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ABSTRACT ~ We propose a new analytical method
for computation of magnetic flux lines in 3-D space.
Using the results obtained from finite element analy-
sis and the magnetic flux line equation in 3-D space,
the sequence of line segments that construct the mag-
netic flux line is computed analytically. The proposed
method reduces computational time by nearly five
times for the same accuracy with existing procedures,
providing cheap and efficient computation. The pro-
cedure and some examples to present the usefulness
of the proposed method are described.

1. INTRODUCTION

Large-memory, high-speed computers together with
progress in numerical analysis, have assisted researchers in
tackling the solution of increasingly complex and higher-
dimensioned fields. With these developments, demand for
good visualization techniques of computation results has
been increasing [1]. For example, one common method for
aiding in understanding the behavior of three-dimensional
magnetic fields is the graphic illustration of magnetic flux
line distribution. By displaying magnetic flux lines, the
observer can clearly and simultaneously understand the
direction, magnitude and loci (stream lines) of a vector
field. The authors have already succeeded in stereo visu-
alization of magnetic flux lines calculated from results of
finite element analysis [2]. Magnetic flux lines correspond
to stream lines in fluid flow areas, for which many ex-
perimental visualization methods have been proposed [3].
The imaginary particle tracing method [4], used in [2], 1s
a general computational method for magnetic flux lines.
Unfortunately, this method for calculating the magnetic
flux lines leaves the following problems unsolved:

1. Discontinuity of the magnetic density vector on the
element boundaries.

2. Cumulative error.
3. Computational cost.

To solve the aforementioned problems, in this paper the
authors propose a new analytical method for the compu-
tation of magnetic flux lines, using results obtained by the
A~ ¢ 3-D finite element method with second order tetra-
hedral elements. To solve the first problem, we adopted
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a first order tetrahedron finite element as a visualization
mesh where the values of the magnetic flux density vector
at each node are defined. To solve the second and third
problems, we developed a new analytical procedure. The
procedure and some examples are described to present the
usefulness of the proposed method.

II. PROBLEMS OF TRADITIONAL METHOD

As previously mentioned, the imaginary particle tracing
method is a general computational method for calculating
magnetic flux lines. Unfortunately, however this method
does not solve the following problems:

1. Discontinuity of the magnetic density vec-
tor on the element boundaries: Because the
magnetic flux density vector is obtained by rota-
tion of magnetic vector potential, discontinuity in
the magnetic flux density vector occurs on the ele-
ment boundaries. An example of this is the mag-
netic flux density vectors at point P on the bound-
ary between the two elements a and b in the 2-D
model shown in Fig. 1. Occasionally, the magnetic
flux density vectors B, and B, calculated by using
vector potential of the elements a and b, respectively,
turn toward the elements b and a. This discontinuity
makes calculation of the magnetic flux line at point
P impossible.

Fig. 1. Magnetic flux density vectors on element boundaries.

2. Cumulative error: The magnetic flux line equation
is given as follows
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where t is auxiliary (supplemental) variable. The
magnetic flux line at point Po(zo,y0,20), which is
traversed by the line, is approximated by a short line
segment whose direction corresponds to that of the
magnetic flux density vector at that point. The next
point on the magnetic flux line Py(z;,y1,21), is cal-
culated by

P; =B(Po) - As+ Py, (2)

where As is a step width for iterative calculation.
This procedure in each step leads to cumulative error
as shown in Fig. 2,

éalculated magnetic flux line

AS

\

'~ Magnetic flux line passing
“ ' ‘through point P
Po (Xo,Y0,Z0) :

'iFig. 2. Cummulative error.

3. Computational cost: To obtain highly accurate
magnetic flux lines, the number of computational
points by which magnetic flux lines pass must. be ade-
quate and the value of As should be émall. Higher ac-
curacy; therefore, automatically indicates an increase
in both time and cost for computation..

1. OUTLINE OF THE PROPOSED METHOD

To solve the first and second. aforementioned ;problems,
as well as to realize high speed display, various measures
are taken: First a 3-D display space, which is taken from
the analyzed region or a part thereof, is divided into a
regular mesh of hexahedra (see Fig. 3). Next, as a new
visualization mesh, a hexahedron by which the magnetic
flux line under calculation closely passes is divided into
six tetrahedra. This new visualization mesh in general
is not the same with computation mesh. The values for
magnetic flux density vector B at each node of the vi-
sualization mesh are calculated via finite element analy-
sis. By adopting the visualization mesh, the second and
third problems are easily solved and the magnetic flux line
in each tetrahedron can be analytically calculated very
quickly.

The three components Bz, By, and Bz of the magnetic
flux density vector at the arbitrary point P(z,y, z) inside

a tetrahedron are given as follows:
d
+< d2 } (3)
d3

B, ay b z
By ¢ =|ax bo 2| -y
Bz asz 53 C3 z

where ag, by, ¢k, di, (k = 1,2,3) are constants determined
by the nodal coordinates z;,y;, z; and the values of mag-
netic flux density vectors B;, (j = 1,...,4) at the four
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nodes of a tetrahedron. By substituting (3) into (1), we
get

%—? =Ex+f, 4
where
x=(z,9,2)7,
a b o
E= [Gz b2 ey ] ' (5)
ag b3 c3

= (d1,d,ds)T

and T stands foi‘imnépose; ‘Applying the Laplace trans-
formation to'(4) leads to ‘ ’

©

where xg = (2o, ¥0,20)” is the starting point of the flux
line. For an arbitrary value of ¢ in (6), we can accurately
obtain the points traversed by the magnetic flux line,

Inthe visualization tetrahedron mesh shown in Fig. 4,
the magnetic flux.line starting at point Py passes through
point @, which, at the same time, is the starting point in
the adjacent finite element. .It is necessary, therefore, to
use the linear convergence method to accurately obtain
the cootdinates of point Q. By using the linear conver-
gence method for ¢, the volume coordinate ¢;, is made zero
and we can then obtain a point sufficiently close to Q. To
reduce the number of iterations in the linear convergence
method, the estimated value t at point Q is obtained by
the following method. As shown in Fig. 4, the half-line
through point Py, the direction of which coincides with
the magnetic flux density vector B, at point P is con-

sidered.. First, we calculate the points of intersection Q;-
on the half-line and the three planes including the trian-
gular planes of the tetrahedron element except the plane
that contains point Py, where j is equal to or less than 3.
Then, point Q; is selected where PyQ; is shortest. The
value of ¢ at point Q) is estimated from the length of seg-
ment, PQQ.;'. Point Q on the surface of the tetrahedron is

calculated by making one of four volume coordinates, ;, -
converge towards zero. If all volume coordinates at point
Q. &, (7 = 1,...,4) satisfy the condition 0 < &; < 1, the

L xty=Blxg+B-10) - B 11,
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Fig. 4. Estimatjon of t between points Py and Q.

magnetic flux line exits the element through that point. If
&; is either negative or greater than 1, the second shortest

—

length of PoQ; is adopted for obtaining Q.

IV: MaéNETIC FLux Ling CALCULATION ALGORITHM

of points; where: the distance between two points in the
sequence is controlled by the arbitrary basic distance As.

‘¢ Step 1: Extract the rectangular element R-; includ-
ing the starting point Py, where R, is constructed by
eight grid nodes, as shown in Fig. 5(a).

¢ Step 2: Divide the rectangular element R, into six
tetrahedron elements, 7} ~ T, as shown in Fig. 5(b).

¢ Step 3: Extract the tetrahedron element To, includ-
ing Py, from the set of tetrahedra Ty ~ Ts.

¢ Step 4: Calculate point @, where the magnetic flux
line passes from To, by using the method described
in the previous'section. ' :

* Step.5: If P,Q is greater than As, the sequence of
points which are generated by dividing the magnetic
flux line between P, and into n equal parts are
calculated from (6), where n is calculated by

n=[ 29y, )

a) Rectangular region R,
Fig. 5. Rectangular region R, and its subdivision.

b) Division map

where [ ] shows truncation for integer.

¢ Step 6: Point Q is then re-set as point P,. If the
tetrahedral element excluding T} and including B,
exists in R,, the tetrahedron is set as To and go to
Step 4. If the element does not exist, we proceed to
the next step. :

* Step 7: If point Py reaches the boundary of the
display space, the process is finished. Otherwise, the

adjacent rectangular element with R, and including

By is renamed as Rx, angi 80 to Step 2.

nsity; it is not neces-
sary to keep in memory all tetrahedral elements in the
displayed space. As the grid nodes line up regularly, mem-
orizing the coordinate data of all the nodes is unnecessary,
advantageous from the point of view of memory-size lim-
itations. In addition, it is €asy to select the rectangular
element R, through which the magnetic flux line passes,
also advantageous for keeping computation time to a min-
imum. A

V. ResuLts anp APPLICATIONS

The mainfeature of the proposed method is its low com-
putation cost for such high-accuracy display. To obtain
sufficiently accurate magnetic flux lines in [2], we must
reduce the length of the line segment As as much as pos-
sible. This, however, lengthens.computation‘ time. In the
proposed method, the ‘magnetic flux line is analytically

computed by giving the starting .poi,np of-the line and an

ular, finding the next element in which ‘the magnetic flux
line passes is ‘easy, decreasing the computation time. To
demonstrate the proposed ‘method, 'a model constructed



method was then compared with the traditional method
[2]. The display space 250 [mm] x 200 [mm)] x 200 [mm],
was divided into regular mesh of hexahedra with constant
width of 5 [mm]. For one magnetic flux line, the results
are shown in Fig. 6. The computation time is presented
in Table I. From Fig. 6 we can see that using method [2]
for longer line segments enlarges the computation error.
Using line segments As = 1- 10~ [m)], the magnetic flux
lines obtained by both methods have almost the same ac-
curacy. The proposed method, however, reduced compu-
tation about time by nearly ﬁve times. In Fig. 7 the dis-
tribution of the magnetic flux lines in the entire analyzed
domain is presented. Due to the existence of eddy current
distribution in the aluminum plates, magnetic flux lines
are obstructed near the aluminum plates. Fig. 8 shows
the eddy current stream lines. The observer can easily
see that the eddy current stream lines are warped near
the longer edge of the.aluminum plates. The computa-
tion was performed on a Silicon Graphics IRIS - 4D / 20G
CPU (10 MIPS) computer

Fig. 6. Comparison between'traditiona.l and proposed method.

Fxg 7. Visualization of magnetic flux lines.
VI. ConcLusIoNs

A new analytical method for computation of magnetic
flux lines with higher accuracy and reduced computation
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Fig. 8. Visualization of eddy current lines.

TABLE 1
Results comparison
[ ‘Proposed
Traditional Method Method
As (m) ] 10-2 | 10-° [ 10-% | 10-° | 10-° 102
t(sec) |3 3 | 5 5 10 2
Che [ 1T [ 5 1 35T 4151 6 ]

time was presented The main features of this method are
as follows:

1. Continuity of 'magﬁetic flix lines is satisfied with de-
creased computatlon tlme and cost. '

2. Adoption of the vxsuahzatxon mesh énsures ¢ontinu-
ity of the magnetic flux densny vector at element
boundaries. ; '

3. The proposed meﬁhbd can be'applied to other ana-
lytically or numerically obtamed vector data, such as
BEM. . ,

The problems which arise in visualization of the rapidly
varying fields by uniform grid, can be overcome by sub-
division of the display space into a few sub-display: areas
where again regular but differently dense grids can be
used. The analytically obtained ending points. from one
regular grid, ¢an be iised-as a starting points of the same
magnetic flux line in the adjacent regular grid
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