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On the Properties of Mixed Consistently and Non-Consistently First
Order Edge Finite Elements

Vla.tko-('lingoski, Masahiro Hayakawa and Hideo Yamashita
Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527 JAPAN

Abstract—In this paper, we discuss the properties
of the mixed consistently and non-consistently linear
(Whitney) edge finite elements for 3D eddy-current
analysis. We report that by mixing these two types
of finite elements the computational resources and ef-
forts can be greatly reduced for the same accuracy
of the results. Due to the nature of the edge-based
shape functions which has the constant rotation and
are divergence-free, we further show that the use of
the mixed method is justified only for eddy-current
analysis. The proposed mixed method was success-
fully applied for eddy-current non-destructive evalua-
tion of thin cracks inside conductive materials.

I. INTRODUCTION"

The finite element analysis based on the first order non-
consistently linear (Whitney) edge finite elements have
been widely employed for various electromagnetic vector
field problems, mainly as a result of several good proper-
ties of their shape functions, such as tangential continu-
ity, constant rotation, divergence-free, etc. Additionally,
these finite elements provides faster computation with
smaller computer resources. In order to increase the ac-
curacy and versatility of these finite elements, recently,
several authors have made attempts to ease the construc-
tion and utilization of the higher order edge-based finite
elements and their shape functions [2], [3]. However, the
development of higher order edge-elements is difficult and
rises a lot of mesh generation problems. Therefore, we
believe that the Whitney linear edge finite elements with
only one unknown variable per edge are still the most

commonly employed vectorial edge-based finite elements.

Although, the first order Whitney edge elements pro-
vide fast computation on modest computer platforms (es-
pecially for 3D problems), unfortunately, in the same
time, they are not linearly consistent (hence their name
non-consistently linear.) They provide linear approxi-
mation only inside the elements and have the constant
value of the unknown variable along element’s edges [4].
To develop consistently linear edge-based finite elements
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we have to construct finite elements which have two un-
knowns per each edge [5]. These finite elements improve
the accuracy of the approximation from order O(h), which
is the error order for the non-consistently (Whitney) lin-
ear edge finite elements, up to order O(h?). However, the
price that one must pay for the increase of the accuracy
is:

¢ doubling the total number of unknowns ,

¢ aggravating the sparsity of the global matrix of the
system,

e increasing the required computer memory almost two
times, and

¢ prolongating the computation time.

In this paper, we show that this price is worth to be paid
only for eddy-current analysis. For magnetostatic analysis
due to the nature of the shape functions, we will show that
the results obtained by Whitney (non-consistently linear)
elements and the consistently linear first order finite ele.
ments are exactly the same. Moreover, because in eddy-
current analysis usually only a small portion of the anal-
ysis domain is the conductive region, we propose usage of
mixed edge finite elements: consistently linear edge ele-
ments inside the conducting region, and non-consistently
linear edge elements elsewhere. To develop such a mixed

‘computation method, we have to construct a new mixed

edge finite elements placed on the border between non-
consistently and consistently linear edge elements. The
proposed computational approach provides results with
the same accuracy as if we use consistently linear edge
elements in the entire analysis region, however, with less
computer resources and faster. Additionally, this method
exhibits:

¢ very small influence of the element shapes on the con-
vergence of the iterative solution method and the ac-
curacy of the results, which are the properties of the
consistently linear elements, and

o fast convergence rate which is a characteristic of

the non-consistently linear (Whitney) edge finite ele-
ments.
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The proposed mixed method is successfully applied for
3D eddy-current non-destructive evaluation of the shape,
position and parameters of thin cracks inside conductive
materials,

- II. GOVERNING EQUATION FoRr EDDY-CURRENT
ANALYSIS

The governing equation for eddy-current field analysis
using magnetic vector potential formulation is given with
this equation

rot v rotA + ¢r6~A =Jp

= M
where A is the magnetic vector potential, » and o are the
magnetic permeability and the electric conductivity coef-
ficients, respectively, and J o is the source current density
vector. Using the following approximation procedure

A= Z NiAi ) (2)

where 4; is the unknown vector potential valueg along
edge ¢, and N; is the edge-based shape function for edge
i, the governing equation (1), according to the Galerkin
procedure, can be transformed into the following func-
tional ‘

ﬂ/ v rotN; - rotA dV—// N; - JodV
Q Q.

+//mjgaN,--AdV=o SEENE)

In the above equation, the integration domains Q, Q.
and Q. stands for the entire analysis area, the coil and
eddy-current conductive area, respectively. Equation 3)
is general and it is applicable for different types of edge
elements. We would like to point out that, as can be seen
from (2), the edge-based shape functions N; are not any
more scalar functions like in ordinary nodal finite element
analysis, but vector functions. Respectively, the unknown
variables A; are scalars. In what follows, we will shortly
describe the differences between the shape functions and
their properties for non-consistently and consistently lin-
ear edge finite elements.

III. FIRST ORDER EDGE FINITE ELEMENTS

A. Non-consistently Linear (Whitney) Edge Elements

Fig. 1a shows the ordinary non-consistently linear
(Whitney) tetrahedral edge finite element with one un-
known per each of its six edges. This element is called
non-consistently linear because, it provides partial linear
approximation; linear approximation only inside the ele-
ment, and constant values of the approximated function
along its edges. The shape function for arbitrary edge
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Fig. 1. First order edge-based finite elements.

{i,j} can be easily derived using the following expres-
sion [1]

N;j = L;VL; - L;vr; 4)
where L; and L; are the volume coordinates of the tetra-
hedron. The volume coordinates Li i =1~ 4 can be
computed using the following matrix equation

L oo o5 1

Ly —| P2 g2 r2 s z )
L3 Ps Q3 T3 s3 y ’

Ly Pa Q4 Ty 54 z

Matrix coefficients Di, gi, i and s; can be computed from
the coordinates values at ajl four tetrahedron vertices,
while vector x = [1,2,y,2]7 is the coordinate vector of
an arbitrary point inside the tetrahedron where the vol-
ume coordinates have to be computed. ’

The global matrix of the system is a complex matrix
with real and imaginary coefficients computed according
to the first and third parts of (3). The second part of
(3) results in the source current vector on the right hand
side. In order to construct the global matrix of the sys-
tem, initially, the rotation of the shape functions must be
computed, which according to (4) and (5) yields

ot Nij = 2{(risj —rjss) i+ (gjsi — ais) j

+ (e —gm)k} (6)

where i, j and k are the unit vectors in z, y and z direc-
tion, respectively. From (6), it is readily apparent that
the rotation of the shape function yields a constant func-
tion. Therefore, the value of the computed magnetic flux
density vector B = rotA is a constant value everywhere
inside the finite element, which agrees well with the defini-
tion of the non-consistently (Whitney) edge finite element
as a linear finite element,

B. Consistently Linear Edge Finite Element

Let us now make the same investigation done in the
previous paragraph for the consistently linear edge finite



element shown in Fig. 1b which has two unknowns per
each edge. This element has one additional node per each
edge placed at the center of the edge, for example, at the
center of the edge {1,2} node 5. The shape functions for
both edges that belong to the samé tetrahedron edge can
be represented as follows ¥

Nir = L;VL;
Njr = L;vVL; (7

where 7 and j are the terminal edge nodes, and k is the
central node of the edge {,7}. The resemblance between
both shape functions given in (4) and (7) is obvious. How-
ever, the later ones provide linear distribution of the un-
known variable along the edge, while the former one has
the constant value. Next, let us compute the rotation of
these linear shape functions given in (7)

rot Ny = (r;sj - r,-s,-) i+ (q_,-s.- - q,-s,-)j
+ (@rj—gir)k
rot Njx = (rjsi —risj)i+ (gisj —gjsi) §

+ (gri—qr)k . 8)
Two conclusions are easily derived: (1) rotation of the
shape functions (7) again yields constant functions, there-
fore, the computed magnetic flux density vector will have
the constant value everywhere inside the finite element,
Le. this finite element is also linear, and (2) the sum of
both rotations given in (7) is exactly the same as the rota-
tion function computed according to the non-consistently
linear (Whitney) edge element given in (4). Therefore,
the contribution to the global matrix of the system from
both types of edge elements is the same. The only differ-
ence appears from the imaginary part of the global matrix
where we use directly the shape functions, not their rota-
tions (see (3)).

C. Magnetostatics vs. Eddy-current Analysis

As already mentioned in the above paragraph, in case
of the real matrix of the system the generated system
of linear algebraic equation is the same for both, non-
consistently linear (Whitney) and consistently linear edge
finite elements. Therefore, in case of magnetostatic field
analysis where the global system matrix is real, the com-
puted results using Whitney elements and the consistently
linear edge elements are exactly the same. To be more
precise, the element matrix constructed using consistently
linear edge finite elements has the following shape

bi1 b1 b1,12 Ay J1
b2 by ba,12 A _| J2
bia1  bizz b12,12 Ax2 Ji2

9
where coefficients b; j can be computed using the following
expression

bij = (V20i 000 + 1405 405,y + 1,05 ,a;,) V,

(10)
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The contributions @z, aiy and a;, are the z, y and 2
components of the shape function rotation for edge i (see
) :
i,z
a; = =rot N; |,

(11)

@iy
a5,z

while V, is the volume of the finite element. As one could
expected, the element matrix becomes a full 12 x 12 real
matrix.

On the other side, the element matrix constructed using
non-consistently linear (Whitney) edge finite elements is
a full 6 x 6 real matrix of shape

bii b b1 A Ji

4] b1s b33 b3 1y A3 | _ 9| Js

b b3n bi1,11 An J11
(12)

By careful observation of the (6), (8) and (9), one
can easily see that the obtained results after solution
for Ay, A,,...,A15 for the consistently element, and
Ay, As,...,A;; for the non-consistently element (see
Fig. 1) will be the same, or to be more precise, the fol-
lowing is valid:

Consistently Linear Element Whitney Element

A
A1 = Az = 71 ,
A
A3 = A4 = 73 ,
A
A11 = Alz = *2L1 , (13)

The same is valid for the source current vectors where in
case of consistently linear elements the values of the source
currents along two edges that lie on the same tetrahedron
edge, e.g edge 1 and 2 in Fig. 1b, are only one half of the
source current value assigned to edge 1 (see Fig. la) in
case of non-consistently linear (Whitney) element.

In conclusion, we would like to point out that utilizing
consistently linear edge finite elements is Justified only for
the eddy-current analysis where the linear system of alge-
braic equations with complex coefficients has to be solved.
In case of magnetostatic field analysis where the coeffi-
cients are real, the accuracy of the results is the same as
that obtained by means of non-consistently liner Whitney
edge finite elements.

IV. Mixep LINEAR EDGE FINITE ELEMENTS

In the previous section we saw that utilizing consis-
tently linear edge finite elements is Justified only for eddy-
current field analysis. Another important point is that
these linear elements provide better accuracy then the

8" International IGTE Symposium 1998
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Q: Analysis area; Q¢: Eddy-current conductor;
' Qc: Coil area; Qm: Mixed edge elements area;

Fig. 2. Computation space and subspaces.

(b) Mixed ‘edge element
with 9 unknowns

(a) Mixed edge element
with 7 unknowns

Fig. 3. Mixed linear tetrahedron edge elements.

ordinary Whitney non-consistently linear edge elements.
However, as can be seen from (9) the element matrix for
consistently linear edge element is four times larger than
that of the Whitney element. Consequently, the sparsity
of the global matrix is aggravated, larger computer re-
sources are needed and the computation time is increased.
Therefore, development of a mixed consistently and non-
consistently linear edge elements (hereinafter - mixed edge
elements) appears as a natural solution. Figure 2 shows
the general computation space for eddy-current field anal-
ysis Q divided into three computational subspaces: the
eddy-current area (., the coil area {2, and the mixed
edge elements area Q,,. In each of these areas we use
different type of edge elements: inside the eddy-current
area, consistently linear elements with two unknowns per
edge, in the mixed edge element area, mixed edge elements
which as we can see later have some edges with only one
unknown and some edges with two unknown, and for the
rest of the analysis domain, we use only non-consistently
linear (Whitney) edge elements.

Two types of mixed linear tetrahedron edge elements
with 7 and with 9 unknowns are shown in Fig. 3. As
can be seen, these elements are placed on the boundary
between eddy-current conductive area and the rest of the

8™ International IGTE Symposium, 1998
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Fig. 4. Model of pancake probe for non-destructive eddy-current
evaluation.

analysis domain. Since, two tetrahedrons can have only
one common edge or only one common face, these mixed
finite edge elements can be easily constructed by setting
two unknowns per common edge, or two unknowns for all
edges that lie on common facet, Therefore, only these two
mixed elements are enough to descretized the entire mixed
edge element area. Development of the shape functions
for these mixed edge elements is straightforward and can
be easily developed according to (4) and (7).

V. OBTAINED RESULTS AND COMPARISONS

We analyzed eddy-current distributions inside a thin
conductive plate using a pancake type probe for non-
destructive eddy-current evaluation. Although geomet-
rically simple, these problem is not that easy due to the
small size of the crack, shallow thickness of the plate and
high frequency values of the source currents. Addition-
ally, the signal which must be detected as a result of the
eddy-current flow inside the plate, and its changes due
to the crack existence is very small. Therefore, we must
consider ‘a fast numerical analysis method which provides
highly accurate results.

A. Comparison Among Different Edge Finite Elements

A simplified model of pancake type probe used for eval-
uations is shown in Fig. 4. The model consists of a square
shaped coil with 140 turns, the source current value of 1
At and frequency of 300 kHz, and a conductive plate with
a crack with length of 5 mm and width of only 0.2 mm.
Figs. 5a and 5b show the comparison between computed
real and imaginary components of the eddy-current den-
sity distributions along line placed on the top face of the
conductive plate. The center of the coil corresponds with
the 0 coordinate of the z-axis in both figures. The results
obtained using three types of edge finite elements are pre-
sented: Whitney edge elements, consistently linear edge
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Fig. 5. Comparison of the obtained eddy-current density distribu-
tions for a ppancake ECT probe using different type linear edge
elements.

elements, and mixed edge elements. It can be observed
that the obtained results for consistently linear and for
mixed edge elements are exactly the same, and they over-
lap for the entire observation area. The Whitney edge
elements provide poor accuracy results with rough eddy-
current distribution. We also investigated the computer
resources and the required CPU time for each of these
three type of finite elements. Two iterative methods were
used for iterative solution of the generated system of linear
equation: Conjugate Gradient method (CG), and the In-
complete Cholesky Conjugate Gradient method (ICCG).
Several models were investigated: (1) models with the
same number but different type of tetrahedron edge finite
elements, and (2) models with approximately same num-
ber of unknowns for different type tetrahedron edge ele-
ments. The obtained results using the following iteration
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TABLE I
RESULTS FOR THE SAME NUMBER OF ELEMENTS
N [[ Whitney | Consistently | Mixed ]

Elements 42,960 42,960 42,960
Unknowns 53,166 106,332 65,203
Nonzero entries 399,058 1,637,078 | 67,2574
. cG 10,638 19,015 24,194

It y Y ’
erations ICCG 2,750 30,000* | 3,845
CG 22.3 51.4 30.3
RAM (Mbytes) 150a 29.3 7.1 39.9
. CG 3,708 18,783 12,563
CPU time (s)  ;~04 2,172 56,340 | 4,323

CPU: Ultra SPARC / 143MHz
*Reached total number of iterations without satisfying e < 10~6

stopping criterion ¢ < 10~ are summarized in Table I
and Table II, respectively. We would like to point out that
in these Tables, "Whitney’ stands for model constructed
entirely of Whitney edge elements in the entire analysis
domain, ’Consistently’ stands for model constructed of
only consistently linear edge elements in the entire anal-
ysis domain, and ’Mixed’ stands for model where inside
the eddy-current conducting area consistently linear edge
elements were used, inside the mixed edge element area
mixed linear edge elements (see Fig. 3), and in the rest
of the domain Whitney edge elements. According to the
results presented in Tables I and II, the following conclu-
sions can be drawn:

¢ For the same number of elements, mixed approach
provides more accurate results and smoother eddy-
current distribution than the Whitney edge finite el-
ements;

e Mixed approach optimizes the computer resources
and CPU time requirements;

¢ Using only consistently linear edge elements results
in twice more number of unknowns, about four times
increase of the number of nonzero entries, large RAM
requirements and poor convergence rates, therefore,
these elements should be avoided, especially for mag-
netostatic analysis;

e It is better to use consistently linear edge elements in-
side the eddy-current conductive area. instead of dou-
bling the number of Whitney elements, because the
former ones provide consistently linear distribution,
while the later ones provide linear distribution only
inside the elements but not also along its edges.

B. Comparison Between Measured and Computed Results

To further verify our computational approach based on
mixed edge finite elements, we made comparison between
computed signal of the pancake type eddy-current test-
ing (ECT) probe and the measured results for the same
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TABLE I1
RESULTS FOR APPROXIMATELY SAME NUMBER OF UNKNOWNS
| ] Whitney | Consistently | Mixed |

Elements 85,920 42,960 66,588
Unknowns 105,226 106,332 104,931
Nonzero entries 811,118 1,537,078 | 1,155,152
Iterati cG 7,462 19,015 31,129
erations ICCG 2,029 30,000 3,354
CcG 41.2 51.4 45.6
RAM (MBytes) 1504 55.9 771 65.3
. CG 6,688 18,783 27,292
CPU time (s) 504 4,576 56,340 7,265

CPU: Ultra SPARC / 143MHz
*Readhed total number of iterations without satisfying e < 10—

model. The impedance of the signal was computed ac-
cording to the following equation:

_ —jwN; [, A, - de

Z I )

(14)
where A is the magnetic vector potential inside the pick-
up coil area, N; is the number of turns in the coil, I is
the source current per one turn, and [ is the perimeter
length of the coil. The comparison between measured
and computed results for the outer defect with depths of
40% (OD40%)of the plate thickness (outer defect means
that the defect and the probe are on the opposite sides
of the plate), is presented in Figs. 6a and 6b. As can
be seen from Figs. 6a, the consistently edge elements and
the mixed elements approaches provide exactly the same
results which agree very well with the experiment, while
the agreement between measured and computed results
using Whitney non-consistently linear edge elements is
poor. Good agreement can also be observed for the trace
of the signal shown in Fig: 6b.

VI. CONCLUSIONS

We discussed the properties and the differences between
two types first order edge finite elements, non-consistently
linear (Whitney) edge elements and consistently linear
edge elements for 3D eddy-current analysis. We showed
that the usage of consistently linear edge elements is jus-
tified only for eddy-current analysis, while for magneto-
static field analysis the obtained results have the same or-
der of accuracy as those obtained using non-consistently
linear elements. The accuracy of the results could be im-
proved from order O(h) up to order O(h?) if the non-
consistently linear elements are replaced with the consis-
tently linear ones. This, however, leads to increase of
the computer memory requirements and the computation
time, therefore it is not. computationally effective solu-
tion. To solve this problem, in this paper, we proposed a
new mixed finite element approach for which a new fam-
ily of mixed linear edge finite elements were proposed.
This approach provides numerical results with the same
accuracy as those obtained by the consistently linear ele-
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Fig. 6. Amplitude and phase trace for pancake ECT probe — Outer
defect 40% (OD 40%).

ments with short computation time on the modest com-
puter resources. The proposed approach was successfully
applied for 3D eddy-current analysis of a pancake type
non-destructive evaluation probe. The computed results
showed a very good agreement with the measurements
verifying our proposed computational method.
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