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Abstract—In this paper, an extension of the pre-
viously developed 2-D dynamic bubble system for 3-
D automatic mesh generation using tetrahedral finite
elements is presented. Initially, a set of vertices in-
side the entire analysis region is generated using 3-D
dynamic bubble system, followed by automatic mesh
generation according to the Delaunay tessellation al-
gorithm and the generated set .of vertices. The pro-
posed method is highly robust and easily applicable
to convex and concave analysis domains with vari-
ous geometrical complexity. ‘The proposed method
provides high quality tetrahedral meshes with graded
mesh densities utilizing very small amount of input
data.

Index terms—Finite element methods, automatic
mesh generation, Delaunay triangulation, mesh qual-
ity.

I. INTRODUCTION

The main computation power of the finite element
method results from its fundamental idea of replacing
a given unknown function by piecewise approximations
over a set of geometrically simple domains called finite
elements. However, although really ingenious, this idea
requires meshing of the entire analysis domain which is

usually very laborious and time consuming, especially in -

3-D space. A large number of methods for automatic mesh
generation have already been proposed with various suc-
cess. On the other side, it is well known that mesh gen-
eration methods based on the Voronoi polygons and the

Delaunay algorithm are best suited to FEA since they al-.

ways minimize the maximum angle of the finite elements.
In order to execute the Delaunay triangulation algorithm,
first a set of nodes with good location properties inside the
analysis domain must be generated; which is not usually
an easy and quick task.

Recently, we developed and presented a very promis-
ing method for automatic mesh generation [1] based on
the dynamic bubbles system in 2-D space [2]. In this
paper, an extended version of this method for 3-D auto-
matic mesh generation is presented. Due to the existence
of multiply connected and convex shaped domains filled
with multimaterial regions, several typical 3-D problems
had appeared and had to be additionally solved. The
developed method featured a robust and widely applica-
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ble automatic mesh generation algorithm, as a result of
which high quality tetrahedral finite element meshes with
graded mesh densities could be generated easily utilizing
extremely small amount of input data.

II. PROPOSED MESHING METHOD

A. Dynamic Bubble System

The dynamic bubble system consists of a set of bub-
bles in which each bubble is defined with its radius, mass,
and position in the space according to its central coordi-
nates. Each bubble obeys. the Newton’s Second Law of .
Dynamics: :

d?a; da.
Mg o = fu(d) )

where m;, is the mass of bubble i, ¢; is the viscosity co-
efficient, a; is the z, y, or z coordinate of the center of
bubble 4, and f,,(d) is the force acting on bubble along
direction a [1].

Forces f(d) acting among bubbles can be attractive or
repulsive depending on positions and radii of neighboring
bubbles. In general, these forces can be mathematically
expressed by the van der Waals’ forces acting between two
charges in the space [1].

The simplified procedure for the proposed automatic
mesh generation system is shown in Fig. 1. First, the
outline of the entire analysis domain' must be specified
using CAD or other geometrical modeling method. Next,
radii of several vertex bubbles; mainly those which outline
the entire analysis domain or part of it such as single ma-
terial domains, must be set by the user or automatically
approximated using some approximation technique. This
is the only part of the procedure that requires user’s con-
trol and expertise. The main advantage of this method is
the development of dense meshes around vertex bubbles
with smaller radii, and the opposite, generation of coarse
meshes in the neighborhood of the vertex of a larger bub-
ble radius. After the initial radii of the vertex bubbles
are set, the entire procedure is automatically executed.
First, the generation of edge bubbles is performed and
movement according to the existing dynamic forces among
bubbles is performed, followed by generation and move-
ment of the facet bubbles in the same manner as above.
At the end, according to'the previous procedures, volume
bubbles are generated inside the entire analysis domain.
When the dynamic stability of the entire generated dy-
namic system of bubbles is achieved, the movement stops
and each center of an existing bubble becomes one vertex
in the finite element mesh. Finally, a tetrahedral finite
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Fig. 1. Simplified procedure for automatic mesh generation using
bubble dynamic system.

element mesh is generated utilizing the Delaunay algo-
rithm [3] over the set of vertices generated above.

To avoid problems in 3-D mesh generation such as over-
lapping elements or meshing areas outside of the analysis
domain, which mainly occurs due to the existence of con-
cave and/or multimaterial analysis domains, initially the
entire analysis domain is divided into a very coarse mesh,
so called tetrahedral pre-mesh as shown in Fig. 1. This
pre-mesh is generated utilizing the Delaunay tessellation
method, using only vertices that outline the entire analy-
sis domain.

B. Generation of Bubbles

For good and fast convergence of the bubble system
dynamics, the initial positions and radii of bubbles have
to be carefully determined: Since the generation of facet
and volume bubbles is performed by the same. algorithm,
here, for simplicity we will explain only the generation of
facet bubbles. The bubble generation procedure can be
divided into two main procedures:

o definition of the initial bubble position, and
o computation of the radius of each bubble.

C. Definition of the Initial Bubble Position

The definition of the initial position of each facet
(and/or volume) bubble is executed according to the fol-
lowing procedure: .

s The entire analysis' domain is divided into a very
coarse tetrahedral mesh called pre-mesh as shown in
Fig. 2a.

o Each boundary triangula.r facet of each pre-mesh
tetrahedron is transformed from world coordinate
system into X-Y plane as shown in Fig. 2b.

o the ‘trénsforme'd .bo_ﬁndary facet is ma.pped onto an
area coordinate system Ls~L3 in that manner that

the vertex with the smallest radius of vertex bubbleis

always placed at the center of the coordinate system
as shown in Fig. 2c. '

L,

pal
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t

d) Area coordinate Ly

¢) Area coordinate system

Fig. 2. Definition of candidate 'points for facet bubbles.

e The number and density of the generated bubbles
is very important. If the number of bubbles is too
low and they are set too coarse, a finite element
mesh with low mesh quality will be generated. On
the other side, if the number of bubbles is too big,
and they are set too dense, a large computation time
is needed to achieve the system’s stability. In our
method setting of the number and position of bub-
bles is executed in two steps: (1) Generation of can-
didate points inside the mapped triangular facet, and
(2) decision on which of these candidate points will
become a center of a new bubble.

For the generation of the candidate points, we used
an exponential function for both local coordinates L
and L3, respectively. The value of L3 is computed
according to the following equations:

dt -1 '
Ly=3—1 i )
Tend
d=-="5 3
Tst ()

where 7, is the radius of a vertex bubble at the cen--
ter of the coordinate system (the smallest radius),
and renq is the radius of the terminal vertex bubble
along line L3 (see Fig. 2c). The same procedure is
performed for area coordinate L. Next, each cross
sectional point which belongs to the mapped trian-
gular surface becomes a candidate point for setting a
new bubble. :

However, not every candidate point becomes a new
bubble. - For each candidate point to become a new
bubble the following iniequality must be satisfied:

B (rean +Toig) < d @

where r¢qn, and 1014 are the radii of the candidate bub-
ble and the previously existing bubble in the neigh-
borhood of the candidate point, respectively, while
d is the distance between bubble’s centers as shown
in Fig. 3. If a candidate point satisfies the above in-
equality, then a new bubble is set at that point. Oth-
erwise, the procedure continues with the next avail-
able candidate point until all candidate points are
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Fig. 3. Decision if a candidate point becomes a new facet bubble.

tested. The coefficient 0.5 < 8 < 1.0 is defined by
the user. Our experience shows that setting 8 = 0.75
almost always ensures generation of finite element
meshes with high mesh quality at a reasonably fast
computation time..

Finally, we would like to point out that setting the volume
bubbles is executed by a simple extension of the above
algorithm into the third dimension.

D. Computation of the Radius of Bubbles

The radius of each new bubble is interpolated using the
radii of all vertex bubbles of the pre-mesh tetrahedron
inside which this new bubble should appear as shown in
Fig. 4. The interpolation is done according to the follow-
ing exponential equation L

r(L1, Lo, L3, L) = A eBLCLADL) | (5)

" where Ly, Ly, L3, and L, are the volume coordinates, and
the coefficients A, B, C, and D are computed using the
radii of vertex bubbles r1 ~ rq [1].

III. MESH GENERATION UsING DELAUNAY
' TESSELLATION METHOD

In the previous section we discussed the generation of
a suitable set of vertices distributed into the 3-D space
according to the dynamic bubble system. Next, we speak
on how to generate a correct tetrahedral mesh division
using this set of vertices, utilizing a Delaunay tessella-
tion algorithm. The Delaunay algorithm works fine with

a convex domain, but, it usually exhibits problem with .

subdivisions of concave domains. Additionally, meshing
of multi-material domains can sometimes result in incor-
rect meshing. To solve these problems, we perform mesh
generation for each object separately. However, in some
cases such as that shown in Fig. 5a, the Delaunay tes-
sellation can not be correctly executed without adding

Fig. 4. Computation of radius of volume bubbles.

additional vertices, especially on the boundary planes. In
our algorithm, the generation of additional vertices is en-
abled and a new vertex can be added either at the center
of the fictitious triangle generated from three cross sec-
tional vertices between the boundary plane and the edges
of an incorrectly generated tetrahedron (see Fig. 5b), or
at the center of the boundary edge between two bound-
ary ver)tices of the incorrectly generated tetrahedron (see’
Fig. 5¢).

A. Mesh Quality

The mesh quality is very important factor in order to
obtained an accurate finite element analysis. It is well
known that equilateral triangles in 2-D and equilateral
tetrahedrons in 3-D provides higher accuracy of the results
than flat or slender triangles or tetrahedrons. Therefore,
we used the values of the coefficient Q

_ __radius of inscribed sphere ©)
o radius of circumscribed sphere ’

as a geometrical mesh quality estimatory If the values of
@ approach towards 1 the qu’a'lityF of the developed mesh
is high and the shape of the generated tetrahedrons is
almost equilateral. On the other side, if the coefficient Q
approaches 0, the mesh quality is low and the generated

tetrahedrons are flat and slender.

'IV. APPLICATIONS

The usefulness of th
generation method b

on dynamic bubble system was
verified on two examples. The first example is a model
of a reactor which consi s of a yoke and a square coil,
for which the generated mesh is presented in Fig. 6. Fig-
ure 6a shows the entire mesh, while Figs. 6b and 6c show
the generated meshes separately for the air domain and
the yoke-coil domain’. “As can be seen, the developed mesh
has smooth and graded mesh densities with high mesh
quality. Meshing of the most difficult part, the very thin
air gap regions, was done correctly and smoothly as can
be seen from Fig. 6b. '

The second example was a test model developed by the
Japanese Institute of Electrical Engineers (JIEE). Gener-
ated finite element meshes for the entire analysis domain,
air gap region and objects regions are shown in Figs. 7a,
b and ¢, respectively. Similar to the reactor model, a
mesh with high quality and graded mesh density can be
observed. The shapes of the tetraheda generated around
coil-ferrite-plate area are almost equilateral.

Regarding mesh quality, we checked the distribution of

the mesh quality coefficient Q with ‘the number of gen-

erated tetrahedrons for both models. ‘Both - models have

Boundary plane Boundary plane
Added vertex
W
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~
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Fig. 5. Adding vertices for concave domains.



Fig. 6. Reactor model: (a) Final division map (b) Air region
(c) Object region. By )

more than 80 % of the total number of generated finite el-
ements with mesh quality coefficient larger than 0.7. The
average values were 0.8 for the reactor model, and 0.82
for the JIEE test model. Table I, shows number of nodes,
finite elements and a computation fime for the generated
finite element meshes using an SGI 02 Workstation.

S\, CONCLUSIONS

In this paper, a new method for 3-D automatic mesh
generation using the dynamic bubble system is presented.

The main features of the proposed method are: small in-
put data, applicable for various complex geometrical do-

v TABLEI

GENERATED FINITE BLE?AENT MESH DATA :
Model Nodes _ Elements Computation time
Reactor 2,867 15,296 142 (s)
28,269 675 (s)

JIEE Model 5,083
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Fig. 7. Test model of the JIEE: (a) Final division map (b) Air region
(c) Object region. Slied .

mains, generation of meshes with graded densities and
high quality tetrahedra. As a future work, we would like
to further improve the: computation speed and to apply
this meshing algorithm for 3-D adaptive mesh generation.
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