IEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 5, SEPTEMBER 1999

3751

Investigation of the Efficiency of the Multigrid Method for Finite
Element Electromagnetic Field Computations Using Nested Meshes
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Abstract— Investigation of the efficiency of the
multigrid solution methods for electromagnetic field
computations using nested finite element meshes is
presented. Two type of multigrid algorithms, the V-
cycle and the W-cycle multigrids are investigated and
the results for the convergence rate of the iterative
process and the computation time are compared with
those of the ICCG solution method which is commonly
used solution method in finite element analysis. It is
proven that the efficiency of the multigrid methods
is better than that of the ICCG method especially for
the solution of large systems of simultaneous algebraic
equations.

Indexz terms— Finite element methods, multigrid
methods, electrostatic analysis, magnetostatics, iter-
ative methods, relaxation methods, linear algebra.

I. INTRODUCTION

Tremendous developments in the computer software
and hardware‘technology have enabled researchers to eas-
ier tackle higher dimensional and computationally expen-
sive physical problems. Respectively,. interests in vari-
ous numerical methods which can be successfully utilized
for the solution of a wide class of physical problems have
increased rapidly. Therefore, the finite element method
which is one of the most widely used numerical method
for the solution of various physical problems that can be
described using partial differential equations, became one
of the methods where a vigorous research has been done
recently. As a result, the solution of computationally de-
manding problems such as three-dimensional periodical
or transient problems, coupled problems or inverse shape
optimization problems become possible [1]. However, for
such complex problems the computation time could be
still extremely long mainly as a result of the necessity for
solution of large systems of simultaneous linear or non-
linear algebraic equations. Consequently, if one can de-
crease the portion of the computation time needed for the
solution of a system with large number of simultaneous
algebraic equation, he/she could achieve decrease of the
overall computation time.

In this paper, we present the investigation of the com-
Putational efficiency of the so called multigrid methods
(MGMs) for the solution of large algebraic systems which
appear in the electromagnetic field computations. Re-
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cently, several authors presented some initial research re-
sults in using the MGMs for the electromagnetic field
computation, however, only as a preconditioner but not
as a solution method [4], [5]. Here we make compari-
son between the efficiency of the commonly used ICCG
(Incomplete Cholesky Conjugate Gradient) method and
the two basic multigrid algorithms, V-cycle and W-cycle
multigrids. First, we briefly address the mathematical ba-
sis and the reasons for improved efficiency of the MGMs.
Next, we speak about the numerical implementation and
the parameter selection for nested finite element meshes.
Before we point some final remarks and conclude this pa-
per, we also present comparison results obtained by ap-
plying the V-cycle and W-cycle MGMs and the ICCG
method for two test models: one electrostatic and one
magnetostatic model.

II. MULTIGRID SOLUTION METHODS

For the electromagnetic finite element computations
various linear system solvers are in common use;-amorg -
them the ICCG method is probably the most popular.
However, for nonlinear, time dependent or coupled prob-
lems even the ICCG method results in lengthly computa-
tion. ’

The MGMs are set of techniques for solving systems
of algebraic equations using several finite element meshes
with different mesh densities [2]. They can solve elliptic
partial equations discretized on N grid points by finite
element method in O(N) operations, which is much faster
than any other rapid iterative solution method which
could go as far as O(N logN) [3]. Moreover, as already
mentioned in [5], the number of arithmetic operations for
the ICCG method grows as much as N3/2 for 2D and as
much as N*/3 for 3D problems, respectively, where N is
the number of unknowns per finite element mesh. On the
other side, the MGMs keep the number of arithmetic op-
erations per number of unknowns almost independent of
the size of the problem. This property together with their
higher convergence rate make the MGMs very attractive

possibility for the solution of large systems of algebraic
equations.

A. Two-grid Method

Two-grid method is the simplest of all multigrid method
and we will use it here to explain the main idea that lies
behind the MGMs. It is based on the development of
two meshes, a coarse one (later on level #1) and a dense
mesh (later on level #2) as shown in Fig. 2. We call
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these two meshes nested meshes because each node of a
coarse mesh corresponds to a node of a dense mesh. i.e.
these two meshes have common nodes. It is irrelevant
how these two meshes are generated as long as they are
nested, however, just for the information, nested meshes
can be easily generated manually, automatically or even
adaptively by simple subdivision of all or only some finite
elements, e.g. those with large computation errors, of a
coarse mesh. Later, we will show that the efficiency of
the MGMs is independent of the method of meshing and
that the computation speed depends only on the number
of meshes and type of the algorithm used.

Using a dense finite element mesh we could generate a.
system of equations of shape K x = f, where K is the
matrix of the system, x is the unknown vector, and f is
the source vector. If we try to solve the above system
for several iterations using some kind of iterative method
(e.g. the Gauss-Seidel or the Jacobi iterative method) we
can obtain the approximated solution X for the problem
K x = f with the algebraic error e between the exact
solution x and the approximated solution X, e = x — X.
Since the exact solution x is unknown, respectively, the
error e can not be computed explicitly. However, we can
compute the residual vector r according to

r=f-K%X , (1)

using the approximated solution vector X. It can be shown
that by simple rearrangement of (1) and its subtraction
from the governing equation K x = f, one can get the
very important relationship between the unknown erro
vector-e and the known residual vector r '

Ke=r . (2)

Finally, the exact solution x can be easily computed know-
ing the error vector e and the approximated solution %,
ie. x=X+e.

The main reason why the MGMs exhibits fast conver-
gence rates can be simply explained using expansion of the
error e into discrete Fourier series. In this case, the error
components can be divided into two sets: smooth compo-
nents which are those components on the lower half of the
frequency spectrum, and nonsmooth components which lie
on the higher frequency range [6]. It is well known that
for dense meshes which have large smooth error compo-
nents the relaxation methods converge slowly. However,
in the same time many relaxation methods reduce the
nonsmooth components fast - they are good smoothers.
Therefore, it is apparent that if we use relaxation method
only few times, i.e. smooth the nonsmooth components
on a dense mesh and then transform somehow the ob-
tained residual to a coarser mesh the convergence could
be improved. The MGMs use this property intensively
to increase the computation speed of the iterative proce-
dure. For transformation of the residual and error vectors
between two adjoint meshes a set of specific transforma-
tion matrices called restriction and prolongation matrices
must be developed. In our research we use nested meshes
for which simple interpolation and extrapolation can be
defined such as method of injection or the five-point or
the nine-point interpolation [2].

B. Types of Multigrid Methods

There is not a single MGM which can be applied wit
the same success for all problems. The user must accom,
modate his/her problem to the main frame of MGMs ang
find the multigrid algorithm which is most suitable. Sey
eral MG algorithms have already been established ay
they are intensively described in MG references [2]. Iy]
this paper we investigated two of them: the V-cycle and
the W-cycle MGMs. As can be seen from Fig. 1, boty
algorithms get their names according to the shape of the
cycle that they perform. The existence of pre-smoothing
and post-smoothing; as well as the number of smoothj
steps per each cycle can be freely defined by the user ang
opens a wide area of investigation on which algorithmg
better suits to a particular problem. ;
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III. APPLICATIONS

A. Electrostatic Test Problem i

<

A simple 2D electrostatic model of a cylindrical con.
denser shown in Fig. 2a was used for efficiency investj.’
gation. Six nested meshes were generated consequently
starting from initial mesh with 21 nodes and 24 elements’
till the finest mesh with 12,545 nodes and 24,576 ele-;
ments. As can be seen from Fig. 2, additionally to the’
increasing of the mesh density, the curvilinear boundary*
of the model was constantly improved after each subdivi--
sion step in order to:improve the accuracy of the results.:
Fig. 3 shows the convergence properties for all-three 50~
lutions methods: It is readily apparent that MGMs show'
better convergence rates than the ICCG ‘method. They
converge after only 4 (W-cycle) and 5 cycles (V-cycle), re-:
spectively, while the ICCG method needed 246 iterations.
Regarding the computation time, using 6 nested finite el-*
ement meshes, both the V-cycle and the W-cycle MGMs
were almost 5.5 times faster than the ICCG method which
was utilized only on the densest finite element mesh.

The correlations between the computation time and the
size of the problem for V-cycle, W-cycle and the ICCG
iterative processes, respectively, are given in Fig. 4. One
can easily see that the efficiency of the MGMs increases
strongly with the increase of the size of the system matrix
of the problem that has to be iteratively solved.

S: smoothing

R: restriction

P: prolongation

E: exact solution
PS: post-smoothing

. - .

p S:smoothing

— — Rt restriction A
P: prolongation

— — E: exact solution

(b) W-cycle multigrid algorithm
Fig. 1. Typical multigrid algorithms.
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Fig. 2. Electrostatic model and mesh samples for three mesh levels.
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Fig. 3. Comparison of the convergence rates.
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Fig. 4. Computation time vs. number of unknowns.

B. Magnetostatic Test Model

A simple bus-bar-model-was used to investigate the ef-
fectiveness of the MGMs computation scheme for 2D Tag-
netostatic problems. Five finite element meshes from 55
nodes and 83 elements up to 10,825 nodes and 21,248
elements were generated in order to investigate the prop-
erties of MGMs to handle non uniformly generated meshes
(see Fig. 5). In order to preserved nested character of the
meshes, for the generation of a denser mesh each finite
element of a coarse mesh was subdivided into four finite
elements using mid-edge points. The prolongation and
the restriction matrices were derived using linear interpo-
lation algorithms [6].

The obtained results presented in Figs. 6 and 7 show
that both, the V-cycle and the W-cycle MGMs exhibits
very fast convergence rates. The iteration process con-
verges after 12 cycle for V-cycle and 10 cycles for W-cycle

GMs, respectively, in comparison with 187 iterations
leeded by the ICCG method for solution on the dens-
est mesh. The computation speed-up was again about 5
times. Finally, similarly with the electrostatic model, the
efficiency of the MGMs solver increases with the increase
of the model size as shown in Fig. 7.

IV. CoNcLusIONS

In this baper, we presented an investigation of the effi-
ciency of two types of MGMs, V-cycle MGM and W-cycle
GM for solution of electromagnetic field problems using
finite element analysis based on nested meshes. The aim,
of this paper was to investigate the convergence rates of
GMs and to make comparison with those of the widely
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Fig. 5. Meshes for level #1, #2 and #3 of the bus-bar model.
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Fig. 6. Comparison of the convergence rates.
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Fig. 7. Computation time vs, number of unknowns.

used ICCG method. Additionally, the computation time
was investigated and compared with that of the ICCG
method. The results show that the MGMs exhibit higher
convergence rates than that those of the ICCG method,
and that the MGMs provide fast and accurate computa-
tion for a shorter computation time. Finally, it was shown
that the efficiency of MGMs increases with the increase
of the size and complexity of the system of equations that

has to be solved. There are few differences in V-cycle MGM
and W-cycle MGM.
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