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ABSTRACT 

 

 

We model a seven-story, reinforced-concrete building in Van Nuys, California, that was damaged 

during the 1994 Northridge earthquake. We use a one-dimensional, layered, shear-beam model with 

bi-linear material properties, and we examine how the rotations (local strains and drifts) in this model 

depend upon the distribution of the stiffness along the building height, the nonlinear properties of the 

reinforced concrete, and the nature of strong motion. We show how, following the powerful waves 

propagating up and down the building, point rotations take place that differ from the corresponding 

average drift angles. These point rotations are larger near the rigid floor slabs (near the top and bottom 

ends of the columns, shear walls, and non-structural members found at all floors) and propagate as 

slow waves up and down the building. These slow rotational waves occur only while the material is 

experiencing large nonlinear deformations, and their amplitudes grow with ductility. We note that 

recording these rotational waves in real time may provide a powerful new vehicle for health 

monitoring of full-scale structures excited by large transient forces when their structural members 

enter large nonlinear deformations. 

 

 

 

Key words: Structural health monitoring, real-time recording of rotations induced by nonlinear waves, 

detection of damage by earthquakes, impacts and explosions. 
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1. INTRODUCTION 

The real-time detection of damage in buildings has become one of the contemporary challenges in 

structural dynamics for powerful transient excitations by earthquakes, impact loads, and explosions. 

The goal is to detect the location, the extent, the nature, and the time of occurrence of the damage. 

Having detected the damage, the objective is then to provide a real-time means of dealing with its 

consequences. In this paper, we explore how the point rotations at selected points in the structure could 

be used for this purpose, and we explore the physical nature of this problem using a simple one-

dimensional representation of a real structure. We note that recording strong-motion rotations can 

become a powerful tool for real-time damage detection. 

Most health-monitoring methods for civil engineering structures use structural vibration data and are 

based on detecting changes in their modal parameters—frequencies and mode shapes (e.g., see 

Doebling et al. 1996 and Chang et al. 2003 for detailed state-of-the-art reviews on this topic). While 

monitoring changes in the frequencies of vibration requires minimum instrumentation, monitoring 

changes in the mode shapes requires more extensive instrumentation than is available in even most 

instrumented structures. Furthermore, the frequencies of vibration are usually estimated using some 

energy distribution of the recorded response in the time-phase plane. The difficulty associated with this 

approach is that the changes caused by damage can be small relative to the time-dependent fluctuations 

of full-scale structures, noise, and the uncertainties associated with damage location.  

 

There are two main advantages of formulating the structural health monitoring in terms of the wave 

propagation method, which will be used in this paper. One advantage is that it is local (the wave travel 

times depend only upon the properties of the structure between the adjacent observation points). In 

contrast, the modal methods are global (the modal properties depend upon the overall properties of the 

structure, and therefore they change little when the damage is localized). The wave methods can detect 

local changes with relatively few sensors (as compared with detecting changes in mode shapes). 

Another advantage is that the wave travel time through the building can provide information that is 

directly related to the properties of the structure alone. In contrast, the time frequency energy 

distributions yield the frequency of the soil-structure system, sysf , which also depends upon the 

stiffness of soil and therefore describes the changes in the soil-structure system, not in the structure 

alone. The changes in sysf  have often been erroneously interpreted to be entirely due to loss of 

structural stiffness (e.g., Browning et al. 2000; De la Llera et al. 2001; Islam 1996; Li and Jirsa 1998). 

For comprehensive and reliable structural health monitoring, it is therefore essential to be able to 

monitor the changes in the structure alone, and wave-propagation methods are among the most suitable 

for this purpose. 

 

There are only a few publications on wave-propagation methods for analyses of building response, 

other than nondestructive testing, for structural health monitoring and damage detection in civil 

structures (Kanai 1965; Todorovska and Lee 1989; Todorovska and Al Rjoub 2006a,b; Todorovska 
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and Trifunac 1989; 1990a,b). Şafak (1999) proposed a layered continuous model for analysis of 

seismic response of a building and detection of damage by tracing changes in the parameters in the 

layers. Ivanović et al. (1999b) and Trifunac et al. (2001c) used strong-motion data recorded in an 

eight–story, reinforced-concrete building during the 1994 Northridge earthquake to explore two 

methods, one based on cross-correlation analysis (to estimate time lags between motions recorded at 

different levels) and the other based on detecting changes in wave numbers (inversely proportional to 

the wave velocities) of waves propagating between different levels. Ma and Pines (2003) proposed a 

method based on a lumped mass building model and propagation of de-reverberated waves to identify 

the damage, which can be tested using simulated building response data. Gičev and Trifunac (2007a,b) 

used the energy and power of nonlinear waves to identify the location of damage. The first 

applications of the impulse-response functions computed by deconvolution (Snieder and Şafak 2006) 

for detecting local changes in stiffness, and for earthquake damage detection in general, appeared in 

the studies of the seven-story Van Nuys Hotel (Todorovska and Trifunac 2007a,b) and the Imperial 

County Services Building (Todorovska and Trifunac 2007b,c,d). 

  

Rotational components of building motion accompany the displacements induced by seismic waves. In 

linear elastic media, ―point rotations‖ are expressed by space derivatives of the displacements (e.g., 

Trifunac 1982). ―Average rotations‖ (rotation of a line connecting two moving points and separated by 

a known distance) can be computed from the differences in the recordings of two translational records 

of the response (Moslem and Trifunac 1986; Trifunac and Todorovska 2001; Trifunac and Ivanović 

2003).  

 

During nonlinear wave propagation in buildings, point rotations can become large, especially in the 

areas of strain localization. In the following, we present a simple model that allows us to study these 

large point rotations. In this paper, we show how they relate to the overall amplitudes and time 

characteristics of the response. 

 

2. CASE STUDY – Van Nuys Hotel (VN7SH) 

The building whose response we analyze in this paper using a one-dimensional, layered, nonlinear 

shear-beam model is a seven-story hotel (VN7SH) located in Van Nuys, California. It was damaged by 

the 1994 Northridge, California earthquake (Ivanović et al. 1999a,b, Trifunac and Hao 2001, Trifunac 

et al. 1999a,b). Designed in 1965 and constructed in 1966 (Blume and Assoc. 1973, Mulhern and 

Maley 1973), it is 18.9  45.7 m in plan and is 20 m high. The typical framing consists of four rows of 

columns spaced on 6.1 m centers in the transverse direction and 5.7 m centers in the longitudinal 

direction (nine columns) (Fig. 1a). Spandrel beams surround the perimeter of the structure. Lateral 

forces in the longitudinal (EW) direction are resisted by interior column-slab frames (B and C) and 

exterior column-spandrel beam frames (A and D). The added stiffness in the exterior frames associated 

with the spandrel beams creates exterior frames that are roughly twice as stiff as interior frames. The 

floor system is reinforced concrete flat slab, 25.4 cm thick at the second floor, 21.6 cm thick at the 

third to seventh floors, and 20.3 cm thick at the roof (Browning et al. 2000; De La Llera at al. 2001; 

Islam 1996; Li and Jirsa 1998; Trifunac and Ivanović 2003). The building is situated on 
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undifferentiated Holocene alluvium, uncemented and unconsolidated, with a thickness of < 30 m, and 

an age of < 10,000 years (Trifunac and Todorovska 1998b). The average shear-wave velocity in the top 

30 m of soil is 300 m/s, and the soil-boring log shows that the underlying soil consists primarily of fine 

 

Fig. 1. Van Nuys seven-story hotel (VN7SH): (a) typical floor plan, and (b) typical transverse section. 

 

sandy silts and silty fine sands. The foundation system consists of 96.5-cm-deep pile caps supported by 

groups of two to four poured-in-place, 61-cm-diameter, reinforced-concrete friction piles. These are 

centered under the main building columns, and all of the pile caps are connected by a grid of beams. 

Each pile is approximately 12.2 m long and has a design capacity of over 444.82  103 N vertical load 



 5 

and up to 88.96  103 N lateral load. The structure is constructed of normal-weight reinforced concrete 

(Blume and Assoc. 1973). 

 

Fig. 2. Observed damage to frames A and D. 

 

Earthquake Damage. The ML = 6.4 Northridge earthquake of January 17, 1994 severely damaged the 

building. The structural damage was extensive in the exterior north (D) (Fig. 2 top) and south (A) (Fig. 

2 bottom) frames that were designed to take most of the lateral load in the longitudinal (EW) direction. 
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Severe shear cracks occurred at the middle columns of frame A, near the contact with the spandrel 

beam of the 5th floor (Figs. 2 and 3), and those cracks significantly decreased the axial, moment, and  

 

Fig. 3. Post-earthquake view of damaged columns A7 and A8 in frame A (see Figs. 1 and 2). 

 

shear capacity of the columns. The shear cracks that appeared in the north (D) frame (Fig. 2 top) 

caused minor to moderate changes in the capacities of these structural elements. No major damage to 

the interior longitudinal (B and C) frames was observed, and there was no visible damage to the slabs 

or around the foundation. The nonstructural damage was significant. Photographs and detailed 

descriptions of the damage from the earthquake can be found in Trifunac et al. (1999b) and Trifunac 

and Hao (2001). Analysis of the relationship between the observed damage and the changes in 

equivalent vertical shear-wave velocity in the building can be found in Ivanović et al. (1999b) and in 

Todorovska and Trifunac (2006). A discussion of the extent to which this damage has contributed to 

the changes in the apparent period of the soil-structure system can be found in Trifunac et al. 

(2001a,b). 
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3. NONLINEAR WAVES 

In the 1-D model adopted for this study we use the velocity of shear waves and the density of the slabs 

and inter-story columns based on the analysis of impulse response for EW recorded motions in the 

Holiday Inn Hotel (Todorovska and Trifunac, 2006). These parameters, together with the story 

  
Fig. 4. Incident Ground Motion. 

 

heights, are shown in Table 3.1. As can be seen from Table 3.1, the stiffness and the density of the 

floors are much larger than the stiffness of the columns, so it can be expected that the floors will 

remain linear and move as rigid bodies.   

 

Table 3.1  One-dimensional building model. 

 

 

Interstory 
Height  

hinterstosry 
(m) 

Slab 
Thickness  

hslab 
(m) 

interstory 

 

(m/s)

slab 

 

(m/s)

interstory 
 

(kg/m3)

slab 

 

(kg/m3)
Roof slab  0.203  2000  2384 

Seventh story 2.44  73.15  82.90  

Seventh-floor slab  0.215  2000  2384 

Sixth story 2.44  76.20  82.90  

Sixth-floor slab  0.216  2000  2384 

Fifth story 2.44  77.72  82.90  

Fifth floor-slab  0.216  2000  2384 

Fourth story 2.44  79.25  82.90  

Fourth-floor slab  0.216  2000  2384 

Third story 2.44  91.44  82.90  

Third-floor slab  0.216  2000  2384 

Second story 2.44  129.50  82.90  

Second-floor slab  0.254  2000  2384 

First story 3.86  140.20  76.92  
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To select the final model parameters—the yielding and strengthening of the material—we calculated 

the east-west response of the model without considering the soil-structure interaction, with the 

assumption that the input ground motion (Fig. 4) can be 

approximated by the strong motion recorded at the structure’s 

ground floor (channel 16 in Fig. 2, Gičev and Trifunac 2006b). We 

then compared the results with the recorded motions at higher 

floors in the building (channel 12 at the second floor, channel 11 at 

the third floor, channel 10 at the sixth floor, and channel 9 at the 

roof). The locations of the instruments in the building that recorded 

the EW response are shown in Fig. 2.  

 

By trial and error search for the best value of the yielding strain 

and the bi-linear approximation of the material properties, we 

obtained the best estimates for yielding strain 0025.0y  and for 

strengthening parameter 44.0 . These two parameters, together 

with the material velocities, densities, and dimensions, shown in 

Table 3.1, then describe the required physical properties of the 

model whose response we analysed by finite differences (FD) 

(Gičev and Trifunac 2006b). 

 

Our 1-D model consists of 14 layers representing seven floor slabs 

and seven inter-story columns, with dimensions (thickness) of the 

layers h(i), velocities of shear waves (i), and densities (i), for 

14i1 , where, 1,2,..,7)(k 1k2i  represent inter-story 

space (soft layers), and i = 2k (k = 1,2,..,7) represent floor slabs 

(hard layers) (see Table 3.1, Fig. 5). 

 

We assume bilinear constitutive law , where  is shear 

stress and  is shear strain at a grid point (Fig. 6). The first slope, 

b0 , represents the linear (initial) shear modulus, and the second 

slope, b0b1 , represents the shear modulus after yielding. The 

yielding strain 0025.0yb  and the 

strengthening 44.0  are assumed 

to be the same for all soft layers 

(solid lines in Fig.6). The contact 

points between two layers and the 

contact point between the soil and 

Fig. 5. One-dimensional model showing 14 points at which 

the ―top of story‖ and ―bottom of story‖ displacements and 

rotations are presented in the following figures. 
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Fig. 6. Bi-linear constitutive law used in the finite-

difference calculations of the response of VN7SH. 

 

layer 1 remain in a linear state (dashed line in Fig.6) (Gičev and Trifunac  2006b).  

 

The equation of shear waves we used 

is 

 

1
( )t xv                         (3.1a) 

 

and the relation between the 

derivatives of the strain and the 

velocity is 

 

xt v ,           (3.1b) 

 

where v , , , and  are particle 

velocity, density, shear stress, and 

shear strain, respectively, and the 

subscripts t and x represent 

derivatives with respect to time and 

space. 
t

u
v   and  

x

u
 are the 

velocity and the strain of a particle, 

and u is the out-of-plane displacement 

of a particle perpendicular to the velocity along the propagation ray. 

 

The Lax-Wendroff ),( 22 xtO finite-difference method (Lax and Wendroff 1964) for a set of 

simultaneous equations was used to solve the problem. The time increment is obtained from the 

minimum ratio: 

 

14

14

mink

k xx
t  ,       (3.2) 

 

where the subscripts stand for the layer number counted from the base. 

 

The building in the numerical model is discretized as follows. The floor layers are discretized with 

three spatial intervals, while the number of the equal spatial intervals of the story (soft) layers is 
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14kk h/h3n , where the subscript stands for the layer number. Thus, we obtain an equidistant grid 

in the inter-story layers (k = 1, 3, 5,…, 13) with spatial interval 

 

3

h

n

h
x 14

k

k
k ,        (3.3a) 

 

while at the floor levels (k = 2, 4, 6,…, 14) the spatial interval is  

 

3

h
x k

k
,         (3.3b) 

 

and at the contact points i the spatial interval is  

 

2

xx
x 1i1i

i
,        (3.3c) 

 

where i stands for the ordered number of the contact point. The numerical tests have shown that this 

discretization leads to stable results. In this way, the model is represented by a grid having 295 points 

and 294 intervals.  

 

Above the top point ( N = 295), an additional dummy point N’ is introduced at distance x14 from the 

point N. For a stress-free point N, for all time, the velocities and the stress at the point N’ are updated 

as 

 

1' NN vv            (3.4a) 

 

1' NN  .         (3.4b) 

 

Equations (3.1) can be written in vector form as 

 

xt

FU
,                      (3.5) 

 

where     
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v
U    and  

v

F .         (3.6) 

 

The vector U at point i in time (j+1) t  expanded in a Taylor series is  

 

                )(
2

3

,

2

22

,

,1, tO
t

t

t
t

jiji

jiji

UU
UU , 

and from Eqn.(3.5) 

                 )(
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,1, tO
xt

t

x
t

jiji

jiji
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UU  
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3

,

2

,

,1, tO
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t

x
t

jiji

jiji

F
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F
UU .   (3.6)  

 

A(U) is the Jacobian  matrix 

 

 

01

1
0

)( d

d

v

v

v

v

U

F
UA  .    (3.8) 

 

4. RESULTS 

 

The inter-story drifts are average rotations of the deformed shape of the simplified k-degrees-of-

freedom building model, where k is number of building slabs + 1 (and +1 is associated with the 

prescribed motion at the soil-building interface). The deformed shape of this model is piecewise linear. 

Between adjacent slabs, i and i+1 (i + 1  k), the average rotation (drift) is  

i

i1i

h

tutu
)i(drift  (i = 1, 2, ….,k-1) ,   (4.1)  

where u represents the slab displacement and h is the height of the soft layer.  

 

As we consider continuous model of the building, the deformed shape of the soft layer representing 

columns is a continuous curve of higher order, and its rotations (strains), , at each point between two 

adjacent slabs are different. Because the drift represents average rotation of the soft layers, by Lipshitz 

condition there is a point (not necessarily in the middle of the soft layer) where the point rotation of the 
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continuous model is equal to the average rotation (drift). The conclusion is that the difference between 

the drift and the point rotations in the continuous model is largest at the end points of the column. 

 

To study the difference between the drifts and point rotations (strains), we consider the fourteen points 

just below and above the slabs (at distance cm8.6x  below and above the slabs) (see marked points 

1 through 14 in Fig. 5). In each time step, using (4.1), we compute the seven inter-story drifts. At the 

same time, having computed strains from the FD scheme at the 14 points at the end of each soft layer 

(columns), we compute seven pairs of ratio 

)i(drift

)1i2(
)1i2(r        (4.2a) 

 

)i(drift

)i2(
)i2(r .       (4.2b) 

 

In equations (4.2), i represents the layer (soft story) number (i = 1, 2, …,7). 

 

 

Fig. 7. Ratios of the point rotations at the top and bottom of each floor to the average rotation (drift) of 

the corresponding floor, computed at the 14 points shown in Fig. 5. Propagation of characteristic 

―waveforms,‖ showing initiation of nonlinear strains, is shown by arrows. 
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To avoid division by zero, we introduce small number  =  0.001. For small values of the drift, if the 

absolute value of the drift is smaller than , we take the limit  

 

1)i2(rlim)1i2(rlim
0)i(drift0)i(drift

.     (4.3) 

 

In Fig.7, the ratios at the bottoms and tops of the soft layers (columns) are presented versus time.  

 

 

Fig. 8a. Same as Fig. 7, except that more detail is shown for the time window 3 to 5.35 s. 

 

During large nonlinear response, these ratios are different from 1 (point rotations are significantly 

bigger or smaller than the average floor drift). 

 

5. ANALYSIS 

 

The ratios of the rotations shown in Fig.7 are plotted with higher resolution in Figs. 8a through 8d, for 

the four time-windows 3.00 to 5.35 s, 5.35 to 7.75 s, 7.75 to 10.20 s, and 10.20 to 12.00 s. In these 

figures, we analyse how the ―characteristic departures from 1‖ (CDF1) of the rotational ratio propagate 

up and down the building. It can be seen that in the beginning, while the ground motion is still 

relatively small and nonlinear response is just beginning to occur, the velocity of CDF1 is still 

reasonably close to the linear velocities in the model (as given in Table 3.1). As the motions become 

larger, velocities of CDF1 drop, typically to values between 40 and 50 m/s, but in some instances to 

values as low as 19 m/s. While the largest CDF1 propagate up, there are several obvious cases of 

propagation down. 
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Fig. 8b. Same as Fig. 7, except that more detail is shown for the time window 5.35 to 7.75 s. 

 

 

Fig. 8c. Same as Fig. 7, except that more detail is shown for the time window 7.75 to 10.20 s. 
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 Energy distribution in the model 

 

Because the model we study represents a conservative system, the kinetic and elastic part of potential 

energies, the energy radiated out from the building into the soil, and the energy spent for  

 

 

Fig. 8d. Same as Fig. 7, except that more detail is shown for the time window 10.20 to 12.00 s. 

 

 

development of the permanent strains in the building must add up to the incident-wave energy (Gičev 

and Trifunac 2007b). The input energy, inE , can be computed from the input displacement record (Fig. 

4). First, by differentiation of the displacement record with respect to time, the input particle velocity 

is obtained. The input energy, assuming that the cross section of the model is 2m1A , is then 

computed assuming vertically propagating one-dimensional plane waves, 

 

2 2

0
1

MT

in s s s s k

k

E v dt v t ,     (5.1) 

where  ss  and  are the density and the shear wave velocity of the soil, respectively, 
t

u
v 0  is the 

input particle velocity, T is the time at the end of the record, k is the order number of a time step, 
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t

T
M  is the discrete time at the end of the record, and 

t

uu
v

1k,0k,0

k
 for k > 1 , and

t

u
v

1,0

1
 

for k = 1,  are the discrete particle velocities. 

 The output energy, outE , is computed from the velocity of the wave going downward, 
outv , 

(Gičev and Trifunac 2006a, Gičev and Trifunac 2007b). The cumulative output energy is then 

2
2

0
1

MT
k

out s s s s out

k

E v dt v t .     (5.2) 

The hysteretic energy, hysE , is the energy spent on the development of permanent strains in the 

building. The hysteretic loop (Fig. 6) represents the relation  at a point during one cycle of the 

response 1i,0i,0 TtT , where s8.04
14

1

1,0

j j

jh
T  can be used to approximate the apparent period 

of the building. Depending upon the input ground motion and the time during strong motion, the loop 

in Fig. 6 can be narrower or wider. By adding the areas of those loops and assuming no strength 

reduction from repetitive loads, we can compute the energy spent for development of permanent 

strains at a specific point. Next, we generalize this for a layer (continuous equivalent representation of 

the columns and walls at a given floor), and for the whole building. The hysteretic energy for a 

specific layer is obtained as the sum of the loops at the points belonging to that layer, while the 

hysteretic energy for the whole building is obtained as the sum of the energies in all layers. The 

hysteretic energy in the building in discrete time space is  

 

k
M

1k

k

av

N

3i

ihys xE ,      (5.3) 

 

where the indices i and k stand for spatial and temporal discrete points of the model. N is the point 

representing the top of the building, and M is the point representing the end of the record. 

2

1kk
k

av   is the average stress at a point i in the time step k, and k  is the strain increment at 

the point i in the kth time step. The points in the slabs do not contribute to the hysteretic energy 

because those are assumed to remain linear and only transmit the wave energy to the layers above and 

below. After about t = 12 s of ground motion during the Northridge earthquake, there is negligible 

growth of all energies (Gičev and Trifunac 2007b), and therefore in the following we illustrate the 

results only for the first 12 s of strong motion.  
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Subtracting from the input energy (Eqn. (5.1)) the output (radiated) energy (Eqn. (5.2)), we obtain the 

instantaneous energy in the building. The difference  

hysb

b

el EEE                    (5.4) 

then represents the instantaneous elastic (linear) energy in the building. Until the end of the record, one 

part of the elastic energy is radiated, contributing to the output energy outE , and one part is spent for 

development of permanent strains, contributing to the hysteretic energy hysE . A part of the energy in 

the building is reversible. During loading, a fraction of the elastic energy transforms into hysteretic 

energy, and vice versa, during unloading, and a part of the hysteretic energy is converted back into 

elastic energy. 

 

 Energy and power capacities and demands in the building 

 

To understand the behaviour of CDF1 in the VN7SH building during the Northridge earthquake, we 

also consider the energy and power capacities of different floors. To determine the energy capacity for 

one period, 
0TE , we consider the hysteretic loop at a point in the building during which the point 

reaches the strain u . Following Gičev and Trifunac (2007b), we compute the energy capacity of the 

floor i per one cycle as 

 

1d14E 2

ybi0

i

T0
.         (5.4) 

 

While energy capacity per one cycle gives information about the capacity of the floor (soft layer) for 

oscillatory loading, the energy capacity of the floor i during one quarter period, 
i

qE , gives information 

about its resistance during a single monotonic loading. Gičev and Trifunac (2007b) show that 

 

2

2

ybi0i

q 1d1d21
2

E .        (5.5) 

 

The power is the derivative of energy with respect to time. We compute the power capacity per full 

cycle by dividing Eqn. (5.4) by the period of the building, T0, and the power capacity for quarter cycle 

by dividing Eqn. (5.5) by T0 / 4:  

 

0

2

ybi0

i

T T/1d14P
0

       (5.4a) 
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0

22

ybi0

i

q T/1d1d212P .     (5.5a) 

 

From Eqns. (5.4a) and (5.5a), it can be seen that the power capacity for one full period is linearly  

 

 
 

Fig. 9a. Ratios of point and average floor rotations at the top and bottom of each floor compared with 

the relative power ,/ ( 10)hys c quartP P d , showing that both propagate up and down the building with 

comparable speeds. The time interval 3.00 to 5.35 s is shown. 

 

 

dependent upon the ductility, d, while the power capacity for one quarter period (loading only) 

depends upon the square of the ductility.  

 

Figs. 9a,b show normalized power demands for two time windows, from 3 to 5.35 s and from 8 to 

10.20 s, in terms of the relative power. In these figures, the relative power is plotted in terms of the 

ratio of hysP , which is the time rate of change of hysE  (see Eqn. (5.3)) normalized (divided) by ,c quartP  

(see Eqn. (5.5a)) and calculated for d = 10. It can be seen that this power ratio approaches 2 at the 4 th 

and 7th floors, while at the 5th and 6th floors it is near 3 at around 4 s. At the 3rd, 4th, 5th, and 6th floors, 

this ratio exceeds 1 at around 5.2 s. The same ratio exceeds 5, for example, at the 3rd, 4th, 5th, and 6th 

floors between 8.5 and 8.8 s, and again at the 5th floor at around 9.2 seconds. The largest peak of the 

ratio ,/ ( 10)hys c quartP P d  occurred on the 4th floor, with an amplitude larger than 8 at about 8.6 s. 
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These results are in excellent agreement with the location of the observed post-earthquake damage on 

the same floor (Figs. 2 and 3) and with the analyses of the peak strains and peak drifts in the response 

of the one-dimensional model of VN7SH to the Northridge earthquake (Gičev and Trifunac 2006b). 

 

 

Fig. 9b. Same as Fig. 9a, but for time interval 7.75 to 10.20 s. 

 

Further perusal of the largest peaks of the power ratios, ,/ ( 10)hys c quartP P d  (Figs. 9a,b), will show that 

they occur in sequence, at progressively higher floors, and at times following the entrance of the strong 

pulses from the ground motion into the building. The local peak ratios occur in Fig. 9a at around 4 s (at 

floors 3, 4, 5, and 6) and 5.2 s (at floors 1, 2, 3, 4, 5, and 6), and in Fig. 9b at around 8.4 s (at floors 1, 

2, 3, 4, 5, and 6) and 9.2 s (at floors 4, 5, and 6). These power pulses caused damage along their path 

whenever and wherever the power ratio exceeded the value of about 2. From the time delays between 

these consecutive pulses in Figs 9a,b, we can estimate the average wave speeds associated with the 

propagation of their energies. Around 4 s and 5 s (in Fig.9a) this speed is about 45 m/s. At around 8.5 

s, and 10.2 s (in Fig. 9b), the speed is lower, about 35 m/s. Comparing these speeds with the initial 

(linear) velocities in our model (Table 3.1), which range from 73 m/s (seventh story) to 91 m/s (third 

story) to 140 m/s (first story), it can be concluded that the lower speeds resulted from nonlinear 

deformations in the model and the interference of nonlinear waves. Their values and their times of 

occurrence are consistent with the results of other direct (see Todorovska and Trifunac 2006, 2007a) 

and indirect analyses of the nonlinear waves in the VN7SH (Gičev and Trifunac 2006b) and show 

trends similar to what has been seen in other buildings damaged by strong-motion waves (Todorovska 

and Trifunac 2007c,d). The typical velocities with which the normalized power propagated up the 

building are similar to the velocities of CDF1, which is also reproduced in Figs. 9a,b. It is seen that 
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CDF1 occur during relatively ―quiet‖ periods of power propagation and seem to be associated with 

local adjustments in displacement to bring to equilibrium the deformations and rotations imparted by 

the powerful pulses of power waves.  

 

Displacements 

 

Fig. 10 shows the displacements in the model (Fig. 5) subjected to ground motion recorded during the 

1994 Northridge earthquake (Fig. 4). For each of the seven stories (soft layers), the motions at the top  

 

 

Fig. 10. Displacements at the 14 points shown in Fig.5, and propagation of the point rotations up and 

down the building where the correspoding average drifts are equal to zero. 

 

and bottom of that story are shown. The light vertical lines at 3.00, 5.35, 7.75, and 10.20 s are shown 

for easier comparison with Figures 8 and 9. 

 

It is seen that the largest departures from the ratio of one (CDF1) are consistently initiated when the 

displacements at the top and bottom of a given story intersect (are equal). It can also be seen that the 

tops of all stories are consistently moving with larger positive amplitudes when a wave carrying large 

power propagates through that story, moving upward (e.g., just after 4 s, 8 s, and 10 s in Fig. 10). As 

the displacements at the top and the bottom of a soft layer become equal, the available potential and 

hysteretic energies are redistributed by slow rotational (strain) waves locally through several floors, 

and sometimes through the full height of the building. 
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Point rotations 

 

Fig. 11 shows the point rotations (at the top and bottom of each story) corresponding to the     

                                                                                                                                                                               

 

Fig. 11.  Point rotations at the tops and bottoms of stories versus time.  Peak rotations in percentages  

(1 percent = 0.01 radians) during strongest motions are shown. 

 

 

Fig. 12. Comparison of displacements at the top and bottom points of each floor with corresponding 

average drifts (wide continuous lines). 
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displacements shown in Fig. 10. It can be seen that the point rotations are largest during two 

episodes—from 3 to 5 s and from 8 to 10 s. During the first strong power wave, which starts to  

 

 

Fig. 13a. Comparison of point rotations with relative wave power, for time window 3 to  5.35 s. 

 

propagate up the building just after 3 s (see Fig. 9a), the point rotations approach 1.5 to 2% (0.02 

radians) at the 4th and 5th floors. After 8 s, a power wave about three times larger propagates up the 

building and results in the point rotations, which are in the range between 2.5 and 3%, twice at the 4 th 

floor and once at the 5th floor. The damage to the building, as observed after the earthquake (Figs. 2 

and 3), is consistent with these large rotations, which imply initiation of damage at the 4 th floor at 

around 4 s and then the full development of failure during the time interval from 8 to 10 s. 

 

In Fig. 12, we show the displacements from Fig. 10 together with the average floor rotations (drifts). It 

can be seen that the onset of large rotations and the rapid swings of the rotations from negative to 

positive values, and vice versa, begin just after the appearance of CDF1. This suggests that monitoring 

of CDF1 can provide the real-time precursors for the occurrence of large rotations associated with 

nonlinear response. Figs. 13a,b show more detailed comparisons of the normalized power (for d = 10) 

and the point rotations for the two time windows 3 to 5.35 s and 7.75 to 10.25 s. Again, the CDF1 

occurs during changes in sign of the rotations and just before or after the propagation of significant 

power waves up and down the building. 
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Fig. 13b. Same as Fig. 13a, but for time window 7.75 to 10.20 s. 

 

Curvatures 

 

In engineering theory of bending, member curvatures can be related to the design capacity of structural 

members and serve as a useful indicator of the degree of the bending at a point, imposed by the 

dynamic loads. In the shear beam model adopted for this analyses the local curvatures do not represent 

the member curvatures, but can serve to indicate large relative rotations associated with nonlinear 

response and accompanying passage of waves with large local power in the structures and in the soil 

(Trifunac 1990). We compute the point curvature in the shear beam model of the VN7SH building as 

3/ 2
21

x         (5.6) 

which is equivalent to 

 
3/ 2

21

xx

x

u

u
     ,       (5.7) 

where u  is particle displacement. The difference between the curvature in (5.6) and x   is 

negligible, because for all examples considered in this paper 12 . 
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Fig. 14. Point curvatures at tops and bottoms of stories versus time. 

 

Further consideration of Eqns. (5.6) and (5.7), in combination with Eqn. (3.1a) shows that the velocity 

of shear waves in the one-dimensional shear beam, when 12 , is equal to 
1/ 2

/ttu . Thus, for the 

buildings equipped with dense arrays consisting of instruments capable of recording translational 

accelerations ttu  and point rotations, real time computation of 
1/ 2

/ttu will provide data on real time 

changes of shear wave velocity, and its anomalous behaviour (drop) in the zones of strain localization 

associated with large nonlinear deformations. This suggests that real time monitoring of 
1/ 2

/ttu can 

be used in the real time evaluation of structural health. 

 

Figure 14 shows curvatures  (1/m) at the top and at the bottom of the soft layers in all seven stories 

of our model of the VN7SH (Fig. 5). For comparison with all previous figures, with few exceptions, 

most of the arrows identified in Figs. 7 and 8 are shown as well. Figs. 15a and b show further detail for 

the two time windows between 3.00 and 5.35 s, and between 7.75 and 10.20 s. It is seen that during 
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propagation of the damaging power waves, up and down the building model, curvatures are large. The 

 

Fig. 15a. Same as Fig. 14, but for time window 3.00 to 5.35 s, showing that both curvature and power, 

,/ ( 10)hys c quartP P d , propagate up and down the building with comparable speeds.  

 

 

Fig. 15b. Same as Fig. 15a, but for time window from 7.75 to 10.20 s. 
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largest curvatures in this example, 0.31 1/m (at the bottom) and –0.32 1/m (at the top), occurred at the 

fourth floor, just after t=8.6 s. 

 

6. SUMMARY AND CONCLUSIONS  

The power (energy and its duration) of the strong pulses in the near-field ground motion will 

determine whether the wave entering the structure will continue to propagate through the structure as a 

linear wave or begin to create nonlinear zones. For high-frequency pulses, the nonlinear zone, with 

permanent strains, can be created before the wave motion reaches the top of the structure—i.e., before 

the interference of waves (which leads to the formation of mode shapes) has even started to occur. The 

overall duration of strong motion (Trifunac and Novikova 1994) will determine the number of times 

the structure may be able to complete full cycles of response and the associated number of ―minor‖ 

excursions into the nonlinear response range when the response is weakly nonlinear (Gupta and 

Trifunac 1996). The presence of powerful pulses of strong motion will determine the extent to which 

the one-directional quarter period responses may lead to excessive ductility demand, leading in turn to 

dynamic instability and failure precipitated by the gravity loads (Husid 1967). As large waves 

propagate through the structure and deform its members beyond their linear range of response, the 

creation of nonlinear response zones and their localization (plastic hinges) will give rise to the zones of 

large local rotations (strains). These large rotations will also behave as waves, which will redistribute 

the available potential and hysteretic energies remaining after the passage of powerful pulses up and 

down the building. Recording these rotations and the CDF1 can provide an invaluable tool for local 

damage detection. 

In this paper, we modeled the building by a simple one-dimensional, shear-beam model having bi-

linear material properties. Consequently, our model can give only a rough, first-order approximation of 

actual response. While it is known that overall building deformation can be modeled successfully with 

a shear-beam model, modeling of individual beams and columns will require more detailed models, 

which will locally include the Euler-Bernoulli bending theory. It is expected that the plastic hinges 

accompanying bending, which will be associated with strain localization, will lead to larger point 

rotations than those observed in this study. By placing small-aperture arrays of rotational transducers 

on beams and columns, it will be possible to achieve the next level in the resolution of point 

deformations because from closely spaced rotational sensors it will be possible to also record the point 

curvature.                
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