T-MAG/30/5/1/08925

A Parallel Processing Method in Finite Element Analysis

using Domain Division

Kenji Iwano
Vlatko Cingoski
Kazufumi Kaneda
Hideo Yamashita



3598

IEEE TRANSACTIONS ON MAGNETICS, VOL. 30, NO. 5, SEPTEMBER 1994

A Parallel Processing Method in Finite Element Analysis
using Domain Division

'Kenji Iwano, Vlatko Cingoski!

Kazufumi Kaneda,

and  Hideo Yamashita

Electric Machinery Laboratory, Faculty of Engineering

Hiroshima University, Kagamiyama 1-4
Higashi-hiroshima, 724 JAPAN

ABS'I‘RACT — Current parallel procasmg ap-
proaches in finite element analysis can be roughly
classified into6 two categones' In the domain method,
an analysis region is divided into subdomains and
one CPU assigned to each subdomam. Alternatively,
one may calculate in parallel the matrix and vector
products which arise in the process of solving the
set of simultaneous equations. In this paper, we
present a hybrid of the above two methods. Itera-
tion to bring values on the subdomain boundaries
coincide is not necessary, but the idea of domain di-
vision is used.

I. INTRODUCTION

The availability of high-speed and large-memory com-
puters have enticed researchers to tackle solution of ever
more complex and higher dimensioned problems. Nu-
merical techniques have also made startling progress,
but computation time has not decreased, if anything,
an opposite trend is in evidence. As the rate. of im-
provement in the processing speed of CPU's is a limited
quantity,-it is‘desirable to develop more efficient algo-
rithms.: One approach to reducing computation times
is ‘parallel processing; several domain division methods
have already been presented [1],[2]. However; in such
methods, the values computed at subdomain bound-
aries by individual CPUs generally differ, so iterative
calculation to bring these values into coincidence is re-
quired. This sacrifices much of the potential speed-up,
and the processing time depends upon how the analysis
region is divided. On the other hand, a method which
does not use the subdomain concept has been proposed
[3]. In this method, the products -and summations for
matrix and vector in iterations of the ICCG method
are executed in parallel. After incomplete Cholesky de-
composition, the large coefficient matrix is divided into
smaller sub-matrices. In order to calculate small matrix
and vector products in parallel, the coefficients far from
the diagonal, that is, on the outside of the small ma-
trices, are ignored. Therefore, asthe number of CPUs
increases, the number of ignored coefficients increases,
ultimately requiring a larger number of iterations.

Marmuscript received November 1, 1993:
1The author is on leave from Electrotechnical Faculty, Univer-
sity ”Sv. Kiril i Metodij”, Skopje, Macedonia

In this paper, we propose a new parallel method for
ICCG method. The analysis region-is diyided into sub-
domains, and node numbering is carried out on each
subdomain. . Then, using an JCCG method to solve
the set of simultaneous équations, the calculation inside
each subdomain can be executed in parallel. Parallel
calculation of products of (LU)‘ and vectors, previ-
ously thought to be difficult, is made possible by using
the sub-domain concept. This is in addition to parallel
calculation of products and of matrix and vector sum-
mations. This method allows 95% of the I 'CCG method
processing to be parallehzed The main advantage of
the new method is that it is not necessary to make co-
incident the solution on the boundaries, even though
the sub-domain method is used. Here, to examine the
proposed method, we discuss the two dimensional finite
element method using second order triangular elements.

II PARALLEL COMPUTATXON METHOD

Much of the procaslng nme for finite element analy-
sis is consumed in solving a large system of simultaneous
equations, A -x.= b.. Two methods, the direct method
and the iterative one, are generally used. As the di-
mensions of a system of simultaneous equations become
larger, the iterative method is preferable. For this rea-
son ICCG, an iterative method, is generally used in
finite element analysis. Fig. 1.shows a flow chart of
the ICCG method,; in the first, pre-processing step, the
coefficient matrix is incompletely decomposed by the
Cholesky method..

The processmg time for thls step is about 5% of
the total processing time. The main process of ICCG
method is the iterative ca.lculatxon This process spends
a great deal of time in computing:

1. The products of matrices and vectors,

2. The product (LU)‘i -b, where L and U are lower
and upper triangular matrices composed from an
‘incomplete decomposition of A,

3. The.inner vector product and vector summation.

Items 1 and 2 above each consume about 40% of the
total processing time of JCCG, while 3 consumes about
15%. Thus the iterative calculation process consumes
about 95% of total processing time of /CCG.

0018-9464/94$4.00 © 1994 IEEE



Incomplete
Cholesky Decomposition

Iterative Calculation

b « Ax

=1
x « (LU)'b
f’Flg. 1. IcCG Processing Procedure.

Therefore, if these three operations can be executed
in parallel on multiple CPUs, the total computation
time will be reduced. Computing the matrix and vec-
tor products in parallel is trivial, because the products
of rows of the matrix and the vector are independent.
However, handling the operation (LU)~! - b in paral-
lel is usually very difficult, because this operation is
composed of forward elimination and backward ‘substi-
tution. In these processes, the calculation on a row is
influenced by the elements in other rows which have
already been calculated. Therefore, in the case of a
band structured coefficient matrix as shown in Fig. 2(a),
parallel ‘computation is impossible. But if the matrix
structure is like-Fig. 2(b), the elements in submatrices
A and'B do not influence each other, and the calcula-
tion of these submatrices ¢an be performed in parallel.
In finite element analysis, the analysis region is usually

- composed of only one region, therefore the coefficient
matrix does not exhibit a form like Fig. 2(b). But if
the region is divided into multiple subdomains, and the
node numbering is done first for interior nodes in each
subdomain and next for boundary nodes of subdomains,
then the coefficient matrix ‘assumes the form shown in
Fig. 2(c). 'In’this case, the subdomains are not inde-
pendent of each other, because they" are connected by
the boundary nodes of subdomains, but interior nodes
in subdomains are independent of each other; therefore,
the interior subdomains can be dealt with in parallel.
Boundaries must be handled after the parallel opera-
tion on the interior subdomains has been finished. If
the number of nodes on the boundaries becomes large,
parallel processing for the boundary nodes becomes de-
sirable. This is in fact possible: by dividing the nodes
on the boundaries into several groups, the submatrix B
in Fig. 2(c) becomes similar to the global matrix just
shown in Fig. 2(c). Parallel processing for the bound-
aries is then possible, after the parallel processing for
the interior subdomains has been finished. Some bound-
ary nodes are not included into any group. The num-
ber of these nodes is small, so they can be processed

3599

©)

Fig. 2. Coefficient matrix.

by one CPU.

Before describinig ‘sur: parallel processing. algorithm
for the computation (LU)™! - b we define some terms.
If n CPUs are availableion a computer, the analysis
region is first divided into'n subdomains. The set of
interior nodes'in thé#-th subdomain is defined as A,
(i =1~ n). The nodes on each boundary are divided
into n groups, which are'defined as B;, (i = 1 ~ n),
and the set of nodes connecting each B; is called C (see
Fig.3). ‘

» ,,;/GroupBl '

Subdlomaiﬁ.,,' Subdomain

Group C - —GroupB,

Fig. 3. Grouping of nodes on boundary.

The parallel algorithm for taking the product of
(LU)~? and a vector b is as follows:



3600

o Forward elimination (y = L™' - b)

— Step 1: Parallel processing of the set of inte-
rior nodes A;, (i = 1 ~ n) for each subdomain
onn CPUs.

— Step 2: Parallel processing of the group of
boundary nodes B;, (i =1~ n) onn CPUs.

— Step 3: Processing of the set of nodes C on
one CPU. :

o Backward substitution (x = U™' - y)

— Step 4: Processing of the set of nodes C on
one CPU. '

— Step 5: Parallel processing of the group of
boundary nodes B;, (i =1~ n) on n CPUs.

— Step 6: Parallel processing of the set of inte-
rior nodes A, (i = 1 ~ n) for each subdomain
on n CPUs.

In this paper, the matrix/vectof product is also cal-
culated in parallel.

III. NUMERICAL EXAMPLES

We implemented the proposed method on the
Symmetry S81, produced by Sequent Co..  The
Symmetry is a M1 MD type parallel computer con-
taining 14 CPUs and 32 Mbyte of main memory. In
this computer, multiple child processes are automati-
cally generated during execution, and each child process
is executed by a separate CPU. The memory includes
both distributed and shared memory. Distributed mem-
oty is accessible from a single CPU, and shared memory
from all CPUs. ‘

The two dimensional magnetostatic models shown in
Fig. 4 are used, and the three meshes shown in Table I,
with various numbers of nodes and elements, are exam-
ined.

Table I
Number of nodes for each model

Case | Model 1 | Model 2
A 3033 3514
B | 6185 5438
C 9505 | 9117

The results of test runs are presented in Fig. 5, where

the computation time for the ICCG method is shown..

The value of Sp is defined by

T
==-100
So T, 00,

O
where T} and T, are processing times on one CPU and
n CPUs, respectively. For comparison, the results using
Nour’s method [1] are also shown in Fig. 5(a).

=0

A
A=0

0

_metal (1,=1000) |9

A=
A

-, coil

4

,‘Q-A-::()
T

B)-
Fig. 4. Models.

As is obvious from Fig. 5, the value of Sp decreases
as the number of CPUs increases. At the same time,
the speed-up decreases, because the ratio for incom-
plete Cholesky decomposition, where parallel processing
is not done, increases. As is also obvious from Fig. 5,
the ratio of the processing time with n processors to
the processing time with one processor (So) does not
increase with the number of nodes. Our method is su-
perior to Nour’s [1].

For reference, Fig. 6 demonstrates that the processing
time increases with the number of nodes and elements
for a fixed number of CPUs. In Fig. 6, the value on
the ordinate axis is the processing time in units of the
processing time for-case 4. ... -

In order to examine the proposed method more in de-
tail; the speed-up ratio given by the following equation
is considered. - T :

/ T Thn
Table II shows the speed-up ratio of the three cases

for two models. In Table II, the speed-up ratios are
from 85% to 89% when two CPU's are used, and from

e +100 2)



So(%) modell
120
100_' ——o—  Proposed method - case A
—— Proposed method - case B
80- ——a—  Proposed method - case C
] ~—-t—~  Nour’s method
60 -
40 -
~$____~--.
20+
G T T T T

0 2 4 6 8 10
number of CPUs
a)

So(%) model 2
120 .
| ——0— Proposed method - case A
100_ ——— Proposed method - case B
80- ——#—— Proposed method - case C
60+
40+
20
(1] s L ——

0 2 4 6 8 10
number of CPUs

b)
Fig. 5. Relationship between number of CPUs and Sy

70% to 83% when ten CPUs are used, very respectable
speed-ups. The speed-up ratio falls short of 100% be-
cause the percentage of the total processing time spent
in Steps 3 and 4 increases as the number of CPUs in-
creases.

Table IT
Speed-up ratio
model 1° » model 2
CPUj A | B | C.[[ A B C
2 || 86 | 84 | 866 || 889 | 883 | 88.4
4 || 8.0 | 750 | 800 | 81.1 | 824 | 865
6 01758 | 7156 | 777 || 778 | 739 | 88.1
8 1767 | 117 | 747 || 782 | 7197 | 854
10 | 702 | 702 | 750 || 75.1 | 78.0 | 837

3601

S,(p.u.) —%— Model#1: 1 CPU

67 ~——*— Model #1:10 CPUs
——*— Model #2: 1 CPU
Model #2:10 CPUs

[ S

Ca;e B Ca;e C

Fig. 6. Increase of processing time with nodes & elements.

IV. CoNcLUsION

In this paper, a parallel algorithm to solve a set of
simultaneous equations using the /CCG method is pro-
posed. Iterative calculation to make the values on the
boundary of subdomams coincide is not necessary. The
principal charactenstlc of the proposed method is that
the ratio of the processing time using multlple CPUs
to the processing time thh one processor does not in-
crease with the number. of nodes and number of ele-
ments in the analyses. The best performances by the
proposed method can be achieved for approximately the
same number of nodes for each subdomain, which pro-
cedure is under development.

REFERENCES

[1] B. Nour-Omid, A. Raefsky, G. Lyzenga: "Solving finite ele-
ment equation on concurrent.computers,” Parallel Computations
and their Impact on :Mechanics, ed. A. K. Noor, ASME AMD-
Vol. 86, (1987), pp. 209-227.

[2] C. Farhat and E. Wilson: ” Concurrent iterative solution of

- large finite element systems,” Comm. Appl. Numer. Meth., Vol. 3,

(1987), pp. 319-326.

[3] K. Ueyania, H. Kaneko & K. Umezu: "Parallel processmg
technique,” P'roceedzngs of the 3rd Seminar concerning numeri-
cal analysis for eleqtromagnetzc ﬁ.eld Okayama, Jan. 23-24, (in
Japanese), (1992), pp.-18-23.



	Untitled

