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ABSTRACT - One property of.the Hopfield neural
network is the monotonous minimization of energy as
time proceeds. In this paper, this property is applied
to minimize the energy functional obtained by ordi-
nary finite element analysis. The mathematical repre-
sentation and correlation between finite element and
neural network calculus are presented. The selection
of the sigmoid function and its influence on the itera-
tion process is discussed. The obtained results using
the proposed method show excellent agreement with
theoretical solutions.

I. INTRODUCTION

The development of higher efficiency computational
methods is necessary to solve accurately and inexpen-
sively complex and higher-dimensional electromagnetic
field problems. The implementation of artificial neural
networks for the solution of ordinary electromagnetic field
problems enables parallel computational process, which
provides fast and accurate analysis. A neural network
(NN) is an artificial information processing system that
simulates the process of human brain [1]. It is a sys-
tem of similar processing units — neurons with the same
input-output characteristics, each of which can be compu-
tationally processed separately, enabling multi and paral-
lel processing at the same time. ,

Different types of NN have already been developed to
deal successfuﬁy with various numerical problems. The
model introduced in 1982 by J. J. Hopfield is one of the
most widely used NN models [1]. The main property of
the Hopfield neural network (HNN), constructed of inter-
connected neurons, is to decrease the energy of the net-
work until it reaches a (perhaps local) minimum with the
time evolution of the system. This process is very simi-
lar to the minimization of the energy functional defined
by ordinary finite element analysis (FEA). This similar-
ity, therefore, makes usage of the HNN in ordinary FEA
relatively easy. The initial work in this area was done by
Ahn, Lee, Lee and Lee [2] (although HNN was not used)
in the area of generation of finite element meshes and was
also presented in other papers where NN was employed
as expert knowledge-based system [3], [4]. Another area
where NNs were employed in connection with FEA was
in the solution of inverse optimization problems [5], [6].

In this paper, the authors present another application
of HNN: direct solution in FEA. First, the mathemat-
ical correlation between ordinary FEA and HNN is es-
tablished and the selection of a sigmoid function is dis-
cussed. Then, the application of HNN for directly obtain-
ing the solution of ordinary FEA is verified with several
one- and two-dimensional electrostatic and magnetostatic

problems. The obtained results are compared with theo- .

retical results and with those obtained by ordinary FEA.
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The agreement between the results is excellent. Some
conclusions and future research problems are also pointed
out. .

IT. MATHEMATICAL BACKGROUND

A. Correlation Between Ordinary FEA and HNN

The mathematical correlation between ordinary FEA
and HNN, here for simplification, is developed only for a
one-dimensional electrostatic model. The governing equa-
tion for electrostatic field problems can be expressed as

eViV=-p, )

where ¢ and p are permittivity and electric charge density,
respectively, and V is electric potential. The development
of the energy functional

]-'(V):/R (%e[v VP2 - pV) dR, (9

and its discretisation in a one-dimensional domain, leads
to the following system of equations
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In (3) n is the number of nodes (neurons), and X; and V;

are the x-coordinate and potential value at node i. Here,
the total number of finite elements is n — 1.

On the other side, the energy stored in the HNN can

be expressed by [1]
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where n is the number of neurons in the network,
W;; = W;j,; is the weighted function between two ar-
bitrary neurons ¢ and j, and ©; is the bias of the neuron
i :

By comparing (3) and (4), both quadratic forms of po-
tential V;, the weight W; ; and bias ©; of each neuron in
the network can be determined easily.

B. Definition of Input-Ouiput Sigmoid Function

After defining the weight and bias of each neuron in the
network, another essential factor is the definition of the
input-output sigmoid function of each neuron. Usually
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this input-output function has a sigmoidal shape in_the
interval [0, 1] and is defined by the following equation

Y = = (5)

- where Y is output value, X' is input value and T is the
parameter which defines the slope of the function. Due to
the nature of FEA, the solution of the problem is usually
not restricted to the binary values 1 or 0. On the con-
trary, the values of the unknown potential could be any
real number. We therefore have to generate a sigmoid
function which permits output values within the interval
[—oc, +00]. These output values can be generated by the

following function
T 2
Y=t - — -1 .
an{2<l-f-e"':rL )} ©

Computation of (6) is considerably slow due to several
time-consuming operations such as exponential and tan-
gent functions. To overcome this problem, in our research
we simplified this equation into the following

Y=k X, )

where £ > 0 is the parameter. Another important reason
for choosing (7) as the input-output function is that, the
first derivations of both the original sigmoid function (5)
and our function (7) are always positive.

C. Processing of the Neural Network

Processing of the constructed neural network can be
executed in two different modes: synchronous and asyn-
chronous. The main characteristic of the synchronous
mode is the simultaneous access of the output value of
one neuron to other neurons of the network — in other
words, the processing ‘moves synchronously through the
network. On the other hand, the asynchronous processing
mode allows rather random accessing of the input-output
values to each neuron in the network. In the asynchronous
mode, only after each neuron receives the input value and
responds to it by adequate output. value using the input-
output sigmoid. function (7) may we: consider that one
iteration in'the iteration process has been performed. Be-
cause the asynchronous mode’s random accessing char-
acter, each run required a different number of iterations
to minimize the energy of the nétwork. We investigated
separately the number of required iterations to minimize
the energy of the neural network generated by the di-
rect solution of FEA of the model presented in Fig. 7,
using both the synchronous and asynchronous processing
modes. The obtained results are presented in Table I. As
for the asynchronous. processing mode, we performed 20
test runs. Among these, only the largest, smallest and av-
erage number of iterations are présented. From Table I it
is obvious that the ‘asynchronous mode required fewer it-
erations for reaching the same energy minimum of 1012,
The number of iterations was decreased by up to 22 per-
cent depending of the parameter £ in the input-output
sigmoid function (7). The optimal value of parameter
k, for which the minimization of HNN’s energy converges
fastest, strongly depends on the analysis model. The min-
imization of HNN’s energy could diverge — for larger value
of parameter k£ than the optimal one, or it could slowly
converge towards its minimum — for lower value than the
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optimal one. Therefore, the optimal value of the parame-
ter k, should be determined for each analysis model sepa-
rately. The existence of the neuron’s bias © is determined
RX the existence of the source area inside analysis region.

odel with source area has appropriate value of the bias
© and always results in slower iteration process than that
of the model without source area.

III. APPLICATION OF THE PROPOSED METHOD

A. One-dimensional Electrostatic Problem

Two simple one-dimensional electrostatic models, with
theoretically known solutions presented in Fig. 1, were
directly treated by HNN. In model 1, a constant electric
charge density was applied, so the bias ©; in (4) was con-
sidered. For model 2 with no electric source, the bias ©;
was zero. Other parameters of the models were: length
d = 1 [m], number of neurons n = 11 and number of el-
ements nel = 10. The electric parameters together with
%‘l?e ilmposed boundary conditions are also presented in

ig. 1.

10[V]  element

19[v]
1/2 3 4}.5 6§ 7 8 9%*11

-constant electric’ =~ ————>{
charge density = 2500 [C/m]

«—ed=1.0 [M] —0 ———>
) Model I |
‘ 0] elémén.t 100 [v]
1/2 3 4,-&5._6 7 8 9.;%11
&g=3.6 [F/m] ' —&p = 1.0 [F/m] —>
— d=10 [m] ——>

b) Model 2
Fig. 1. One-dimensional models.

For both models, the results directly obtained from the
solution of the"HNN by its energy minimization and the
use of the parameter k£ = 0.1 for the sigmoid function
(7) are presented in 'Fig. 2. The minimization process for
both models using syrichronous'and asynchronous modes-
is presented g,rapﬁic in Fig. 3. The computed results
obtained from the HNN agree with theoretically obtained
results up to five significant decimal digits.

B. Twmdimen.ﬁbnal Elééirostatic Problem

Following verification of the results obtained directly
from HNN. for one-dimensional problems, the proposed
method was extended and applied for the direct solution
of two-dimensional electrostati¢ problem, which, with its
imposed boundary conditions‘-ang generated mesh, is pre-
sented in Fig. 4. Because no electric source exists in the
model, the value of zero. was once again considered for
the bias ©; in (4). The electric potential distribution ob-
tained directly from the HNN using parameter k = 0.01
is presented in Fig.'5. For comparison, in Fig. 6 we see
the obtained electric distribution for the same model by
ordinary FEA: The uniqueness of both solutions is readily
apparent.
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‘Table I: Number of iterations for synchronous and asynchronous processing mode

Number of Rerations
k ) Asynchronous Mode =), 100[%)
(1) Synchronous Mode (2)
Largest | Smallest || (2) Average
0.20 divergent 2705 | 2640 2671 7
0.15 divergent 3989 3905 3955 -/
0.10 8419 6639 6511 6567 22
0.05 16252 14468 | 14190 14389 12
100 6
% = 7 ‘ |
~ 8 ) N1 4 Model 1
S L AN 2’
< o |Modell f ~ 0
E 5 /4NN s Rt
=2
§ © // B \ ‘ o~ Synchronous mode
E .;z 7 odel? 17 X 54 \E\,_Mlz‘ <o~ Asynchronous mode
& 10 . : r |
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.10
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Fig. 2. Electric potential distribution.

C. Two-dimensional Magnetostatic Problem

The two-dimensional magnetostatic model presented in
Fig. 7, with imposed boundary conditions was also treated
directly by the HNN. In comparison with the aforemen-
tioned two-dimensional electrostatic model, this model
has a source coil, which results in appropriate values for
the bias ©; in (4). Different division maps resulting in dif-
ferent numbers of neurons in the network ‘were considered.
An increase in the number of neurons always results in an
increase in the accuracy.of the obtained results. The dis-
tribution of magnetic vector. potential A, using the value
of the parameter £ = 0.01 and obtained directly from the
solution of the HNN, is presented in Fig. 8. For compar-
ison, the distribution of magnetic vector potential A for
the same model obtained from ordinary FEA is presented
in Fig. 9. Both results agree very well.

IV. CONCLUSIONS

In this paper, the authors presented a new application
of the HNN as a direct solution of electrostatic and magne-
tostatic field problems in one- and two-dimensional space,
problems usually treated by ordinary FEA:. We proved
that' the . HNN - handles ithese problems well, due to its
fundamental property of minimizing the network energy
while the network evolves over time. With a suitable
selection of the sigmoid. function and by employing the
asynchronous processinﬁ

be further improved. The fact that the HNN can be used

directly for obtaining the solution in FEA is extremely -

important. This is mainly because in the near future, the

mode, the iteration process can .

Number of iterations

Fig. 3. Minimization 6f the network energy vs. number of
iterations for synchronous and asynchronous modes,
respectively.

development of hardware equipment based on neural net-
works will open up a wide area for multi and parallel pro-
cessing in FEA, which clearly will lead to improvements
in the computational process overall. .
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Fig. 7. Two-dimensional magnetostatic model.
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Fig. 4. Two-dimensional electrostatic model.

Fig. 8. Magnetic vector potential A distribution obtained

Fig. 5. Electric potential distribution obtained directly by
Hopfield neural network. directly by Hopfield neural network.

Fig. 9. Magnetic vector potential A distribution obtained by
ordinary finite element analysis.

Fig. 6. Electric potential distribution obtained by ordinary
finite element analysis.



	Untitled

