GHTMDD

ISSN 0350 - 0136

НА ХЕМИЧАРИТЕ И ТЕХНОЛОЗИТЕ НА МАКЕДОНИЈА

BULLETIN OF THE CHEMISTS AND TECHNOLOGISTS OF MACEDONIA

Глас. хем. технол. Македонија	Год.	Број	Стр.	Скопје
	22	2	85-184	2003
Bull. Chem. Technol. Macedonia	Vol.	No.	pp.	Skopje

Bulletin of the Chemists and Technologists of Macedonia, Vol. 22, No. 2, pp. 111–141 (2003) ISSN 0350 – 0136 UDC: 549.6 : 543.422.4

GHTMDD – 429 Received: November 15, 2003 Accepted: January 30, 2004

Review

MINERALS FROM MACEDONIA

XI. SILICATE VARIETIES AND THEIR LOCALITIES – IDENTIFICATION BY FT IR SPECTROSCOPY

Gligor Jovanovski¹, Blažo Boev², Petre Makreski¹, Metodija Najdoski¹, Gute Mladenovski³

¹Institute of Chemistry, Faculty of Science, "Sv. Kiril i Metodij" University, P.O. Box 162, MK-1001 Skopje, Republic of Macedonia ²Department of Petrology, Mineralogy and Geochemistry, Faculty of Mining and Geology, "Sv. Kiril i Metodij" University, Goce Delčev 89, MK-2000 Štip, Republic of Macedonia ³Macedonian Museum of Natural History, Boulevard Ilinden 86, MK-1000 Skopje, Republic of Macedonia

Among the rich orc deposits present in Macedonia, the silicate minerals arc the most numerous group. The great majority of these minerals appear as rather large and well formed single crystal aggregates in the nature. Sometimes, however, some of the mineral species appear in association with other minerals whose crystals are not well developed. Here an overview of the basic morphological, physico-chemical and crystallographic characteristics of the most typical silicates collected from various localities within the Republic of Macedonia is given. The mineralogical and petrological features of the localities where the specimens are collected from are presented as well. Also an attempt to identify the minerals using the FT IR spectroscopy and to classify them according to their structural characteristics is performed. The identification of the minerals was based on the comparison of the infrared spectra of our specimens with the corresponding literature data for the mineral species originating all over the world. The coloured pictures of all studied silicate minerals are presented as well.

Key words: silicate minerals; silicate assemblage; silicate localities; Republic of Macedonia; FT IR spectroscopy.

INTRODUCTION

In the past few years, a study of the carbonate [1–4], sulfide [5–9], and sulfate [10, 11] minerals originating from the localities in the Republic of Macedonia has been performed using vibrational (infrared and Raman) spectroscopy. The research has predominantly been focused on mineral identification and characterization, recently being spread to the determination of the content of trace elements i.e. elements which do not take part in the regular mineral composition [2, 12]. Thus, in the process of mineral separation, purification and characterization, significant number of non-silicate minerals has been systematically investigated.

Recently the study was extended to the most abundant group of the silicate minerals. Here, are presented the results of the collection of the great majority of the silicate mineral specimens originating from Macedonia as well as their separation, purification, structural classification and identification using the FT IR spectroscopy. Identification was based on the comparison of our IR results with the corresponding literature data for the analogous mineral species originating all over the world. Presented are also the most typical representatives for each locality where they have grown up. In this context, the petrologic and mineralogical characteristics of the localities throughout the country where the specimens were collected from are also discussed. The coloured pictures as well as the FT IR spectra of all studied silicate mineral samples are presented.

Here, it should be mentioned that the detailed IR analysis as well as the overall Raman and XRD investigation will be carried out in the near future. atomic absorption spectrometry for determination of the chemical composition (major, minor and trace elements) and the purity of the minerals, soon, will also be employed.

STRUCTURALLY BASED CLASSIFICATION OF SILICATES

More than 3500 minerals have been identified and named by now tending in the near future to approach the number 4000 [13–15]. Approximately 30 % of them (about 1100) belong to the silicate class which is the most abundant group of minerals in the Earth's crust. A few silicates are used as precious gemstones, while most of them are drab and commonplace. However, they are very important economic resources being used as industrial materials. The silicate minerals also make agriculture possible as a most dominant component of soil (mostly quartz and clays).

The elementary building unit of the silicate minerals is the SiO₄ tetrahedron consisting of four O^{2-} anions around a Si⁴⁺ cation. Consequently, the

isolated SiO₄ tetrahedron has a net -4 charge. It means that each O^{2-} has satisfied one of its two valence charges by bonding with the Si⁴⁺ in the tetrahedron, whereas the remaining -1 charge is available to be bonded with Si⁴⁺ from another tetrahedron. This enables linking of one SiO₄ tetrahedron to another resulting in formation of various polymers. The structural classification of the silicate minerals is in fact based on the extent of sharing of oxygen anions between the adjacent tetrahedra. It makes the silicates the largest and the most complicated class of minerals.

The resulting structural classification of silicates based on the degree of polymerization is given in Table 1 [13].

Table 1

Structurally based classification of the silicate minerals

Silicate class configuration	Number of O ²⁻ shared per tetrahedron	Si:O ratio*	Structural configuration
Nesosilicates (orthosilicates)	0	1:4	Isolated tetrahedra
Sorosilicates (disilicates)	1	2:7	Double tetrahedra
Cyclosilicates (ring silicates)	2	1:3	Rings of tetrahedra
Inosilicates (chain silicates)			Chains of tetrahedra
- Single chain	2	1:3	
– Double chain	2 or 3	4:11	
Phylosilicates (sheet silicates)	3	2:5	Sheets of tetrahedra
Tectosilicates (framework silicates)	4	1:2	Framework of tetrahedra

*Instead of Si⁴⁺, Al³⁺ can also occupy the tetrahedral sites.

Nesosilicates (orthosilicates)

The silicate minerals where the SiO₄ tetrahedra are not bonded to other tetrahedra (no oxygen anions are shared between the adjacent tetrahedra) belong to the nesosilicates (orthosilicates). The net negative charge of the isolated silicon tetrahedra is balanced by bonding with other cations such as Mg^{2+} , Fe^{2+} , Al^{3+} etc. They show great structural similarities with other mineral classes consisted of tetrahedral ionic units such as the sulfates (SO₄²⁻), phosphates (PO₄³⁻) etc. Nesosilicates are characterized by stronger bonds and more expressed close packing of ions and consequently by close packing of ions and consequently by higher density, index of refraction and hardness compared to other silicate classes.

Sorosilicates (disilicates)

As result of sharing single oxygen (O^{2-}) between two (SiO₄⁴⁻) tetrahedra, the basic chemical unit in the sorosilicates (disilicates) is the anion group Si₂O₇ with a net -6 charge. In addition to the double tetrahedra, some of the minerals belonging to this class may also contain single tetrahedra. They are a relatively small but widely distributed group of minerals. Some members of this group (e.g. epidote) are very common accessory minerals in many metamorphic rocks.

Cyclosilicates (ring silicates)

In the ring silicates (cyclosilicates) each SiO_4^{4-} tetrahedron shares two O^{2-} , forming thereby rings with three, four, eight but most frequently with six members. The symmetry of these minerals is usually influenced by the corresponding ring symmetry, at least in the case of the less complex ring silicates. Due to their high hardness, luster and durability, some representatives of this group are very well known gemstones. Similarly to disilicates, the ring silicates are a small group of minerals.

Inosilicates (chain silicates)

Inosilicates consist of two distinct subgroups: the single chain and the double chain silicates. In the single chain silicates two O^{2-} per tetrahedra are shared, whereas in the double chain group some tetrahedra share two and other share three O^{2-} . Endless single or double chains are thereby formed. The ratio of silicon to oxygen is thus 1:3 in the single chains and 4:11 in the double chains. The single chain silicates are known as pyroxenes, whereas the double chain as amphiboles. In general, both types of minerals are very common, although the amphiboles are not as abundant as the pyroxenes.

Phylosilicates (sheet silicates)

The sharing of three O^{2-} per tetrahedra forming two-dimensional planes (continuous layers) is characteristic of the sheet silicates (phylosilicates). The sheets are connected to each other by layers of cations. Therefore their crystals are flat and display basal cleavage. Almost all members of this group of sheet silicates are very soft. Phylosilicates are abundant and very important in geological environments. They are hydrous, which means that OH⁻ groups (not water molecules) are included in their structure.

Tectosilicates (framework silicates)

In the tectosilicates (framework silicates) all four oxygens (O^{2-}) are shared with the adjacent tetrahedra forming thereby three-dimensional framework. Contrary to other silicate groups where the extent of substitution of Si⁴⁺ by Al³⁺ cations is lower, in tectosilicates it often reaches up to 50 %. Thereby caused transformation of the normal net – 4 charge (for SiO₄) into –5 (for AlO₄) is balanced by the presence of additional cations in the structure of framework silicates. It is the main reason for the high extent of variations within this group of silicates.

GEOLOGICAL COMPOSITION OF THE REPUBLIC OF MACEDONIA

In general, four geotectonic regions (units) are present in the territory of the Republic of Macedonia: Serbian-Macedonian Massive (SMM); Vardar Zone (VZ); Pelagonian Metamorphic Complex (PMC); West-Macedonian Zone (WMZ) (see Fig. 1) [16].

The Serbo-Macedonian Massive (SMM) is located in the eastern part of the Republic of Macedonia being spread to Serbia on the north, to Greece on the south and slightly to Bulgaria on the east. In general, it is built-up of metamorphic rocks of Precambrian and Paleozoic age and consists of lower and upper metamorphic complex. The lower metamorphic complex contains gneisses, schists as well as small bodies of amphibolites, ophiolites, quartzites and marbles. The upper complex consists of volcanogeno-sedimentary constituents being methamorphozed in the series of the green schists. The most dominant among them are chloritic, amphibolo-biotitic, chlorito-sericitic and quartz schists.

The Vardar Zone (VZ) as a distinct structural unit is situated between the Serbian-Macedonian Massive on the east and the Pelagonian Metamorphic Complex and partly the West-Macedonian Zone on the west. In general, it is a rift structure of continental type which consists of the fragments of Precambrian crust of the earth as well as Paleozoic volcanogeno-sedimentary complex, acid mezozoic and tertiary calco-alcaline magmatism. The rest of the oceanic crust are presented by greater gabrodiabasis ophiolitic complexes.

Fig. 1. The silicate localities in the Republic of Macedonia: 1) Ržanovo, 2) Alinci, 3) Čanište, 4) Belutče, 5) Dunje, 6) Sasa, 7) Štavica, 8) Zvegor, 9) Lojane, 10) Staro Bonče, 11) Bonče, 12) Košino, 13) Kožuf, 14) Pelagon, 15) Vitolište, 16) Zletovo, 17) Sivec, 18) Prilepec, 19) Veselčani, 20) Bučim, 21) Budinarci, 22) Vodno, 23) Rabrovo, 24) Češinovo, 25) Bogoslovec, 26) Nistrovo, 27) Nežilovo

Pelagonian Metamorphic Complex (PMM) is of Precambrian and Paleozoic age. The present complexes of rocks in this zone vary from those appearing as a constituents of other tectonic units. This zone consists of high metamorphic crystalline rocks, gneisses, micachists and marbles as well as of regional metamorphic complexes where huge masses of palingenic granites are included. Their age vary from 800 to 1000 Ma.

West-Macedonian Zone (WMZ) consists of several formations. The oldest one is the volcanogeno-sedimentary spilite-ceratophiric formation of old Paleozoic age. The upper philito-carbonate and/or limestone series is of Paleozoic (Ordovicium, Silur, Devon) and Mesozoic (Triasic) age. Besides other components this zone contains quartzporphirites.

The above discussed geologic constitution of the Republic of Macedonia is characterized by the presence of a large number of silicate minerals in all mentioned geotectonic units, the most prominent one being the Pelagonian Metamorphic Complex (PMM). Their occurrences are discussed in the next chapter.

SILICATE DEPOSITS AND OCCURRENCES IN THE REPUBLIC OF MACEDONIA

Ržanovo locality

In the west ophiolitic belt of the Vardar Zone a rich iron-nickel locality Ržanovo is located. The basic geological constitution of this deposit includes the following stratigraphic units: Triasic limestones, Jurassic serpentinites, iron-nickel ore from the lower Cretaceous age, upper Cretaceous limestones and schists [17]. From the mineralogical point of view a variety of minerals are present: magnetite, hematite, chromite, limonite, pyrite, chlorite, riebeckite, chrysotile, talc, brucite and other [18, 19]. Serpentinite minerals are also widespread because this locality is placed at the ultrabasic rocks subjected to the continuous process of serpentinization. Also, as a consequence of the weak metamorphic processes and under conditions of high pressure and low temperatures on the contact area between serpetinites and ore layer, a notable quantity of talc mineral is established. Its appearence is in massive aggregates with white, but sometimes greenish color. The basic characteristic of talc from Rzanovo deposit is the presence of significant content of nickel.

Alinci locality

The Alinci locality is situated 11 km southwest of Prilep city, nearby the Alinci village. From the geological point of view this locality is built up of alcalic syenites, amphibolites, gneisses, muscovite schists and marbles. Alcalic sienites appear in the form of magmatic body about 2 km long surrounded by amphiboles from its east and west side. Large and small grained syenites are made of microcline, arfvedsonite, albite and modest content of titanite, augite, zircon, apatite and davidite. Gneisses and quartz-microcline veins are inside the syenitic body. Amphibolitic schists represent the southern part of the syenite massif [20]. Furthermore, it is important to emphasize the specific and very rare mineral parageneses of the uranium and other radioactive minerals, as well as abundant appearance of nests (few tenths of centimeters) filled with the needle-like arfvedsonite crystals [21].

Arfvedsonite is a member of the amphibole group characterized with needle-like crystals, green, black or blue colored in transmitted light. It is the first to crystallize and therefore, it can be found embedded in all present, but later crystallized minerals in the paragenesis. It also accompanies the feldspar group minerals.

Albite mineral is frequently present in welldeveloped and lath-formed crystals, from totally transparent to white colored. The largest crystals reach 10 cm in length. Very common appearence of polysynthetically twinned specimens as well as Karlovar's twins is typical. Also, the arfvedsonite crystal inclusions are present in this mineral.

Čanište locality

The location is on the western edge of Selečka Planina near by the village Čanište. This deposit is interesting because of large number of scattered minerals from the pegmatite in the garnet's and gneiss series [22], of which the most wide-spread are:

(a) Microcline mineral is rarely in the form of typically white crystals. The most interesting is the appearance of a green colored variety – amazonite which is present in the cleavage fragments (on the cleavage surfaces) instead of forming regular crystals.

(b) Epidote mineral is embedded in the pegmatite bodies, dominantly in the quartz-feldspar rocks. Therefore, it is practically impossible to remove it undamaged from the mother rock [23]. It is characterised with green colored, regular column-like crystals. They are not transparent, but are ideomorphly developed in more than 1 m long.

(c) Muscovite mineral is fixed on the contact surfaces between quartz and feldspar as a constituent of the pegmatite bodies, in few centimeters thick layers.

Belutče locality

On the southern part of Mariovo, on the saddle of this mountain, a pegmatite deposit at the locality Belutče lies. Basicaly, it is quartzpegmatite vein once being used for the production of sodium feldspar (albite). Additional minerals originating from this vein are apatite, orthoclase, microcline as well as large beautiful quartz prismatic monocrystals over 10 cm long [24]. In this study the results of the investigation of the orthoclase and microcline from this locality are presented.

Dunje locality

In the nearby village of Dunje, on the contact parts between the garnets and specially gneiss, a hydrothermal-pegmatite vein appears. During World War II the Germans explored and used the micas from this zone for insulators in electric tubes. At this location also more specific, interestingly combined mineral bodies are present, such as albite, adular, titanite, pyrite, quartz, stilbite and completely transparent epidote morphologically presented in various regular crystallographic forms [25, 26].

Sasa locality

The lead-zinc province of Sasa belongs to the ore region Sasa-Toranica. The metallogenetic zone is familiar with the semimetal lead-zinc ore mineralization, paragentically related with the subvolcanic Tertiary calcium-alcalic magma. During the Alpine-metalogenetic age, the mineralization in four phases had taken place which led to the significant lead and zinc formations followed by varying content of Cu, Au, Ag, Mo, Sb. The dominant part of the ore mineralization is located not only in the contact gneiss-quartzgraphite schist's and cipolines fragments, but also minerals within the quartzgraphite schist's and gneiss appear as well [27].

The mineral composition of the ore mineralization is much more complex and basically represented by variety of minerals formed in the different mineralization stages (metamorphic, skarns, hydrothermal). The most known minerals in the Sasa deposit appeared to be: galena, sphalerite, pyrite, pyrrhotite, chalcopyrite, tetrahedrite, freibergite, tennantite, marcasite, bornite, bismuthine, native bismuth, pentlandite, cubanite, vallerite, arsenopyrite, altaite, emplectite. The scarn mineral is represented by the garnet's (grossular, andradite), bustamite, augite, diopside, ilvaite, hedenbergite, johannsenite, rhodonite, actinolite as well as minerals from the hydrothermal-scarn stadium like chlorite, magnetite and hematite. Despite these, an oxide and carbonate minerals are also present, the most wellknown being calcite, ankerite, dolomite, kutnahorite, rhodochrosite, siderite, otavite as well as secondary minerals like cerusite, anglesite, malachite, azurite, hemimorphite [28, 29].

Štavica locality

Close to the Prilep-Vitolište road, on the Selečka Planina the Štavica locality is situated. This locality is basically built up of metamorphic rocks and micashists'. Garnet, dystane and staurolite monocrystals also appear along the occasional river flow alluvium. About 1 km left from the mentioned road towards Vitolište village (aside from Štavica) in the quartzlatite bodies of the gneiss series, the presence of kyanite monocrystals (blue distenes) is evident. Kyanite appears as intensively blue colored crystals and large crystal aggregates with enormous dimensions – over 20 cm [30, 31].

Zvegor locality

Not far from the small city of Delčevo, in the Zvegor village a volcanic quartzlatite rocks are found. In this series of rocks, towards the Bulgarian border, there is an outcrop full of large crystals of sanidine. The crystals are typical, with regular crystallographic forms. Often twinned crystals are present [31].

Lojane locality

In the serpentinite mass of the ultrabasic Lojane complex, ahead the tectonic structures, the most spread mineral – talc is registered. Another, not that frequent, but typical mineral for this locality which appears as intense green color thin curved layers is chlorite [32].

Staro Bonče locality

The Staro Bonče village is located on the Selečka Planina, primarily built up of micaschists (high metamorphic rocks). Kyanite, staurolite and garnets are also found above the village. The latter appear in the form of large crystals with regular crystallographic forms, mostly represented by almandine mineral [33].

Bonče locality

From the right side of the Bonče-Sliva road, in the unique metamorphic complex represented by the micachists, a tourmaline mineral appears in the quartz veins associated in the large prismatic and intensively black colored crystals up to 10 cm [34]. Among other present minerals are: disten, staurolite and quartz veins accompanied by apatite.

Košino locality

In the west contact edge between the Pelagonian Metamorphic Complex and West-Macedonian Zone a variety of Paleozoic-metamorphic rocks represented by different schist's series appears [34]. It is to emphasize that close to the Košino village an epidote-chlorite-amphibole schists series is present, often composed by little content of talcschists, actinolite, schists, metagabbros, serpentinites and metadiabases. The light-green colored schists have massive texture and nematoblastic structure. In the series about 500 meters in length, the most known are the large crystals (20 cm) of green actinolite [35]. Other common minerals are amphibole, chlorite, epidote and coisite. The less content of albite, quartz, sericite, biotite, talc, titanite, pyrite and magnetite are also found.

Kožuf locality

In the series of the volcanic rocks of the volcanic complex of Kožuf Mountain a numerous petrologic types appear: andesites, quartzlatites, latites, thachyte, rhyolites and several transition rocks for their connection. These volcanic rocks are built up of intermediary plagioclases: andesite, biotite, sanidine, quartz, augite as well as amphibole represented with hornblende. The latter mineral appears in regular crystallographic forms being black colored and amounting up to 1 cm. It should be pointed out here that from time to time the hornblende transforms into thin opacite edge [36].

Pelagon locality

In the series of the trachitic muscovite-biotite gneisses in the central and west part of the Pelagon, near the contact bodies to the granodioritic masses, a high concentration of mica is found, mostly represented by biotite and muscovite. The biotite from this locality is typical with its massive appearence and variety of large crystal forms up to 10 centimeters. Sometimes, especially in the pegmatite bodies, even larger lath-shaped biotite crystals are located [22]. It should be point out that often a large crystals of almandine over 2 cm appear in Krastov Kamen and Veprčani deposits.

Vitolište locality

Between the Vardar Zone and Pelagnian Metamorphic complex near the Vitolište village (on the Melnica – Vitolište road) a filito-micaschists and green carbonates schists appear. A green muscovite called fuxite, is present in the rocks [22].

Zletovo locality

The lead-zinc vein type hydrothermal deposit is genetically associated with the processes of Ter-

tiary magmatic activity. Several major types of ore parageneses are established at this deposit particulary the low temperature paragenesis including the quartz and chalcedony minerals in the dominatly oxide carbonate associations [37–39].

Sivec locality

Near the city of Prilep, in the marble series of the Pelagonian Metamorphic Complex, a surface mine (Sivec) for white dolomite marble exploitation is activated. These marbles, according to the degree of metamorphism and mineral association, belong to the group of regional-metamorphic and igneous rocks, being basically composed of carbonates (dolomite, calcite) and oxides (diaspore, corundum, rutile). Also some common (tourmaline, diopside, muscovite, chlorite) as well as some very rare silicates (phlogopite, cymrite, kosmatite) are present as well [40, 41].

Prilepec locality

The Prilepec locality is about 5 km south from the city of Prilep. The deposit is built up of metamorphic rocks, dominantly micaschists. The most known silicates are kyanite, almandine and staurolite. It is important to point out that kyanite from this locality forms intergrown crystals spotted in the quartzlatitic rocks.

Veselčani locality

In the micachists series of the Pelagonian Metamorphic Complex of Macedonia which is basically build up of gneisses, micachists, amphibolites and marbles, a Veselčani village is recognized by the presence of large well-formed crystals of rutile (even 10 cm) [22]. This mineral has common origin with muscovite and quartz and is associated in the pegmatic-quartz veins. Another silicate minerals present in this locality are microcline and actinolite.

Bučim locality

The ore deposit is located on about 10 km west from Radoviš city. From the geologic point of view it is built up of Precambrian metamorphic rocks (various types of gneisses and amphiboles) and Tertiary volcanics (andesites and latinoandesites). Here the presence of copper mineralization of the porphyry type in the area of 1.5-2km² is established. The most represented silicate mineral is quartz [42].

Budinarci locality

The Budinarci village is situated about 12 km southwest from the Berovo city. The rocks surrounding the village are micashists, gneisses and granites. Very wide granite and quartz veins are found in the above mentioned rocks [23]. Quartz is the most abundant mineral in this locality found in the form of beautiful monocrystal species being from transparent, across slightly smoky, up to to-tally dull.

Vodno locality

The first literature data about the occurrence of glaucophane mineral on the field of Vodno is found in the work of Kosmat [43] who has performed detailed research of the geologic profiles of this mountain. It is mentioned that an alcalic amphibole of the glaucophane type is present in the series of Palaeozoic schist's and cipolines. The further study in the series of metamorphic rocks from the Palaeozoic age on Vodno and Osoj has also shown the presence of glaucophane [44].

Rabrovo locality

Ultrabasic tectonites in the Rabrovo locality manifest the part of the east-ophiolitic belt of the Vardar Zone. They are covered and surrounded by the younger and transgressive Dedeli series which is situated between the rocks of the Paleozoic age. Here, the ultrabasic rocks are built up of dunites, lherzolites and verlites occasionally followed by leucocrate garnets. In the verlite series a large specimen of calcium clinopyroxene mineral – augite is typical [32].

Češinovo locality

The great content of volcanic tuffs occurs in the series of the Kratovo-Zletovo volcanic area.

The tuffs are found in the places where the processes of hydrothermal metamorphosis are present [45, 46]. These hydrothermal changes are represented with silicification of quartz, cristobalite and the most dominant being the opal mineral form. Some found specimens are recognizable with the presence of tridymite occurring on the opal surface.

Bogoslovec locality

In the series of the ultrabasic rocks in the east-ophiolitic belt of the Vardar Zone in the Bogoslovec locality, an occurrence of the large body of tectonic ophiolites is established. The ophiolitic rocks are built up of dunites, harzburgites and less common gabrites. Along the gaps of the dunite series a large content of serpentinite minerals is formed, the most frequent being chrysotile. Here, this mineral is found in the little needle-like form or needle conglomerates amounting up to 0.5 cm each [32].

Nistrovo locality

Nearby Vrbjani village, Nistrovo village, Štirovica locality, Brodec village as well as Kobilno Pole locality, a serpentine body localized across the deeper tectonite structures are found. On the surface, these serpentines are tectonically crashed and changed with grey- or dark-greenish up to black colored. Their bodies are rarely accompanied by the needle-like chrysotile (asbestos). Although, basically built up of chrysotile and antigorite a low content of pyroxenes, magnetite and chromite are present [47]. The secondary minerals like calcite, chlorite and actinolite are also typical.

Nežilovo locality

The Nežilovo locality is situated 40 km southwest of Veles in the cental part of the Pelagonian massif. Two parts – the lower and upper one are divided from the complex metamorphic series of Precambrian rocks. The latter consists of massive marbles, whereas the former is built up of gneisses, micaschists, barite-bearing schists, quartz-cymrite schists and pink dolomitic marbles [34, 48].

ASSEMBLAGE OF INDIVIDUAL TYPES OF SILICATE MINERALS

Table 2

Studied silicate minerals from the territory of the Republic of Macedonia

No.	Mineral	Formula	Crystallographic system; Space group
Orth	osilicates = Neso	silicates	
1	Almandine	Fe ₃ Al ₂ (SiO ₄) ₃	Cubic; Ia3d
2	Staurolite	$Fe_2Al_9O_6(SiO_4)_4(OH)_2$	Monoclinic; C2/m
3	Kyanite	Al ₂ SiO ₅	Triclinic; P1
4	Olivine	(Mg,Fc) ₂ SiO ₄	Orthorhombic; Pbnm
5	Titanite	CaTiSiO ₅	Monoclinic; P2 ₁ /a
6	Spessartine	Mn ₃ Al ₂ (SiO ₄) ₃	Cubic; Ia3d
Disi	licates = Sorosilic	ates	
7	Epidote	Ca ₂ Al ₂ (Al,Fe ³⁺)OOH[Si ₂ O ₇][SiO ₄]	Monoclinic; P2 ₁ /m
8	Hemimorphite	Zn ₄ Si ₂ O ₇ (OH) ₂ ·H ₂ O	Orthorhombic; Imm2
Ring	Silicates = Cyclosi	licates	
9	Tourmaline	NaFe ³⁺ 3Al ₆ (BO3)3Si ₆ O18(OH)4	Trigonal; R3m
Cha	in Silicates = Inos	vilicates	
10	Arfvedsonite	Na ₃ (Mg,Fe ²⁺) ₄ (Fe ³⁺ ,Al)Si ₈ O ₂₂ (OH) ₂	Monoclinic; C2/m
11	Actinolite	$Ca_2(Mg,Fe)_5Si_8O_{22}(OH)_2$	Monoclinic; C2/m
12	Glaucophane	Na ₂ Mg ₃ (Al,Fe) ₂ Si ₈ O ₂₂ (OH) ₂	Monoclinic; C2/m
13	Ilvaite	CaFe ²⁺ ₂ Fe ³⁺ Si ₂ O ₈ (OH)	Orthorhombic; Pbnm
14	Augite	$(Ca,Mg,Fe^{2+},Fe^{3+},Al)_2(Si,Al)_2O_6$	Monoclinic; C2/c
15	Diopside	CaMgSi ₂ O ₆	Monoclinic; C2/c
16	Rhodonite	MnSiO ₃	Triclinic; $P\overline{1}$
17	Johannsenite	CaMnSi ₂ O ₆	Monoclinic; C2/c
18	Hornblende	(NaK) ₀₋₁ Ca ₂ (Mg,Fe,Fe ³⁺ ,Al) ₅ (SiAl) ₈ O ₂₂ (OH) ₂	Monoclinic; C2/m
She	et Silicates = Phyl	losilicates	
19	Antigorite	$(Mg,Fe^{2+})_{3}Si_{2}O_{5}(OH)_{4}$	Monoclinic; Cm
20	Chrysotile	Mg ₃ Si ₂ O ₅ (OH) ₄	Monoclinic; A2/m
21	Biotite	$K(Mg,Fe^{2+})_3AISi_3O_{10}(OH,F)_2$	Monoclinic; C2/m
22	Muscovite	KAl ₂ (Si ₃ Al)O ₁₀ (OH,F) ₂	Monoclinic; C2/m

23	Talc	Mg ₃ Si ₄ O ₁₀ (OH) ₂	Monoclinic; C2/c
24	Phlogopite	KMg ₃ (Si ₃ Al)O ₁₀ (F,OH) ₂	Monoclinic; C2/m
25	Clinochlore	(Mg,Fe ²⁺) ₅ Al(Si ₃ Al)O ₁₀ (OH) ₈	Monoclinic; C2/m
26	Cymrite	BaAl ₂ Si ₂ O ₈ ·H ₂ O	Monoclinic; P21
27	Kosmatite	Ca ₃ MgAl ₂ AlSi ₃ O ₁₀ (OH,F) ₈	?
28	Paragonite	NaAl ₂ (Si ₃ Al)O ₁₀ (OH) ₂	Monoclinic; C2/c
29	Vermiculite	(Mg,Fe ²⁺ ,Al) ₃ (Al,Si) ₄ O ₁₀ (OH) ₂ ·4H ₂ O	Monoclinic; C2/m
Frai	nework Silicates	= Tectosilicates	
30	Albite	NaAlSi ₃ O ₈	Triclinic; PI
31	Analcime	NaAlSi ₂ O ₆ ·H ₂ O	Triclinic; P1
32	Microcline	KAISi ₃ O ₈	Triclinic; <i>P</i> I
33	Orthoclase	KAISi ₃ O ₈	Monoclinic; C2/m
34	Opal	SiO ₂ ·nH ₂ O	Amorphous
35	Quartz	SiO ₂	Trigonal; P3 ₁ 2 ₁
36	Sanidine	(K,Na)(Si,Al) ₄ O ₈	Monoclinic; C2/m
37	Stilbite	NaCa ₄ Al ₈ Si ₂₈ O ₇₂ ·30H ₂ O	Monoclinic; C2/m

Table 3

Non-studied silicate minerals from the territory of the Republic of Macedonia

No.	Mineral	Formula	Crystallographic system; Space Group
Orth	osilicates = Nesosi	licates	
1	Zircon	ZrSiO ₄	Tetragonal; <i>I</i> 4 ₁ /amd
Ring	silicates = Cyclos	ilicates	
2	Beryl	Be ₃ Al ₂ Si ₆ O ₁₈	Hexagonal; P6/mmc
Cha	in Silicates = Inosi	licates	
3	Palygorskite	$(Mg,Al)_2Si_4O_{10}(OH)\cdot4(H_2O)$	Monoclinic; C2/m
4	Bustamite	(Ca,Mn) ₃ Si ₃ O ₉	Triclinic; P1
Shee	et Silicates = Phyllo	osilicates	
5	Zinnwaldite	KLiFe ²⁺ Al(AlSi ₃)O ₁₀ (F,OH) ₂	Monoclinic; C2/m
6	Montmorillonite	$(Na,Ca)_{0.3}(Al,Mg)_2Si_4O_{10}(OH)_2 \cdot nH_2O$	Monoclinic; C2/m

Nesosilicates (orthosilicates)

Almandine Fe₃Al₂(SiO₄)₃

Environment: Metamorphic and pegmatitic rocks **Locality:** Prilepec, Štavica, Pelagon, Staro Bonče **Name Origin:** Named after the locality Alabanda in Asia

Density (Calc): 4.32

Cleavage: None

Color: Brown, brownish red, red, black or black red **Hardness:** 7-8 – Quartz-Topaz

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Staurolite Fe₂Al₉O₆(SiO₄)₄(OH)₂

Environment: Metamorphosed aluminous sedimentary rocks

Locality: Štavica, Staro Bonče

Name Origin: From the Greek, *stauros* - "cross" and *lithos* - "stone" in allusion to the common cross shaped twins of the crystals Density (Calc): 3.64 Cleavage: [010] Distinct Color: Brownish yellow, brownish black, yellow brown, dark brown or reddish brown Hardness: 7-7.5 – Quartz-Garnet

Above: Almandine collected from Pelagon

Left: FT IR spectrum of almandine

Mineral identification based on the IR spectral data given in the references: [49-55]

Above: Staurolite collected from Štavica

Left: FT IR spectrum of staurolite

Mineral identification based on the IR spectral data given in the references: [49, 50], [56]

Kyanite Al₂SiO₅

Environment: Metamorphosed peri-aluminous sedimentary rocks

Locality: Štavica, Staro Bonče, Pelagon, Prilepec Name Origin: From the Greek kyanos - "blue" Density (Calc): 3.67 Cleavage: [100] Perfect, [010] Imperfect Color: Blue, white, gray, green or black Hardness: 4-7 – Fluorite-Quartz

Wavenumber/cm⁻¹

Olivine (Mg,Fe)₂SiO₄

Environment: Basic and ultra basic igneous rocks Locality: Ržanovo Name Origin: Named after the green color Density (Calc): 3.22 Cleavage: [001] Good, [010] Distinct Color: Colorless, green, yellow, yellow green or white Hardness: 6-7 – Orthoclase-Quartz

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Above: Kyanite collected from Štavica

Left: FT IR spectrum of kyanite

Mineral identification based on the IR spectral data given in the references: [49, 50, 57, 58]

Above: Olivine collected from Ržanovo

Left: FT IR spectrum of olivine

Mineral identification based on the IR spectral data given in the references: [50, 58-65]

Titanite CaTiSiO,

Environment: Magmatic, metamorphic and hydrothermal rocks Locality: Alinci, Dunje Name Origin: Named after presence of titanium in chemical composition Density (Calc): 3.52 Cleavage: [110] Distinct, [100] Imperfect, [112] Imperfect Color: Reddish brown, gray, yellow, green or red Hardness: 5-5.5 – Apatite-Knife Blade

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Spessartine Mn₃Al₂(SiO₄)₃

Environment: Magmatic, metamorphic and pegmatitic rocks Locality: Lojane Name Origin: Named after its locality - Spessart, Germany Density (Calc): 4.18 Cleavage: [???] Distinct Color: Red, reddish orange, yellowish brown, reddish brown, brown Hardness: 6.5-7.5 – Pyrite-Garnet

Above: Titanite collected from Alinci

Left: FT IR spectrum of titanite

Mineral identification based on the IR spectral data given in the reference: [50]

Above: Spessartine collected from Lojane

Left: FT IR spectrum of spessartine

Mineral identification based on the IR spectral data given in the references: [50, 64]

Sorosilicates (disilicates) Epidote

Ca₂Al₂(Al,Fe³⁺)OOH[Si₂O₇][SiO₄] **Environment:** Contact metamorphic rocks **Locality:** Dunje, Čanište **Name Origin:** From the Greek *epidosis* - "addition" **Density (Calc):** 3.69 **Cleavage:** [001] Perfect **Color:** Yellowish green, brownish green, black, yellow or gray **Hardness:** 7 – Quartz

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Hemimorfite $Zn_4Si_2O_7(OH)_2 \cdot H_2O$

Environment: Veins and beds in stratified calcareous rocks Locality: Sasa Name Origin: Named after the hemimorphic nature of the crystals Density (Calc): 3.48 Cleavage: [110] Perfect Color: Brown, colorless, greenish gray, yellow brown or white Hardness: 5 – Apatite

Above: Epidote collected from Čanište

Left: FT IR spectrum of epidote

Mineral identification based on the IR spectral data given in the references: [50, 66]

Above: Hemimorfite collected from Sasa

Left: FT IR spectrum of hemimorfite

Mineral identification based on the IR spectral data given in the reference: [50]

Tourmaline (Schörl)

NaFe³⁺₃Al₆(BO₃)₃Si₆O₁₈(OH)₄ Environment: Garnets, diorites, gabbro pegmatites, greisens, skarns and quartz veins Locality: Dunje, Bonče, Sasa, Name Origin: Old name of unknown origin Density (Calc): 3.27 Cleavage: [1011] Indistinct Color: Black Hardness: 7.5 – Garnet

Inosilicates (chain silicates) Arfvedsonite

Na₃(Mg,Fe²⁺)₄(Fe³⁺,Al)Si₈O₂(OH),

Environment: Igneous syenites and pegmatites Locality: Alinci Name Origin: Named after the Swedish chemist, J. A. Arfvedson (1792-1841) Density (Calc): 3.47 Cleavage: [110] Perfect Color: Black, gray Hardness: 5.5-6 – Knife Blade-Orthoclase

Above: Tourmaline collected from Bonče

Left: FT IR spectrum of tourmaline

Mineral identification based on the IR spectral data given in the references: [50, 67]

Above: Arfvedsonite collected from Alinci

Left: FT IR spectrum of arfvedsonite

Mineral identification based on the IR spectral data given in the reference: [50]

Actinolite Ca₂(Mg,Fe)₅Si₈O₂₂(OH)₂

Environment: Metamorphic rocks Locality: Košino, Veselčani Name Origin: From the Greek, aktinos, meaning "ray" in allusion to actinolite's fibrous nature Density (Calc): 3.20 Cleavage: [110] Perfect, [110] Perfect Color: Light to blackish green Hardness: 5.5 - Knife Blade

Glaucophane

Na, Mg, (Al, Fe), Si, O,, (OH),

Environment: Metamorphic blue shists Locality: Vodno Name Origin: From the Greek glaukos - "blue" and fanos - "appearing" Density (Calc): 2.99 Cleavage: [110] Good, [001] Good Color: Gray, blue, bluish black or lavenderblue Hardness: 6-6.5 – Orthoclase-Pyrite

Wavenumber/cm⁻¹

Above: Actinolite collected from Košino

Left: FT IR spectrum of actinolite

Mineral identification based on the IR spectral data given in the references: [50, 68, 69]

Above: Glaucophane collected from Vodno

Left: FT IR spectrum of glaucophane

Mineral identification based on the IR spectral data given in the reference: [70]

Ilvaite $CaFe^{2+}{}_{2}Fe^{3+}Si_{2}O_{8}(OH)$

Environment: Occurs with magnetite ore bodies, with zinc and copper ores, and in contact deposits and zeolites

Locality: Sasa

Name Origin: From the Latin name of the island of Elba

Density (Calc): 4.07

Cleavage: [010] Distinct, [001] Distinct Color: Black, grayish brown or brownish black Hardness: 5.5-6 – Knife Blade-Orthoclase

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Augite $(Ca,Mg,Fe^{2+},Fe^{3+},Al)_2(Si,Al)_2O_6$

Environment: Basic igneous and metamorphic rocks

Locality: Rabrovo, Sasa

Name Origin: From the Greek *auge* - "luster" Density (Calc): 3.51 Cleavage: [110] Perfect, [010] Indistinct

Color: Brown green, green, light brown, dark brown or black

Hardness: 5-6.5 – Apatite-Pyrite

Above: Ilvaite collected from Sasa

Left: FT IR spectrum of ilvaite

Mineral identification based on the IR spectral data given in the references: [50, 71]

Above: Augite collected from Rabrovo

Left: FT IR spectrum of augite

Mineral identification based on the IR spectral data given in the references: [50, 72]

Diopside CaMgSi,O₆

Environment: Basic and ultrabasic igneous and metamorphic rocks Locality: Lojane Name Origin: From the Greek dis - "two kinds" and opsis - "opinion" Density (Calc): 3.4 Cleavage: [110] Good, [???] Indistinct Color: Blue, brown, colorless, green, gray Hardness: 6 - Orthoclase

Wavenumber/cm⁻¹

Rhodonite MnSiO,

Environment: Hydrothermal, metamorphic and metasomatic rocks Locality: Sasa Name Origin: From the Greek rhodos - "rose colored" Density (Calc): 3.74 Cleavage: [110] Perfect, [110] Perfect Color: Pink, rose red, brownish red, black or yellow

Hardness: 6 - Orthoclase

Wavenumber/cm⁻¹

Above: Diopside collected from Lojane

Left: FT IR spectrum of diopside

Mineral identification based on the IR spectral data given in the references: [50, 58, 72, 73]

Above: Rhodonite collected from Sasa

Left: FT IR spectrum of rhodonite

Mineral identification based on the IR spectral data given in the reference: [50]

Johannsenite CaMnSi₂O₆

Environment: Contact metasomatic rocks Locality: Sasa Name Origin: Named after Prof. Albert Johannsen, the University of Chicago Density (Calc): 3.56 Cleavage: [110] Good Color: Brown, brownish black, greenish, gray, gray green Hardness: 6 – Orthoclase

Wavenumber/cm⁻¹

Hornblende

 $(NaK)_{0-1}Ca_2(Mg,Fe,Fe^{3+},Al)_5(SiAl)_8O_{22}(OH)_2$

Environment: Igneous, metamorphic and sedimentary rocks

Locality: Kožuf

Name Origin: Given to a series of minerals that are rather difficult to distinguish by ordinary means Density (Calc): 3.23

Cleavage: [110] Distinct

Color: Brown, green, greenish brown, greenish black, dark green

Hardness: 5-6 - Apatite-Orthoclase

Above: Johannsenite collected from Sasa

Left: FT IR spectrum of johannsenite

Mineral identification based on the IR spectral data given in the reference: [73]

Above: Hornblende collected from Kožuf

Left: FT IR spectrum of hornblende

Mineral identification based on the IR spectral data given in the references: [50, 74]

Phillosilicates (sheet silicates)

Antigorite $(Mg,Fe^{2+})_3Si_2O_5(OH)_4$ Environment: In a network of veins crosscutting a netamorphic antigorite serpentinite, in an ophiolite **Locality:** Ržanovo

Name Origin: Named after the locality - Val Antigorio, Italy

Density (Calc): 2.73

Cleavage: [001] Good

Color: Green, gray, bluish gray, brown or black Hardness: 3.5-4 – Copper Penny-Fluorite

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Chrysotile Mg₃Si₂O₅(OH)₄

Environment: Metamorphosed and hydrothernally-altered ultra-basic rocks Locality: Bogoslovec, Kobilno Pole, Nistrovo, Ržanovo

Name Origin: From the Greek chrysos - "gold" and tilos - "fiber"

Density (Calc): 2.60

Classing (Calc), 2.00

Cleavage: [???] Distinct

Color: Green

Hardness: 2.5 – Finger Nail

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Above: Antigorite collected from Ržanovo

Left: FT IR spectrum of antigorite

Mineral identification based on the IR spectral data given in the references: [75-78]

Above: Chrysotile collected from Ržanovo

Left: FT IR spectrum of chrysotile

Mineral identification based on the IR spectral data given in the references: [75, 78-80]

Biotite $K(Mg,Fe^{2+})_3AISi_3O_{10}(OH,F)_2$ Environment: Granitic rocks. Forms a series with phlogopite Locality: Pelagon, Čanište Name Origin: Named after the French physicist, Jean Baptiste Biot (1774 - 1862), who studied the optical properties of the micas Density (Calc): 2.89 Cleavage: [001] Perfect Color: Dark brown, greenish brown, blackish brown, yellow or white Hardness: 2.5-3 – Finger Nail-Calcite

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Muscovite KAl₂(Si₃Al)O₁₀(OH,F)₂

Environment: Granites and pegmatites Locality: Kokre, Pelagon, Belutče, Čanište, Vitolište, Dunje Name Origin: From Muscovy glass, alluding to the Russian province of Muscovy Density (Calc): 2.83 Cleavage: [001] Perfect Color: White, gray, silver white, brownish white or greenish white

Hardness: 2-2.5 - Gypsum-Finger Nail

Above: Biotite collected from Pelagon

Left: FT IR spectrum of biotite

Mineral identification based on the IR spectral data given in the references: [78, 81, 82]

Above: Muscovite collected from Pelagon

Left: FT IR spectrum of muscovite

Mineral identification based on the IR spectral data given in the references: [50, 77, 82-85]

Falc $Mg_3Si_4O_{10}(OH)_2$

Environment: Hydrothermal alteration of nonluminous magnesian silicates **Locality:** Ržanovo lame Origin: From the Arabic word for mica - *talq* **Density (Calc):** 2.82 **Cleavage:** [001] Perfect **Color:** Pale green, white, gray white, yellowish white r brownish white **Lardness:** 1 – Talc

000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Phlogopite KMg₃(Si₃Al)O₁₀(F,OH)₂

nvironment: Contact and regional metamorphic mestones and dolomites **ocality:** Sivec

ame Origin: From the Greek *flogopos* - "resemling fire"

ensity (Calc): 2.81

leavage: [001] Perfect

bolor: Brown, gray, green, yellow or reddish rown

ardness: 2-2.5 - Gypsum-Finger Nail

000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Above: Talc collected from Ržanovo

Left: FT IR spectrum of talc

Mineral identification based on the IR spectral data given in the references: [50, 77, 81, 83, 85-87]

Above: Phlogopite collected from Sivec

Left: FT IR spectrum of phlogopite

Mineral identification based on the IR spectral data given in the references: [77, 81, 83, 85, 88]

Clinochlore

 $(Mg,Fe^{2+})_5Al(Si_3Al)O_{10}(OH)_8$ Environment: Contact, hydrothermal, and regional metamorphism of mafic minerals Locality: Sivec Name Origin: Clinochlore from the Greek *klino* -"oblique" and *chloros* - " green" Density (Calc): 2.83 Cleavage: [001] Perfect Color: Blackish green, bluish green, white, yellowish green or olive green Hardness: 2-2.5 – Gypsum-Finger Nail

Wavenumber/cm⁻¹

Cymrite $BaAl_2Si_2O_8 \cdot H_2O$

Environment: Bedded manganese ore deposits that have undergone low- and medium-grade metamorphism Locality: Nežilovo Name Origin: Named after Cymru, the old Welsh name for Wales Density (Calc): 3.49 Cleavage: [001] Good, [101] Fair Color: Brown, colorless, green, dark green Hardness: 2-3 – Gypsum-Calcite

Above: Clinochlore collected from Sivec

Left: FT IR spectrum of clinochlore

Mineral identification based on the IR spectral data given in the reference: [86]

Above: Cymrite collected from Nežilovo

Left: FT IR spectrum of cymrite

Cosmatite Ca₃MgAl₂AlSi₃O₁₀(OH,F)₈

nvironment: Metamorphic rocks - marbles ocality: Sivec ame Origin: After the German geologist F. Cosmat ensity (Calc): leavage: olor: Green, light-green ardness: -

Above: Kosmatite collected from Sivec

Left: FT IR spectrum of Kosmatite

aragonite NaAl₂(Si₃Al)O₁₀(OH)₂

nvironment: Granites and pegmatites ocality: Nežilovo ame Origin: From Greek, meaning to mislead ensity (Calc): 2.78 leavage: [001] Perfect olor: White, yellow ardness: 2.5 – Finger Nail

Above: Paragonite collected from Nežilovo

Left: FT IR spectrum of paragonite

Mineral identification based on the IR spectral data given in the reference: [78]

Vermiculite

 $(Mg,Fe^{2+},Al)_{3}(Al,Si)_{4}O_{10}(OH)_{2}\cdot 4H_{2}O$

Environment: Granitic rocks Locality: Nežilovo Name Origin: From the Latin *vermiculus*, "little worm" Density (Calc): 2.32 Cleavage: [001] Perfect Color: Colorless, green, gray white, yellow brown

Hardness: 1.5-2 – Between talc and gypsum-Gypsum

Wavenumber/cm⁻¹

Tectosilicates (framework silicates)

Albite NaAlSi₃O₈

Environment: Magmatic and pegmatitic rocks Locality: Alinci, Čanište, Dunje Name Origin: From the Latin, *albus*, in allusion to the common color Density (Calc): 2.63 Cleavage: [001] Perfect, [010] Good Color: White, gray, greenish gray, bluish green or gray Hardness: 7 – Quartz

Above: Albite collected from Dunje

Left: FT IR spectrum of albite

Mineral identification based on the IR spectral data given in the references: [50, 58, 67, 89]

Above: Vermiculite collected from Nežilovo

Left: FT IR spectrum of vermiculite

Mineral identification based on the IR spectral data given in the reference: [78]

Analcime NaAlSi₂O₆·H₂O Environment: Frequently in basalts and other basic igneous rocks associated with other zeolites Locality: Alšar, Bučim Name Origin: From the Greek word *analkis*, meaning weak, referring to a weak electrical charge developed on rubbing Density (Calc): 2.27 Cleavage: [001] Indistinct, [010] Indistinct, [100] Indistinct Color: White, grayish white, greenish white, yellowish white or reddish white Hardness: 5 – Apatite

Wavenumber/cm⁻¹

Microcline KAISi₃O₈

Environment: Granitic pegmatites, hydrothermal and metamorphic rocks

Locality: Čanište, Pelagon, Alinci, Dunje, Belutče Name Origin: From the Greek *mikron* - "little"

and klinein - "to stoop"

Density (Calc): 2.56

Cleavage: [001] Perfect, [010] Good

Color: Bluish green, green, gray, grayish yellow or yellowish

Hardness: 6 – Orthoclase

Above: Analcime collected from Alšar

Left: FT IR spectrum of analcime

Mineral identification based on the IR spectral data given in the references: [50, 67]

Above: Microcline collected from Alinci

Left: FT IR spectrum of microcline

Mineral identification based on the IR spectral data given in the references: [50, 67]

136

Orthoclase KAISi₃O₈

Environment: Intrusive and extrusive igneous and metamorphic rocks Locality: Belutče, Pelagon, Veselčani Name Origin: From the Greek *orthos* - "right" and *kalo* - "I cleave" in allusion to the mineral's right angle of good cleavage Density (Calc): 2.55 Cleavage: [001] Perfect, [010] Good Color: Colorless, greenish, grayish yellow, white or pink Hardness: 6 – Orthoclase

4000 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Opal SiO₂·nH₂O

Environment: Sedimentary and secondary from the alteration of high silica igneous extrusive rocks Locality: Češinovo Name Origin: From the Old Indian *upala* -"precious stone"

Density (Calc): 2.09

Cleavage: None

Color: White, yellow, red, brown or blue **Hardness:** 5.5-6 – Knife Blade-Orthoclase

Above: Orthoclase collected from Belutče

Left: FT IR spectrum of orthoclase

Mineral identification based on the IR spectral data given in the reference: [50]

Above: Opal collected from Češinovo

Left: FT IR spectrum of opal

Mineral identification based on the IR spectral data given in the references: [50, 67, 90]

iartz SiO₂

vironment: Sedimentary, metamorphic and eous rocks

ality: Belutče, Budinarci, Alinci, Čanište, devo, Mariovo, Sasa, Zletovo, Bučim, Košino ne Origin: From the German *quarz*, of uncerorigin

sity (Calc): 2.65

avage: [0110] Indistinct

or: Brown, colorless, violet, gray or yellow

dness: 7 – Quartz

0 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

nidine (K,Na)(Si,Al)₄O₈

vironment: Acid volcanic rocks vality: Zvegor me Origin: From the Greek sanis - "little e" and idos - "to see" msity (Calc): 2.53 avage: [001] Perfect, [010] Good or: Colorless, white, gray, yellowish white or dish white rdness: 6 – Orthoclase

00 3500 3000 2500 2000 1500 1000 500 Wavenumber/cm⁻¹

Above: Quartz collected from Sasa

Left: FT IR spectrum of quartz

Mineral identification based on the IR spectral data given in the references: [50, 67, 91]

Above: Sanidine collected from Zvegor

Left: FT IR spectrum of sanidine

Mineral identification based on the IR spectral data given in the reference: [89]

Stilbite NaCa₄Al₈Si₂₈O₇₂·30H₂O

Environment: Acid volcanic rocks Locality: Dunje Name Origin: From the Greek *stilbe* - "luster" in allusion to the pearly to vitreous luster Density (Calc): 2.20 Cleavage: [010] Perfect Color: White, red, yellow, brown or cream

Hardness: 3.5-4 – Copper Penny-Fluorite

Above: Stilbite collected from Dunje

Left: FT IR spectrum of stilbite

Mineral identification based on the IR spectral data given in the reference: [50]

Acknowledgments: The financial support from the Ministry of Education and Science of the Republic of Macedonia as well as Mako – Trading from Kavadarci is gratefully acknowledged. The authors cordially thank Marin Aleksandrov, Dzvonko Gruevski and Vladimir Bermanec for kind donation of some of the studied minerals.

REFERENCES

- G. Jovanovski, V. Stefov, B. Soptrajanov, B. Boev, N. Jb. Miner. Abh., 177, 241 (2002).
- [2] P. Makreski, G. Jovanovski, Bull. Chem. Technol. Maced., 22, 25 (2003).
- [3] G. Jovanovski, V. Stefov, B. Jovanovski, B. Šoptrajanov, B. Boev, Geol. Maced., 13, 69 (1999).
- [4] G. Jovanovski, V. Stefov, G. Jovanovski, B. Šoptrajanov, B. Kaitner, Proceedings on the 16th Congress of Chemists and Technologists of Macedonia, Skopje, 1, 43 (1999).
- [5] P. Makreski, G. Jovanovski, V. Stefov, B. Minčeva-Šukarova, B. Kaitner, B. Boev, *Geol. Maced.*, 15-16, 43 (2001-2002).
- [6] G. Jovanovski, B. Minčeva-Šukarova, P. Makreski, B. Šoptrajanov, W. P. Griffith, R. L. Willis, Proceedings on the Eighteen International Conference on Raman Spectroscopy, Budapest, 931 (2002).
- [7] G. Jovanovski, B. Minčeva-Šukarova, P. Makreski, V. Stefov, W. P. Griffith, R. L. Willis, Proceedings on the Eighteen International Conference on Raman Spectroscopy, Budapest, 933 (2002).

- [8] B. Minčeva-Šukarova, G. Jovanovski, P. Makreski, B. Šoptrajanov, W. P. Griffith, I. Grzetić, J. Mol. Struct., 651–653, 181 (2003).
- [9] P. Makreski, G. Jovanovski, B. Minčeva-Šukarova, B. Šoptrajanov, W. P. Griffith, H. Haeuseler, I. Grzetić, *Vibr. Spectrosc.* (in press).
- [10] V. Stefov, S. Dimitrovska, G. Jovanovski, B. Šoptrajanov, Proceedings on the 16th Congress of Chemists and Technologists of Macedonia, Skopje, 1, 47 (1999).
- [11] V. Stefov, G. Jovanovski, B. Šoptrajanov, B. Minčeva-Šukarova, S. Dimitrovska, B. Boev, *Geol. Maced.*, 14, 61 (2000).
- [12] P. Makreski, V. Zajkova-Panova, G. Jovanovski, T. Stafilov, D. Zendelovska, Proceedings of 3rd Analytical Chemistry Days, Lesvos, 440 (2002).
- [13] William D. Nesse, *Introduction to Mineralogy*, Oxford University Press, 2000.
- [14] http://www.webmineral.com/
- [15] http://www.mineral.galleries.com/

- M. Arsovski, N. Dumurdžanov, Geol. Maced., 9, 15 995).
- T. Ivanov, IIIrd Congress of the Geolologists' of the ugoslavia, Proceedings, **2**, 249 (1962).
- . Boev, R. Stojanov, Geol. Maced., 1, 191 (1985).
- B. Boev, S. Janković, Faculty of Mining and Geology, pec. Iss. No. 3, 273 (1996).
- ... Baric, Mineraloško-petrografski muzej, Zagreb, 23 964).
- 1. Žorz, R. Vidrih, V. Mikuz, G. Kobler, B. Music, *Pro*us, **51**, 326 (1988/89).
- I. Dumurdžanov, S. Hristov, B. Pavlovski, V. Ivanova, he Interpretation of the Basic Geologic Map of the Reablic of Macedonia for Sheet K-34-104 Vitolište and K 4-116 Kajmakčalan, 61, 1976.
- Žorz, M. Jeršek, G. Mladenovski, Hidden Treasures f Macedonia, *Scopolia*, Supplementum 2, Ljubljana, 999.
- . Barić, *Glasnik Prirodnjačkog muzeja*, Beograd, **31**, 5 976).
- D. Tibljas, V. Zebec, V. Bermanec, Geološki vjesnik, agreb, 81 (1987).
- . Zebec, Univerzitet Kiril i Metodij, Skopje, 63 (1984).
- Serafimovski, M. Aleksandrov, Spec. Iss. No. 4, Facty of Mining and Geology, Štip, 383, 1995.
- A. Aleksandrov, T. Serafimovski, Geol. Maced., 6, 3 993).
- ^C. Šijakova-Ivanova, *M.Sc. Thesis*, Rudarsko-geoloski cultet, Belgrade, 1989.
- ... Barić, Mineraloško-petrografski Muzej, Zagreb, 23 935).
- A. Žorz, M. Jeršek, G. Mladenovski, Prirodnoslovni luzej Slovenije, 69, 1999.
- . Lepitkova, *Ph.D. Thesis*, Faculty of Mining and Geolzy, Štip, 2001.
- . Stojanov, *Ph.D. Thesis*, Faculty of Mining and Geolgy, Belgrade, 1974.
- . Stojanov, *Proceedings of the Geologic Department of* RM, 7, 147 (1960).
- I. Dumurdžanov, R. Stojanov, K. Petrovski, The Interretation of Kruševo City Sheet from the Basic Geologic ard of Macedonia, 58, 1972.
- Boev, *Ph.D. Thesis*, Faculty of Mining and Geology, ip, 1988.
- . Denkovski, VIII Congress of Geologists of Yugoslaa, Bled, Book of Papers, 41 (1974).
- . Boev, V. Čifliganec, R. Stojanov, S. Lepitkova, *Geol. laced.*, **6**, 23 (1992).
- . Serafimovski, Faculty of Mining and Geology, Spec. s. No. 2, 328, 1993.
- . Barić, Tscher. Min. Petr. Mitt., 13, 233 (1969).
- I. Jeršek, B. Mitric, Scopolia, 41, 1 (1999).
- B. Boev, D. Milovanović, Plate Tectonics and Magmasm, Faculty of Mining and Geology, Štip, p. 188, 2001.
- Kosmat, Geologie der Zentralen Balkanhalbinsel. –
 ie Kriegschauplatze 1914–1918 Geologisch Dargesteltt.
 2, Gebruder Borntrager, 198, 1924.

- [44] M. Arsovski, Proceedings of the Geologic Department of Republic of Macedonia, Skopje, 9, 25 (1962).
- [45] T. Rakičević, N. Dumurdžanov, P. Petkovski, The Interpretation of the Basic Geologic Map of the Republic of Macedonia for the Štip Sheet, 1976.
- [46] T. Scrafimovski, Ph.D. Thesis, Faculty of Mining and Geology, Štip, 1990.
- [47] P. Petkovski, S. Popovski, The Interpretation of the Basic Geologic Map of the Republic of Macedonia for the Gostivar Sheet, 47, 1977.
- [48] Lj. Barić, T. Ivanov, Bull. Sci., Zagreb, 5/2, 40 (1960).
- [49] V. C. Farmer, *The Infrared Spectra of Minerals.* In: Farmer, V. C. (ed): Miner. Soc., London, pp. 285–304, 1974.
- [50] Inorganic Library of FTIR spectra Minerals, Nicodom, 1998.
- [51] T. B. Ballaran, M. A. Carpenter, C. A. Geiger, A. M. Koziol, *Phys. Chem. Minerals*, 26, 554 (1999).
- [52] R. K. Moore, W. B. White, T. V. Long, Am. Mineral., 56, 54 (1971).
- [53] K. Omori, Am. Mineral., 56, 841 (1971).
- [54] A. M. Hofmeister, A. Chopelas, *Phys. Chem. Minerals*, 17, 503 (1991).
- [55] C. A. Geiger, G. R. Rossman, Phys. Chem. Minerals, 21, 516 (1994).
- [56] M. K. Muller, K. Langer, A. Beran, Phys. Chem. Minerals, 22, 108 (1995).
- [57] A. Beran, K. Langer, M. Andrut, *Miner. Petrol.*, 48, 257 (1993).
- [58] R. W. T. Wilkins, W. Sabine, Am. Mineral., 58, 508 (1973).
- [59] A. N. Lazarev, *The Infrared Spectra of Minerals.* In: Farmer, V. C. (ed): Miner. Soc., London, pp. 69–87, 1974.
- [60] N. R. Khisina, R. Writh, M. Andrut, A. V. Ukhanov, *Phys. Chem. Minerals*, 28, 291 (2001).
- [61] P. Bauerhansl, A. Beran, Shweiz. Mineral. Petrogr. Mitt., 77, 131 (1997).
- [62] R. G. Burns, F. E. Huggins, Am. Mineral., 57, 967 (1972).
- [63] D. A. Duke, J. D. Stephens, Am. Mineral., 49, 1389 (1964).
- [64] P. Tarte, Spectrochim. Acta, 19, 25 (1963).
- [65] G. H. Miller, G. R. Rossman, G. E. Harlow, *Phys. Chem. Minerals*, 14, 461 (1987).
- [66] G. D. Ventura, A. Mottana, G. C. Parodi, W. L. Griffin, *Eur. J. Mineral.*, 8, 655 (1996).
- [67] H. H. W. Moenke, *The Infrared Spectra of Minerals.* In: Farmer, V. C. (ed): Miner. Soc., London, pp. 365– 382, 1974.
- [68] K. Ishida, F. C. Hawothore, Y. Ando, Am. Mineral., 87, 891 (2002).
- [69] R. G. Burns, C. Greaves, Am. Mineral., 56, 2010 (1971).
- [70] Ph. Gillet, B. Reynard, C. Tequi, Chem. Mineral., 16, 659 (1989).

- [71] A. Beran, H. Bittner, *Tscherm. Min. Petr. Mitt.*, **21**, 11 (1974).
- [72] H. Skogby, D. R. Bell, G. R. Rossman, Am. Mineral., 75, 764 (1990).
- [73] M. S. Rutstein, W. B. White, Am. Mineral., 56, 877 (1971).
- [74] P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. D. Lane, J. L. Piatek, S. W. Ruff, W. L. Stefanov, J. Geophys. Res., 105, 9735 (2002).
- [75] G. W. Brindley, J. Zussman, Am. Mineral., 44, 185 (1959).
- [76] V. Stubican, R. Roy, Am. Mineral., 46, 32 (1961).
- [77] M. Mellini, Y. Fuchs, C. Viti, C. Lemaire, J. Linares, *Eur. J. Mineral.*, 14, 97 (2002).
- [78] V. C. Farmer, *The Infrared Spectra of Minerals.* In: Farmer, V. C. (ed): Miner. Soc., London, pp. 331–363, 1974.
- [79] F. Freund, *The Infrared Spectra of Minerals.* In: Farmer, V. C. (ed): Miner. Soc., London, pp. 465–482, 1974.

[80] C. Viti, M. Mellini, Eur. J. Mineral., 9, 585 (1997).

- [81] V. C. Farmer, J. D. Russell, Spectrochim. Acta, 20, 1149 (1964).
- [82] E. F. Duke, Geology, 22, 621 (1994).
- [83] V. Stubican, R. Roy, Am. Mineral., 46, 32 (1961).
- [84] W. Vedder, Am. Mineral., 49, 736 (1964).
- [85] J. W. Salisbury, L. S. Walter, N. Vergo, D. M. D'Aria, *Infrared Spectra of Minerals*, Jons Hopkins, London, 1992.
- [86] K. Smolander, A. Saastamoinen, M. Ahlgren, Anal. Chim. Acta, 217, 353 (1989).
- [87] J. D. Russel, V. C. Farmer, B. Velde, Min. Mag., 37, 871 (1970).
- [88] W. Vedder, Am. Mineral., 49, 736 (1964).
- [89] R. Couti, B. Velde, Am. Mineral., 71, 99 (1986).
- [90] S. B. Rice, H. Freund, W. L. Huang, J. A. Clouse, C. M. Isaacs, J. Sediment. Res. A, 65, 639 (1995).
- [91] S. Parke, *The Infrared Spectra of Minerals.* In: Farmer, V. C. (ed): Miner. Soc., London, pp. 483–514, 1974.

Резиме

МИНЕРАЛИ ОД МАКЕДОНИЈА

ХІ. СИЛИКАТНИ МИНЕРАЛИ И НИВНИТЕ ЛОКАЛИТЕТИ – ИДЕНТИФИКАЦИЈА СО ФТ-ИЦ СПЕКТРОСКОПИЈА

Глигор Јовановски¹, Блажо Боев², Петре Макрески¹, Методија Најдоски¹, Гуте Младеновски³

¹Инсійшійуій за хемија, Природно-майиемайички факулійей, Универзийией "Св. Кирил и Мейюдиј", ü. фах 162, МК-1001 Скойје, Рейублика Македонија ²Завод за йейирологија, минералогија и геохемија, Рударско-геолошки факулійей, Универзийией "Св. Кирил и Мейюдиј", Гоце Делчев 89, МК-2000 Шійий, Рейублика Македонија ³Природонаучен музеј на Рейублика Македонија, Булевар Илинден 86, МК-1000 Скойје, Рейублика Македонија

Клучни зборови: силикатни минерали; силикатно богатство; силикатни локалитети; Република Македонија; ФТ-ИЦ спектроскопија

Меѓу разновидното рудно богатство на Република Македонија силикатните минерали ја претставуваат најмногубројната група. Најголемиот дел од нив се појавуваат во големи и убаво оформени монокристални агрегати, но понекогаш овие типови минерали се појавуваат во асоцијации со други минерали чии кристали не се добро оформени. Во овој труд се сумирани основните морфолошки, физичко-хемиски и кристалографски карактеристики на најтипичните силикатни минерали колектирани од различни локалитети во Република Македонија. Исто така, презентирани се и минеролошките и петролошките особини на локалитетите од кои се собрани изучуваните минерали. Овие минерали понатаму се класифицирани во однос на нивните структурни карактеристики и идентификувани користејќи ја Фуриеовата трансформна инфрацрвена спектроскопија. Идентификацијата е заснована на споредба на добиените ИЦ спектри на нашите минерали со литературните податоци за соодветните минерали. Исто така, прикажани се и слики во боја од сите изучувани примероци.

141