l

An improved method for magnetic flux density visualization using
three-dimensional edge finite element method

Vlatko éingoski and Hideo Yamashita

Electric Machinery Laboratory, Hiroshima University, Higashi-hiroshima, 724 Japan

Visualization of a magnetic flux density distribution in three-dimensional (3-D) finite element
analysis (FEA) is very important in order to grasp the real behavior of the magnetic field, especially
in the design process. In this paper, we present an improved method for visualizing magnetic flux
density distributions calculated by 3-D first-order edge FEA. Compared with traditional methods,
this method provides more accurate, smoother magnetic flux density distribution inside the analyzed
region and satisfies the proper boundary conditions across intermaterial boundaries. The usefulness
of our algorithm is demonstrated with several examples.

I. INTRODUCTION

In the analysis of various magnetic field problems, ana-
lysts are usually interested in the values of magnetic flux
density at certain points, or its distribution over part or all of
the analyzed domain. Therefore, the visualization of such a
distributed physical quantity is very important in order to
grasp the real behavior of the magnetic field, and correctly
understand and evaluate the results of analysis.

Recently, first-order edge based FEA has become a very
popular for a wide class of 3-D magnetic field and eddy
current problems. The main reasons are its computational

efficiency, small memory requirements, and most of all sat-

isfactign of only proper boundary conditions on the material
interfaces.! Unfortunately, due to the discrete character of the
magnetic flux density in each finite element, good visualiza-
tion of the magnetic flux density obtained by first-order edge
FEA is not possible.

In this paper, we proposed an improved visualization
algorithm, which provides more accurate, smoother visual-
ization of the results obtained from the 3-D edge FEA. The
algorithm for the 2-D nodal FEA already presented in Ref. 2,
here is extended into a third dimension and applied to the
3-D data obtained from the edge FEA. That is, the proposed
algorithm is a mixed approach in the visualization process,
successfully combining edge and nodal FEA over the same
3-D mesh. In order to demonstrate the validity of the pro-
posed algorithm, two simple models, with and without mag-
netic materials, are presented

ll. OUTLINE OF THE ALGORITHM

In the traditional method, the magnetic flux density vec-
tor B can be obtained as

B=rot A, o 1)

in the finite number of lattice points inside the display space.
Since we use a first-order edge finite elements; the values for
B obtained from (1) are equal .at any point inside the ele-

ment. That is, discontinuous visualization of magnetié flux

density vector B can be observed. To overcome this problem
we developed the following algorithm. _

(i) Using the magnetic vector potential data obtained by
the 3-D edge FEA, from (1) we compute the magnetic flux
density vector B previously at each vertex of the tetrahedron.
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(i) Since one vertex P of a tetrahedron usually belongs
to more than one finite element, we compute the values of all
three components of magnetic flux density vector B as an
average value from all contributions of magnetic flux density
at vertex P from all elements that have P as a vertex (Fig. 1).
Therefore

2 Bi (2)

where j is an x, y, or z component, and # is the total number
of elements that have P as a vertex.

This procedure does not have a large influence on the
values of magnetic flux density vector B obtained by (1)
directly from the edge FEA, because if the mesh is suitably
dense, the values at each vertex computed from adjacent el-
ements differ to a small degree. It is necessary to perform
this procedure only to provide a linear distribution of mag-
netic flux-density véctor B between any two points 1nsnde the
element.

(iii) If vertex P is on the boundary between different
magnetic materials, a new vertex P’ is constructed, an infini-
tesimally small distance removed from P. The averaging pro-
cedure is performed for each material, and the calculated
values are associated with P and.P’, respectively.

(iv) The magnetic flux density inside each finite element
is approximated by the average values of each component of
the magnetic flux density vector B at the four tetrahedron
vertices. For approximation, we use some low-order interpo-
lation formulas, such as shape functlons for first-order nodal
analysis:

FIG. 1. Calculation of the magnetic flux density at vertex P. :
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FIG. 2. Single-material model.

where j is the x, y, or z component of magnctic'ﬂux density.
In this case, the distribution of magnetic flux density inside
each finite element will be linear. Higher-order interpolation,
e.g., quadratic, can be easily achieved using second-order
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FIG. 3. Magnetic flux density distribution. (a) FE mesh, (b) theoretical (c)
traditional method, and (d) proposed method. ’

J. Appl. Phys., Vol. 75, No. 10, 15 May 1994

éu‘m —+— NEW METHOD
N

000%  300%  600%  9.00%  1200%
RELATIVE ERROR

FIG. 4. Comparison of relative errors for traditional and proposed visual-
ization methods.

nodal shape functions and six more values of magnetic flux
density vector at midpoints of each edge of the element.

lll. APPLICATION

In this section, we apply our method to the visualization
of magnetic flux density for two models. One is a single-
material model, of interest because of its known theoretical
values, and the other is a multimaterial model, suitable for
exploring the visualization on intermaterial boundaries.

A. Single-material region

Figure 2 shows the analysis and display region for the
first model. Due to the symmetry of the model we performed
analysis over only one quadrant. The calculated results are

_ displayed in Fig. IV for theoretical, traditional, and our new

visualization method using the same scale. Figure 3 also
shows a division map used in the analysis. It is obvious that
with no changing of the intensity of the magnetic flux den-
sity vector B, its distribution displayed by our method is
almost identical with the theoretically obtained one, while
the traditional visualization method results in a discontinuous
distribution. In Fig. 4, the x axis represents relative error €
given as ‘ -

B,

€=

| B
where B, and B, are the theoretical and computed values for
the magnetic flux density vector B at each lattice point inside
the display space, respectively. In the same time, the y axis
represents the cumulative area, given as

_.Bc .
|-100, 4)
X ‘

cumulative area

_ display area with error over € (%)
B total display area

-100. 5)

Figure 4 clearly shows that the relative error of the proposed
method is smaller than that of the traditional one, therefore
the accuracy of the results obtained by the proposed method
is improved. ‘

B. Multimaterial region

Figure 5 shows the analysis and display area for the
multimaterial model. Here again we use the symmetry of the
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FIG. 5. Multimaterial model.

model and analyze only one quadrant. This model is quasi-
3-D (a 2-D model extended into the third dimension); there-
fore 2-D analysis on the same model with an extremely
dense finite element mesh is used as a standard value because
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FIG. 6. Magnetic flux density distribution. (a) FE mesh, (b) 2-D distribu-
tion, (c) traditional method, and (d) proposed method.
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FIG. 7. The B, distribution as a normal component on the intermaterial
boundary.

no theoretical solution exists. This model is important to
demonstrate the ability of our method to deal with multima-
terial regions and their boundaries.

In Fig. 6, the visualization of 2-D and 3-D data using the
traditional and our proposed visualization methods, again us-
ing the same scale and together with the part of interest of
the finite element mesh used in the analysis are presented. It
is clear that the proposed method provides a better visualiza-
tion. In Fig. 7 the x component of magnetic flux density B,
as a normal component on the surface of material at X=10,
for the traditional and the proposed visualization algorithms,
is presented. The continuity of the normal components is
apparent. ‘

IV. CONCLUSION

We have presented a new, improved method for the vi-
sualization of the magnetic flux density obtained by the 3-D
first-order edge FEA. The proposed method involves some
algebraical averaging procedure and interpolation inside
each finite element. These procedures do not have a large
influence on the results of magnetic flux density vector B,
obtained directly from the analysis, and are easily imple-
mented and computationally efficient. Using the properties
of edge FEA to satisfy only the proper boundary conditions
on intermaterial boundaries, our method deals very well with
them and provides smooth and highly accurate visualization.
The method ‘can be easily extended for the visualization of
other magnetic quantities, such as eddy current distribution.
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