and Fig. 3.
From Fig. 3 it is apparent that the proposed method requires fewer numbers of iterations for
the same residual. In case of the current sheet method, the number of iterations is inversely
proportional to the current-sheet thickness.

4. Application

After numerical verification of the accuracy of the integro-differential method was carried out
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TABLE 1. Integro-differential method vs. current sheet method and Biot-Savart Law

c Current-sheet Method [mm] || Biot-Savart Integro-differential
b ‘ 02 03 05 1.0 Law ” Method
4 ] Brnaz (1] 1.012 1.010 1.003 0099 [ _1.025 | 1020

Number of iterations 48 43 36 32 / Il 22

) Measured

o B

a) side view b) top view
Fig. 4. Comparison between measured and computed results

b using a simple test model, the proposed method was applied for analysis of the magnetic field
g 1I:

distribution of the 3-D model presented in Fig. 1b. This model is constructed of four sym-

metrical PM with rather complicated shapes. Only 1/4 of the model was analyzed using the

proposed integro-differential method. Due to the complexity of the model, the Biot-Savart

Law was not applicable for verification of the results. For this model, however, the measured

] results were available. In Fig. 4, a comparison between the 3-D magnetic flux density distribu-

'“‘ tions obtained by the proposed method and those obtained by the measurements is presented.
From Fig. 4, it is clear that the results are nearly equivalent.

5. Conclusions

We presented an integro-differential method for the modeling of permanent magnets in 3-D
space using edge finite elements. The proposed method exhibits such improvements over the
conventional current-sheet method as: computational efficiency and accuracy, and easy mod-
eling of arbitrary 3-D PM shapes. It is applicable for linear and nonlinear magnetic circuits.
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