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Genetic Algorithms with Assistant
Chromosomes for Inverse Shape Optimization of
Electromagnetic Devices

Yoshio Yokose, Vlatko Cingoski, and Hideo Yamashita, Member, IEEE

Abstract—Stochastic searching algorlthms such as the Genetic
Algorithms (GA’s) are commonly used for shape optimization of
electromagnetic devices. Although: very robust and easy applicable,
the GA’s are usually time consuming. In this paper, we present a
new improved method for optimization of electromagnetic devices
that utilizes the ordinary GA with enriched searching population of
so called assistant chromosomes. These new assistant chromosomes
are generated in accordance with the values of the objective func-
tion. The proposed procedure is highly flexible and exhibits im-
provements of the searching speed and accuracy of the computed
results. 5

Index Terms—TFinite element method, genetic algorithms, opti-
mization methods, magnetostatics.

I. INTRODUCTION

ECENTLY, the genetic algorithms (GA’s) [1] have been

widely used mainly in connection with the finite element
method for inverse shape optimizations [2]-[4]. The main ad-
vantages of the GA’s are: 1) they can search effectively in mul-
tivariable searching space, and 2) they are able to pass the op-
timizing information from one population to the following one,
i.e. new chromosomes (children) inherit important optimizing
information from their parents (two chromosomes from the pre-
vious population).

On the other’side, the GA’s are usually time consuming op-
timization procedures. Because they usually work in a multi-
variable region with a set of possible solutions (chromosomes),
the fitness values must be computed for each possible solution,
separately. The.obtained fitness-values determine ‘which solu-
tions could mate and leave offsprings and which solution drops
from the searching procedure. Therefore, for each possible so-
lution the fitness function must be computed; which means that
for each possible solution a finite element analysis must be per-
formed and computed the objective function -at several points
which are usually called control points. Since the mutation and
crossover as.GA’s operations have random characters, it seems
advantageous to assistin some way to the searching process by
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producing some additional possible solutions (chromosomes)
in accordance with the objective function. It is very rational to
think that the generation of additional solutions in the neigh-
borhood of the currently best solution could lead to faster con-
vergence of the entire optimization process. This reasoning was
employed in this paper resulting in an improved searching pro-
cedure based on the ordinary GA’s with assistant chromosomes.

II. PROPOSED METHOD

The searching procedure based on the genetic algorithms is a
stochastic process based on the following three main operations:
1) reproduction—mating pairs of chromosomes called parents
and producing a new pair of chromosomes called offsprings or
children, 2) crossover—exchanging information data between
parent and offspring chromosomes, and 3) mutation—changing
randomly the information data of a single chromosome. As are-
sults, the GA’s provide possibilities for knowledge inheritance
and transformation between successive populations. That means
that the chromosomes with:good properties regarding the user-
defined objective function have higher probability to pass their
data (knowledge) to their offsprings. However, as the searching
process evolves, the convergence of the optimization decrease
because all chromosomes with higher fitness values have very
similar data and any data interchange (crossover) improves the
searching process very slowly. Therefore, it is advantageous
along with the ordinary GA; to find additional ways to enrich the
information data by adding new. chromosomes in the searching
procedure. These new chromosomes we called assistant chro-
mosomes. )

Fig. 1 shows a simple two-dimensional searching space,
where a GA based searching procedure is initiated. Two design
variables  X; and X, are. varied and the optimal solution
according to an-objective function is sought. The isolines in
Fig. 1 represent the objective function and darker values corre-
sponding to better values. Let-us have. two temporary .optimal
solutions: solution A which has the best fitness value according
to the objective function, and solution B which has the second
best fitness value, The probability that better solutions than
A and B exists.in their neighborhood, especially along the
straight line that connects these two points inside the searching
space is obviously high. Therefore, instead of generation the
entire new population according to the above mentioned GA
operations, we generate onlya part of it. The rest of the needed
population is generated according to the fitness values of
already generated chromosomes, such as A and B. An example
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Fig. 1. The method of making assistant chromosomes.

TABLE 1
TYPICAL TABLE FOR GENERATION OF ASSISTANT CHROMOSOMES

Assistant 95 A AD IE
chromosomes
Cy 05 05 05 05
C, 15 15 15 15
Cs 20 2.0 20 20
Cy 30 3.0 3.0 -
Cs 4.0 4.0 - -
Cs 50 5.0 - -
. Cr 6.0 - - -

of a typical assistant chromosomes generation scheme is given
in Table I. As can be seen from Table I, in this case we use
the first five chromosomes with best fitness. values A, B, -

E and generate additional twenty chromosomes at posmons
{0.5, 1.5, 2.0, ---}x AB, {0.5,1.5,2.0, - - }><AC etc. These
newly generated chromosomes C; (j = 1, - -+, 7) (see Fig. 1)
together with the ordinary generated chrom‘osomes made new
searching population for the GA optimizations.

III. VERIFICATION MODELS

To verify the efficiency of the proposed searching procedure,
we used two optimization models: a rotating machine pole face
model, and a model of di¢ press machine for making perma-
nent magnets. For obtaining the fitness of each shape configu-
ration we used a numerical method for computation of the mag-
netic flux density values based on 2D finite element method.
The computation of the objective function, the arrangements of
the control points and the moving points that decides the shape
of the device are given next for each model, separately.

A. Pole Face Model

Forinverse shape opt1mlzat10n of arotating machme pole face
we used a. model given in Fig. 2. Enlarged view of the pole face
area, control points:and the searching space are given in Fig. 3.
The model has 5 control points, P; to P placed along, the pole
face. The optimization variable is the intensity and direction of
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Fig. 3. Enlarged view of apole face area, control points and searching space.

the magnetic flux density vector. The objective function is de-

fined as the minimum error between the desired magnetic flux

density values, By ; and their correspondmg computed values
B;, respecnvely
~B; ;) x 100

fPf_NZ B01 ’

where N = 17 is the total number of observation points. The
shape of the pole face surface was decided using spline function
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Fig. 5. Enlarged view ofa die press mold, control points and searching space.

B. Die Press ‘Mold: Model 5 il
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the desired magnetic flux density values in othe T and y direc-
tions, Bo, and Boy, and their corresponding:computed values .

B; and By, respectively.
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 the core and the die press mold surface for this model too were
5 demded usmg a spline function,
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Fig. 6. Comparison between desired and computed magnetic flux density
distributions.

Fig. 7. - Final shape of a pole face and magnetic flux line distribution.

Iv. OPT[MIZATION RESULTS

: The proposed GA sea.rchmg procedure using assistant chro-

imosomes was compared with the ordinary GA searching pro-
..icedure. Random initial population with 30 chromosomes was
. generated in both cases. The crossover and mutation rates were
where N is the total number of observatlon pomts The shape of i
“spectively. The number of assistant chromosomes was 20 and

also the same for both searching procedures, 50%, and 5%, re-

they were generated using the table shown in Table I, while the
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Fig.8. Average values of the objective function using the ordinary GA and the
proposed GA method with assistant chromosomes.
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Fig. 9. ' Angle of the magnetic flux density vector.

other 10 chromosomes were elite chromosomes of last genera-
tion. '

The results of the optimization processes are described next
separately for both analyzed models. For each model we com-
pared results obtained by the ordinary GA and results obtained
by the proposed method. Because, the GA searching procedure
is stochastic and has a strong random characters, for compar-
ison we used an average values for the magnetic flux density
obtained by repeating the searching process 100 times:

A. Pole Face Model

A comparison between the magnetic flux density values for
he initial and the final (optimized) pole shape at each obser-
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Fig. 10. Comparison between desired and computed magnetic flux density
distributions.

Fig. 11.  Final shape of a die press mold riiodel and magnetic flux lines.

vation point is shown in Fig. 6. The magnetic flux density dis-
tribution after the optimize is better than for the initial shape,
and corresponds well to the desired one. The optimal pole shape
with the obtained magnetic flux lines is presentedin Fig. 7. As a
result of using spline surface approximation, the generated sur-
face defined by such a small number ¢f control points (five) is
very smooth. Additionally, in Fig. 8 the comparison between the
obtained average values of the objective function using the or-
dinary GA and the proposed GA with assistant chromosome is
given.

B. Die Press Mold Model-

Similar as for the pole face model, a comparison between
values for the magnetic flux density obtained for the initial shape
and for the optimized shape of a die press model is shown in
Fig. 9. The magnetic flux density vectors for the final shape and
the initial shape at each observation points are shown in Fig. 10.
Itis obvious that the magnetic flux density distribution obtained
after the optimization is better than that for initial shape, and cor-
responds very well to desired one. The optimal shape of the die
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Fig. 12.  Average values of the objective function computed by the ordinary
GA and those computed by means of the proposed GA with assistant
chromosomes.

press model with the obtained magnetic flux lines is presented
in Fig. 11. Fig. 12 represents the comparison between the ob-
tained average values of the objective function computed using
the ordinary GA and those computed by the proposed GA pro-
cedure with assistant chromosome. As can be seen the proposed
GA procedure provides faster convergence toward the optimal
solution which was the main objective for development of the
proposed optimization method.
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V. CONCLUSIONS

An improved method for inverse shape optimization using
GA searching procedure was proposed. The proposed method
introduces the generation of assistant chromosomes according
to the information gathered directly from the values of the objec-
tive function. The improved convergence rate of the optimiza-
tion process was achieved with better accuracy of the obtained
results with less iteration steps than the currently available GA
searching procedures. This can be summarize in two main con-
clusions: 1) the convergence rate of the proposed GA proce-
dure with assistant chromosomes is better than that of the or-
dinary GA, and 2) the proposed procedure exhibits good con-
vergence rate for the entire optimization process, providing op-
timization results with the same accuracy as the ordinary GA
for less number of iteration steps (see Figs. 8 and 12). Finally,
the proposed method is robust and easy applicable to various in-
verse shape optimization problems.
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