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ABSTRACT - A new mixed procedure for solving the
system of algebraic equations generated by the edge fi-
nite element method (EFEM) for ungauged vector po-
tential formulation is proposed. The singularity of the
matrix of the system obtained by ungauged vector for-
mulation results in unstable and nonuniform conver-
gence rates of the Preconditioned Conjugate Gradi-
ent (PCG) iteration procedure. The proposed method
uses the excellent initial convergence rate of the PCG
procedure, and ‘enables switching from the PCG pro-
cedure to the Gauss-Seidel proceduire when numerical
instability of the former method occurs, continuing
with a slower but more stable convergence rate. The

proposed mixed PCG  Gauss-Seidel procedure re-

quires monitoring of the PCG iteration process, how-
ever, it does not require generation of tree graphs,
rearranging of unknowns inside the matrix of the sys-
tem nor any additional memory.

I. INTRODUCTION

The recently developed ecdge finite element method
(EFEM) exhibits many advantages over traditional nodal
finite element method such as short computational time,
less required memory and satisfaction of proper boundary
conditions only across inter-material boundaries. Using
the EFEM, where unknowns are actually line integrals of
magnetic vector potential over a set of edges of regularly
constructed 3D mesh, the unknown values of magnetic
vector potential are determined up to a gradient function
[1]. To obtain a unique solution for the magnetic vec-
tor potential, knowing that the line integral of a gradient
function over a closed loop must vanish, we must perform
magnetic potential gauging with an arbitrary vector field
u which does not possess closed field lines [2]. It is the
same as assigning arbitrary values (e.g. zero) to all edges
that belong to a tree graph. The results show, however,
that although the matrix is nonsingular, the PCG itera-
tion process is poorly conditioned, and a large number of
iterations is required.

Efforts to obtain an optimal tree graph have been in-
vestigated [3], but only poor convergence rates have been
achieved. Some authors have proposed, however, another
self-gauging method [4], which solves the problem of poor
convergence rates with computational time expenses for
renumbering and rearranging the unknowns inside the
matrlix — nearly the same as the generation of a tree
graph.

In this paper, the authors propose a new mixed algo-
rithm for solving the singular system of algebraic equa-
tions generated by ungauged vector potential EFEM. This
method is free of the aforementioned drawbacks, such as
the generation of tree graphs or the rearranging of un-
knowns. The proposed method requires only the monitor-
ing of the PCG iteration process with no additional mem-
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ory and is easily applicable especially for solving nonlinear
electromagnetic and eddy-current problems and problems
with arbitrary shape of coils where the solenoidal char-
acter of source current div J; = 0 can not be exactly
satisfied in the whole analysis region. The electric vector
potential T defined as

Jo=V x Ty , (1)

exactly satisfies the solenoidal character of the source cur-
rent Jo but only for each finite element separately, and for
previously known direction of the source current. How-
ever, if the direction of the source current Jo is unknown
or it is highly changeable as in the case of circular or other
arbitrary shape of coils, then the solenoidal character of
the source current could be exactly satisfied only by ex-
plicit solution of equation

'Vx(%VxTo)=0 , )

which obviously is further computation time and memory
consuming.

II. SOLUTION OF A SYSTEM OF LINEAR ALGEBRAIC
EQUATIONS

Whenever we treat any physical problem described in
its finite element approximation, the solution is always
obtained by solving a system of linear algebraic equa-
tions. The method for solving such a system, therefore,
is of great significance. The practical methods for solving -
a system of linear algebraic equations from a numerical
point of view can be divided into two large categories: di-
rect methods and methods of successive approximation, or
iterative methods. The direct methods provide a solution
of the system of equations, usually by employing two op-
erations: forward elimination and backward substitution.
They are easy applicable, however, they, require consid-
erable computation time and memory expense. Starting
from a certain approximated value of the unknowns, the
iterative methods obtain new and “improved” approxi-
mated values at each iteration step. This procedure is
repeated until the desired error is reached. As the num-
ber of equations in the system of algebraic equations in-
creases, the methods of successive approximation become
favorable over direct methods.

A. Preconditioned Conjugate Gradient (PCG) Method

The PCG method is widely used for solving systems
of algebraic equations generated by the finite element
method. Here, we will briefly point out some characteris-
tics important to our further discussion.

To achieve a quick solution with low memory require-
ments in finite element analysis, two procedures are sig-
nificant: storage and solution. The PCG procedure is an
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iterative procedure, or more accurately a semi-iterative
procedure, because usually it enables reaching the solu-
tion of the system of algebraic equations after fewer iter-
ation steps than number of equations. In this procedure,
the solution of the algebraic system of n equations

Sx=b , (3)

where S is nx n matrix of the system, x is the vector of un-
known variable, and b is the vector of the right-hand side
or vector of the source, is modified by its precondition-
ing with the preconditioning matrix B into the following
system

BSB'B~'x] = Bb . (4)

As a preconditioning matrix, it is possible to use the in-
verse of an approximated Cholesky factor (ICCG). In our
case, however, we used the Evans’s preconditioning [5],
where the matrix of the system is factorized as

S=DAD (5)

where the terms of the diagonal matrix D and matrix A

are
I RRVE ST i=j
Dl] - { 0! 1;&] - (6)
A _ Dij
Aij = DaD;; )

This factorization is important. for two main reasons:

I. Only the diagonal terms of matrix D need to be
stored, and '

2. Since all diagonal terms of matrix A are 1, we may
write the rest of matrix A over matrix S. This pro-
cedure saves a significant amount .of memory and en-
ablées, whenever necessary, to recover matrix S from
matrix A directly, with no additional memory re-
quirements. '

These two benefits, as clearly seen, are crucial in keep-
ing memory requirements to a minimum and allowing the
casy reconstruction of the matrix of the system S at any
moment during the analysis.

B. Gauss-Seidel Iteration Procedure

The Gauss-Seidel iteration procedure is an improved al-
gorithm of the simple iteration procedure [6], where after
finding an approximation for a component, we immedi-
ately use this approximation to find the next component
and so on. This iteration procedure has the following
characteristics:

1. A slower convergence rate than the PCG procedure,
as here any successive approximation is not.always
in the correct direction (not orthogonal) toward the
exact solution, and

9. The convergence rate is strongly influenced by the
“initial approximated solution: If the initial solution
is close enough to the exact solution, the iteration
process converges much faster.

These two characteristics also have significance to our fur-
ther discussion.
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I11. UNGAUGED VECTOR POTENTIAL FORMULATION IN
EFEM

Problems that arise in the solution of a set of algebraic
equations generated by EFEM using ungauged magnetic
vector potential formulation have already been discussed
[1] - {4] For purpose of continuity in our discussion, these
problems are briefly presented here.

" Using magnetic vector potential formulation, the gov-
erning equation for magnetostatic problems becomes

Vx<-1-VxA>=Jo ) (8
@

where A is magnetic vector potential, Jg is source cur-
rent density vector and p is magnetic permeability. The
uniqueness of the solution of magnetic vector potential A
can be ensured by setting its curl and divergence:

VxA=B |, 9)
V- -A=0 (10)

Eq. (10) is usually employed in nodal finite element analy-
sis as a Coulomb gauge condition, but in the case of edge
finite elements, it is not applicable. The reason is the
nature of the first order edge finite element shape func-
tions, which posses no divergence and have a constant
curl. Therefore, (10) is automatically ensured, and the
uniqueness of the solution is not provided since any func-
tion A’ = A & V¢, also exactly satisfies (8); that is, the
values of magnetic vector potential A are determined up
to a gradient function [1] '

A=-Vo+A , (11)

where the unknown function: A is separated into two
parts, a scalar field ¢, the gradient of which is associated
with all tree graph edges in the 3D mesh, and a co-tree
field A.. By assigning arbitrary values to the scalar.func-
tion ¢ (usually zero), a unique solution for the magnetic
vector potential A, can be achieved. This is the same pro-
cedure as gauging the magnetic vector potential A with
an arbitrary vector field u, which does not possess closed

field lines [2]:
A-u=0 (12)

Applying this gauging procedure to a system of alge-
braic equations generated by EFEM leads to a nonsingu-
lar matrix of the system. Although the matrix becomes
nonsingular, the PCG iteration process is poorly condi-
tioned, and a large number of iterations is required [3].
Conversely, abandoning this gauging procedure leads to a
singular matrix of the system, which results in an initially
fast convergence rate of the PCG method. Unfortunately,
this iteration procedure fails to be uniform and stable if
the iteration process is necessary for a very low residual.
Experience show en obtained with a high resid-
ual rate, the result: ptable from the point of view
of accuracy. To ver conclusion, two simple test
models, presented- were developed.

The first mode

i

g 1,y

which the divergence of the source
current’ density vector:Jq is satisfied ‘exactly (Fig. lga)),
shows ‘a’'good convergence rate and was established to
determine the required ‘residual error that results with
an acceptably accurate solution. Separate test runs were
performed using both the PCG and Gauss-Seidel itera-
tion processes. To analyze the influence of the initial ap-

proximated solution x$°) in the Gauss-Seidel procedure,
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Fig. 1. 'Test models.
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Fig. 2. Stored energy in the model vs. residual value.

two test runs were performed: with zero initial solution
X(O" = 0.0, and with initial solution xgo" =1.0"5, a value
which is much closer to the expected value for magnetic
vector potential A in the analyzed model around the area
of interest (between the core and the coil). The mon-
itoring parameter was the stored energy in the system,
whicli, with a decrease of the residual, should converge to
its stationary value. The obtained results are presented
in Fig. 2. We used the following stopping criterion

b — Sx]|
bl

From Fig. 2, it is apparent that in case of the PCG iter-
ation procedure, the stored energy in the model quickly
converges to its stationary value. The value of the residual
error for which the stored energy reached its stationary
value depends on'the mesh density. Experience shows
that results obtained with residual error of order 10~ in
the PCG ‘iteration procedure almost always can be ac-
cepted as close enough to the exact results. = = :

As: for the Gauss-Seidel iteration process, however,
the stored energy slowly approaches its stationary value
reached for residual error smaller than 107>, In case of
initial solution xsfp ) = ‘_1.0‘5._, the stationary value of the
stored energy was-reached faster and for larger residual
error than that of the zero initial solution.The following
conclusions.are therefore obvious:

g =

(13)

o The results obtained by the PCG iteration procedure
converge very quickly to the exact results. The error
criterion (13) of order smaller than 10~* almost al-

ways can be accepted as low enough which results in
an acceptably accurate solution.

e The Gauss-Seidel iteration procedure enables a uni-
form but slower approach towards the exact solution.
For the same error criterion, the results obtained for
an initial solution closer enough to the exact solution
are more acceptable than those obtained for the zero
initial solution.

The second test model (Fig. 1(b)) is axi-symmetrical
and shows a poor PCG convergence rate mainly due to
the fact that it does not satisfy exactly the solenoidal
character of the source current vector Jo. As a result, the
smallest residual error achieved by the PCG iteration pro-
cedure for extremely dense division mesh using the error
criterion (13) was of order 10~3. Afterwards, the PCG
iteration process starts to diverge (see Fig. 3). To im-
prove the convergence rate, the following procedures are
applicable: developing a more dense division mesh in the
region of the source to improve the solenoidal character of
the source current, explicitly solving (2) in order to input
source current values Jo or developing the tree graph and
proceeding with gauged magnetic vector potential formu-
lation. Each procedure results in an increase of the mem-
ory and computation time requirements, especially the
first procedure, with its unnecessarily extremely dense di-
vision mesh in the area of the slowly changing field, in
other words, the source area. To solve this problem, we
propose a new approach based on mixed solution tech-

‘niques between the PCG and the Gauss-Seidel iteration

procedures, free from the above drawbacks.
IV. MIXED SOLVING PROCEDURE

As -already pointed:out, the PCG method is able
to solve 'the singular: system of equations for ungauged
EFEM, but with residuals that ¢an not be improved be- .
yond a certain limit. At times, however, this residual is
not small enough, resulting in:an unacceptable solution of
the problem (as for the model in Fig. 1(b)). This situation
almost always occurs in problems where the solenoidal
character’ of the source current div Jo = 0 is not exactly
satisfied, such as in the case of circular or other compli-
cated coil shapes and where (2) has to be solved explicitly.
This problem also usually occurs ‘in the solution of eddy-
current and non-linear magnetostatic problems. In these
cases, we want to “forcibly” decrease the residual until
the desired error is attained avoiding solution of (2). .In
the proposed method, this “forcing” 1s done by employing
the Gauss-Seidel solving procedure. . .

. The simplified algorithm of the proposed procedure is
as follows: o e o e

¢ Generating the matrix of thé’system‘ using ungauged
magnetic potential and EFEM.

o Solving the system by the PCG iteration procedure
until numerical instability occurs.

e Switching from the PCG procedure to Gauss-Seidel
* procedure using as an initial approximated solution

the values of u
_-iteration.

nknowns obtained from the last PCG

. Proceéding with the Gauss-Seidel procedure until the
desired error criterion is attained. ’
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Fig. 3 Convergence rate for PCG, Gauss-Seidel and mixed
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Fig. 4 A CPU usage for edge finite element analysis using the
PCG and the Gauss-Seidel solving procedures, respectively.

The convergence rates for ungauged PCG, Gauss-Seidel
and mixed procedures are presented in Fig. 3 for an axi-
symmetrical model with a large minimum PCG iteration
rate (Fig. 1(b)). After the smallest residual that we were
able to achieve by PCGQG iteration procedure was reached
(for example 10™3), we switched to the Gauss-Seidel iter-
ation procedure using the results obtained from the last
iteration of the PCG procedure as an initial approximated
solution and the desired error criterion of 10~* was rela-
tively quickly attained. From Fig. 3 it is obvious that the

mixed procedure enables a better convergence rate than.

either procedure alone, especially the Gauss—Seidel. The
reasons, we believe, are twofold:

o We are still able to maintain an the excellent conver-
gence rate of the PCG procedure at the beginning of
the iteration process,

e We enter into the Gauss-Seidel procedure with an

initial solution close enough to the exact solution to-

obtain a fast and uniform convergence rate.

We want to point out that due to fewer computational op-

crations, the time per iteration is about 15 percent less for-

the Gauss-Seidel procedure than for the PCG procedure.

We also want to emphasize the main problem in the
implementation of the proposed mixed solving procedure
and its solution, i.e. the problem of identification when to
stop the PCG iteration process and switch to the Gauss-
Seidel iteration procedure. This problem oceurs due to
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a nonuniform convergence rate of the PCG method. In
other words, the exact determination of the smallest resid-
ual possible achieved by the PCG method is not easily
accessible. We propose two algorithms for the solution of
this problem: '

1. After the generation of a system of equations, we
store the matrix S and right-hand side b on the ex-
ternal memory device. Afterwards, monitoring the
PCG iteration process, we are able to find the small-
est residual value and the number of iterations when
it occurs and restart the iteration process with the
mixed solving procedure.

2. We monitor the PCG iteration process, and when
numerical instability occurs, we again restart the it- .
eration process with the mixed process. In this case,
we use the factorization of the matrix S described in
the second paragraph of this paper. This factoriza-
tion easily enables reconstruction of the matrix S.

Both procedures required no additional operating mem-
ory, but additional computational work in the first pro-
cedure for input-output activities and in the second pro-
cedure for reconstruction of the matrix S was necessary.
Both procedures, however, require monitoring of the PCG
iteration procedure because of its high irregularity. The
restarting procedure does not affect the total computa-
tional time because the largest portion of the total com-
putational time is consumed by the construction of the
E%@trix)s which fortunately has to be performed only once
1g. 4).

V. CONCLUSIONS

A new mixed PCG-Gauss-Seidel procedure for solving un-
gauged magnetic potential formulation in EFEM is pro-
posed. This method requires the monitoring of the PCG
iteration process, but not the construction of arbitrary
or optimal tree graphs, rearrangement of the number of
unknowns, nor additional memory. It is easily appli-
cable to any model, especially to non-linear magneto-
static and eddy-current problems and for models where
the solenoidal character of source current is hard to be
satisfied exactly.
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