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Fast Multigrid Solution Method for Nested
Edge-Based Finite Element Meshes

Vlatko Cingoski, Ryutaro Tokuda, So Noguchi, and Hideo Yamashita

Abstract—In this paper a fast multigrid solution method for
edge-based finite element magnetostatic field computation with
nested meshes is introduced and its efficiency is investigated.
Special prolongation and restriction matrices were constructed
according to the nature of the edge based field approximation.
The comparison of the computation speed between the multigrid
method and the ICCG method is also presented, showing that the
multigrid method is very promising as a fast solution method for
large system of equations.

Index Terms—Edge finite elements, finite element methods,
iterative methods, magnetostatics, multigrid method, relaxation
methods.

I. INTRODUCTION

ECENTLY, due to the tremendous developments in the
computer software and hardware technology, large-scale

simulations became possible. Solution of various electromag-
netic field problems by means of the finite element method
(FEM) results in a solution of a large system of simultaneous
algebraic equations. To increase the solution speed of such prob-
lems, various methods have already been proposed, the multi-
grid method being one of the most promising [1], [2]. However,
almost all of the present algorithms for multigrid solutions have
been based on nodal approximations, either for the finite differ-
ence method or for the finite element method [1]-[4].

Recently, mainly as a result of its good computational
properties, the edge-based finite element method has emerged
widely for electromagnetic field computation in 2D and 3D [5].
While in ordinary nodal finite element analysis, the unknowns
are sought at each node of a mesh, in case of edge-based finite
element analysis, the unknowns are associated with the edges
(branches) of the finite element mesh. Therefore, it is obvious
that already developed schemes for multigrid  solution on
nodal finite elements can not be used directly for edge-based
finite elements. Some efforts to implement multigrid solution
schemes for edge based elements also appear recently [6], [7].

In this paper, we present an investigation of the efficiency of
the multigrid solution method for edge-based nested finite ele-
ment meshes. For that purpose, we also developed typical pro-
longation and restriction matrices suitable for edge-based nested
meshes calculations. The efficiency of the proposed method is
verified using two 2D models.
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II. FORMULATION

This paper deals with 2D magnetostatic problems. In the case
of edge-based finite element analysis, the gauge condition ¢ =
0 can be used and the electric scalar potential ¢ is eliminated
from the A-¢ formulation. The governing equation is given by

1
Vx(—VxA):J, 1
W
where A and J, are magnetic vector potential and source cur-
rent, respectively, and y is permeability.

III. MULTIGRID METHOD

The multigrid method as its name suggests is a numerical
method for the solution of partial differential equations dis-
cretized using several grids with different grid densities. In its
core it uses the characteristic of some iterative method to rapidly
smooth the high-frequency components of the iteration error
on dense meshes [3]. The Gauss—Seidel or the Jacobi iterative
methods possess this smoothing property, therefore they are
usually used in order to rapidly eliminate the high-frequency
components of the error on the fine mesh. Low-frequency
components, on the other hand are transformed to the coarse
mesh, where a few iteration. steps of the above-mentioned
iterative methods again eliminate them. This procedure is
usually called the coarse grid correction scheme and is briefly
described below:

Step 1) Relax a few times on Koz = f, to obtain an
approximation solution 3. The matrix K5 is the
system matrix, and vectors 3 and f, are the un-
known vector and source vector, respectively. This
step-is called smoothing.

Compute the residual vector ro = f, — Ko%s.
Project the residual vector-onto a coarser mesh using
the restriction operator r1-=. Rrs.

Exactly solve the residual equation K1e; = 71 to
obtain an error approximation e; .

Step2)
Step 3)

Step 4)

Step 5) - Interpolate the approximation error to the finer mesh
using the prolongation operator e; = Pe;.
Step 6) Compute the improved solution z2 = Z + es.

Step 7) Continue into new-iterative cycle by doing again

smoothing.

Atstep 4, when the residual equation is solved, the coarse grid
correction scheme can be used recursively. Then, the number of
meshes becomes unrestricted and several iteration schemes are
possible. Fig. 2(a)—(c) show the schedule of grids for each cycle
on four grid levels. The schedules shown in Fig. 2(a) and (b) are
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Fig. 1. The coarse grid correction scheme.
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(c) Full Multigrid V-Cycle

Fig. 2. Typical multigrid cycles.

called the V-cycle and the W-cycle, respectively, because of the
pattern of this diagram. At each level, the coarse grid correction
scheme is performed recursively one time for the V-cycle and
two times for the W-cycle. For the full multigrid V-cycle, coarse
grids are used to obtain improved initial guess for the V-cycles.

IV. PROLONGATION AND RESTRICTION OPERATORS

For the interpolation of the edge values from coarser to finer
mesh we need to define a prolongation operator. Additionally,
for the projection of the edge values from finer to coarse grid we
need to define an opposite operator than the prolongation one,
what we call the restriction operator.

First, we explain the construction of the prolongation operator
P.Let P;(z;, y;) be the middle point of an edge ¢ for which edge
we want to get the prolongation value, while A, ; and 4, ; are
the values of the unknown magnetic vector potential at point P;
calculated using the coarser mesh:

Af
Azi
[A’]=N Agl, 1
Yyt Ak

where N is the edge-based shape functions of the first order and
Aj, Aj,and Ak are the unknowns along edges I, J, and K on
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Fig. 3. Definition of the prolongation operator.

the coarse mesh. Next, the value of the unknown component A’
along the direction of the edge 1 is given by

A} = [cos 0; ‘sin ;] [Az’i] 2
P ? 1 A )

Y, @

where A, ; and A, ; are the unknown values at point P;, and 6;
is the angle between z-axis and the direction of edge i [as shown
in Fig. 3(a) and (b)]. Because A is a value per unit length, the
value that is assigned to-edge ¢ on'the fine mesh can be given by
multiplication of A} and the length I; of edge i,

A; = Ajl;. 3

In general, from (1)—(3), the prolongation operator can be
mathematically expressed as

Ap
Ai=[pir pis pil|As|, “4)
A

where the coefficients p;;, p;s, and p;x are computed ac-
cording to the geometry of the edge finite element as shown in
Fig. 3. Finally, the global prolongation matrix P for the entire
system can be constructed by summation of each contribution
[p1 p2 p3] from all edges in the model. The size of the
prolongation matrix P is Tfine X Tcoarses WHETE Nfine and
Ncoarse are the number of edges on the fine and the coarse
finite element mesh, re,s‘pe(:tivély.

The restriction matrix R is constructed as a transpose matrix
of the above defined prolongation matrix P. Prolongation and
restriction matrices P and R are calculated according to the ge-
ometry of the meshes at pre-processing phase. During multigrid
cycles, prolongation is performed by multiplication of the pro-
longation matrix P and the error vector e. Similarly, restriction
is performed by multiplication of the restriction matrix R and
the residual vector 7.

V. INVESTIGATION OF THE EFFICIENCY OF THE MULTIGRID
SOLUTION METHOD USING EDGE FEM

The investigation of the efficiency of the proposed multigrid
solution scheme was carried out for 2D magnetostatic models
shown in Figs. 4 and 7. Test model #1, shown in Fig. 4 has a
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Fig. 9. Computation time versus number of unknowns.

computation time versus number of unknowns. Similarly, com-
putation time of one multigrid method is almost independent
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of the number of unknowns. The memory requirements were
5.7 MB for the multigrid method, and 4.6 MB for the ICCG
method.

VI. CONCLUSIONS

We presented an investigation of the efficiency of the
multigrid method for solution of a system of linear algebraic
equations obtained using edge finite element analysis based on
nested meshes. Multigrid methods improve the convergence
rate and decrease the computation time in comparison with the
ICCG method with a modest increase of the used memory. The
efficiency of the multigrid method increases with the increase
of the size of the system matrix of the problem.
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