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ABOUT ONE B.S. POPOV’S RESULT  

BORO M. PIPEREVSKI AND BILJANA ZLATANOVSKA  

Abstract. In this paper, a hypergeometric homogeneous linear differential equation of 
second order is considered. The application of the transformation method yields 
conditions for reductability according to Frobenius, formulas for the general solution, as 
well as the corresponding systems of first-order differential equations. 

1. Introduction 

In this paper, we consider a class of linear homogeneous differential equations of the 
second order of type 

𝐴𝐴𝐴𝐴'' + 𝐵𝐵𝐴𝐴' + 𝐶𝐶𝐴𝐴 = 0,      (1.1) 

where 

𝐴𝐴 = 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0, 𝐵𝐵 = 𝑏𝑏1𝑥𝑥 + 𝑏𝑏0, 𝐶𝐶 = 𝑐𝑐0, 𝑎𝑎2, 𝑎𝑎1, 𝑎𝑎0, 𝑏𝑏1, 𝑏𝑏0, 𝑐𝑐0 ∈ ℝ. 

     Considering a homogeneous linear differential equation of the second order of type 

𝑃𝑃2(𝑥𝑥)𝐴𝐴'' + 𝑃𝑃1(𝑥𝑥)𝐴𝐴' + 𝜆𝜆𝑛𝑛𝑃𝑃0(𝑥𝑥)𝐴𝐴 = 0 

where 𝑃𝑃𝑖𝑖(𝑥𝑥), (𝑖𝑖 = 0,1,2) are polynomials and 𝑛𝑛  is a parameter. According to Brenke 
[11], this equation will have polynomial solutions of degree n for each 𝑛𝑛 ∈ ℕ with an 
appropriate value of the parameter 𝜆𝜆𝑛𝑛 , if 𝑃𝑃2(𝑥𝑥), 𝑃𝑃1(𝑥𝑥), and 𝑃𝑃0(𝑥𝑥) are polynomials of  
second, first and zero degree respectively. Also, the general formula for the series of 
polynomial solutions of the equation as well as certain conditions for their orthogonality 
with appropriate weight are proved.  

     Note that in the case when all members of the sequence (𝜆𝜆𝑛𝑛), 𝑛𝑛 = 0,1,2, . .. , are 
different, then  𝑛𝑛 are called their own values, and the polynomials 𝐴𝐴𝑛𝑛 own functions. 

     Special cases of such known orthogonal polynomials are the polynomials of Legendre, 
Jacobi, Tschebyscheff, Hermite, Laguerre and others, which are used in numerical 
mathematics.  
     The special class of differential equations (1.1) is obtained when the Laplace partial 
differential equation is converted into spherical coordinates with request the solution to 
be a product of functions that depend on only one variable. 
     Let us mention the classic results regarding polynomial solutions of the very important 
hypergeometric differential equation, as an equation with polynomial coefficients. Its 
solutions are special functions, especially the Jacobi, Legendre, Tschebyscheff 

UDC: 517.925.4
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polynomials, which belong to the class of classical orthogonal polynomials for which 
there are corresponding formulas, based on Rodrigues' famous formula. 
     In fact, this formula was obtained by Rodrigues O. in 1814 for a polynomial solution 
of a special differential equation of Legendre, but there are the other classical polynomials 
that are expressed in a similar way. 
     In the literature, the necessary and sufficient condition for which the equation (1.1) 
has a particular solution as a polynomial of degree n is known. 
     Lema 1.1.  Equation (1.1) has a polynomial solution of degree n, if and only if there 
exists a natural number n, the smaller if there are two, which satisfies the condition 
 

𝑛𝑛(𝑛𝑛 − 1)𝑎𝑎2 + 𝑛𝑛𝑏𝑏1 + 𝑐𝑐0 = 0. 
 

In that case, the polynomial solution of degree n is given by the formula 
 

𝑃𝑃𝑛𝑛 = 𝐴𝐴𝑒𝑒−∫𝐵𝐵𝐴𝐴𝑑𝑑𝑑𝑑(𝐴𝐴𝑛𝑛−1𝑒𝑒∫
𝐵𝐵
𝐴𝐴𝑑𝑑𝑑𝑑)(𝑛𝑛), 

 
This formula is called the Rodrigues formula. The general solution will be given by the 
formula 

𝑦𝑦 = 𝐶𝐶1𝐴𝐴𝑒𝑒−∫𝐵𝐵𝐴𝐴𝑑𝑑𝑑𝑑(𝐴𝐴𝑛𝑛−1𝑒𝑒∫
𝐵𝐵
𝐴𝐴𝑑𝑑𝑑𝑑)(𝑛𝑛) + 𝐶𝐶2𝐴𝐴𝑒𝑒−∫𝐵𝐵𝐴𝐴𝑑𝑑𝑑𝑑(𝐴𝐴𝑛𝑛−1𝑒𝑒∫

𝐵𝐵
𝐴𝐴𝑑𝑑𝑑𝑑 ∫𝐴𝐴𝑛𝑛−1𝑒𝑒∫

𝐵𝐵
𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)(𝑛𝑛) 

where 𝐶𝐶1, 𝐶𝐶2 are arbitrary constants. 
Remark 1.1. The term reductability of linear homogeneous differential equations has two 
interpretations. Reduction in a wider system is a reduction of an equation of a system of 
linear homogeneous differential equations of lower order and that reduction can be more 
significant, i.e. it can be reduced to multiple classes of linear homogeneous differential 
equations systems of a lower order. 
     Definition 1.1. (Frobenius): A linear homogeneous differential equation whose 
coefficients are unambiguous functions is called more predictable according to Frobenius 
if there is no common solution with a linear homogeneous differential equation with 
coefficients unambiguous lower order functions. Otherwise, it is called reductive, 
according to Frobenius. 
     Let the differential equation (1.1) have one particular solution F. In [3] it is shown that 
the equation (1.1) is reductive according to Frobenius and it comes down to the system of 
first-order differential equations, 
 
   𝐹𝐹𝑦𝑦' − 𝐹𝐹'𝑦𝑦 = 𝑧𝑧
𝐴𝐴𝑧𝑧' + 𝐵𝐵𝑧𝑧 = 0           (1.3) 
     Let us now consider the class of differential equations (1.1) where the coefficient 𝐴𝐴 =
𝑎𝑎2𝑑𝑑2 + 𝑎𝑎1𝑑𝑑 + 𝑎𝑎0 has two real and different roots 𝑑𝑑1, 𝑑𝑑2, 𝑑𝑑1 ≠ 𝑑𝑑2 and let 𝑎𝑎2 = 1. 
     For the resulting equation 

𝑦𝑦'' + ( 𝑝𝑝
𝑑𝑑−𝑑𝑑1

+ 𝑞𝑞
𝑑𝑑−𝑑𝑑2

)𝑦𝑦' + 𝑟𝑟
(𝑑𝑑−𝑑𝑑1)(𝑑𝑑−𝑑𝑑2)

𝑦𝑦 = 0    (1.4) 

or 

Boro M. Piperevski and Biljana Zlatanovska
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(𝑥𝑥 − 𝑥𝑥1)(𝑥𝑥 − 𝑥𝑥2)𝑦𝑦'' + [(𝑝𝑝 + 𝑞𝑞)𝑥𝑥 − 𝑝𝑝𝑥𝑥2 − 𝑞𝑞𝑥𝑥1]𝑦𝑦' + 𝑟𝑟𝑦𝑦 = 0, 
where 

𝑝𝑝 = 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏0
𝑥𝑥1 − 𝑥𝑥2

, 𝑞𝑞 = 𝑏𝑏1𝑥𝑥2 + 𝑏𝑏0
𝑥𝑥2 − 𝑥𝑥1

, 𝑟𝑟 = 𝑐𝑐0 

in [6] by the method of transformations, the following two theorems are obtained. 
 
Theorem 1.1. Let a differential equation (1.4) be given. Let 𝑡𝑡 = 𝑎𝑎 be the root of the 
characteristic equation 𝑡𝑡2 + (𝑝𝑝 + 𝑞𝑞 − 1)𝑡𝑡 + 𝑟𝑟 = 0 . If the root satisfies one of the 
conditions: 
 
10 𝑎𝑎 ∈ ℕ is the smaller root if both roots are natural numbers; 
20 𝑎𝑎 + 𝑝𝑝 − 1 ∈ ℕ or −(𝑎𝑎 + 𝑞𝑞) ∈ ℕ is the smaller root if both roots are natural numbers; 
30 𝑎𝑎 + 𝑞𝑞 − 1 ∈ ℕ or −(𝑎𝑎 + 1) ∈ ℕ is the smaller root if both roots are natural numbers; 
40 𝑎𝑎 + 𝑝𝑝 + 𝑞𝑞 − 2 ∈ ℕ  or −(𝑎𝑎 + 𝑞𝑞) ∈ ℕ  is the smaller root if both roots are natural 
numbers; 
 
then the equation (1.4) can be integrated into a closed form. 
 
Theorem 1.2. If one of the conditions 10 to 40 of Theorem 1.1. for the Equation (1.4) is 
satisfied, then the general solution is 
 
10 𝑦𝑦 = (𝑥𝑥 − 𝑥𝑥1)1−𝑝𝑝(𝑥𝑥 − 𝑥𝑥2)1−𝑞𝑞 ⋅

  {(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛+𝑝𝑝−1(𝑥𝑥 − 𝑥𝑥2)𝑛𝑛+𝑞𝑞−1[𝐶𝐶1 + 𝐶𝐶2 ∫(𝑥𝑥 − 𝑥𝑥1)−𝑛𝑛−𝑝𝑝(𝑥𝑥 − 𝑥𝑥2)−𝑛𝑛−𝑞𝑞𝑑𝑑𝑥𝑥]}(𝑛𝑛) 
where  𝑛𝑛 = 𝑎𝑎 ∈ ℕ is the smaller root if both roots are natural numbers; 
 

20 𝑦𝑦 = (𝑥𝑥 − 𝑥𝑥2)1−𝑞𝑞{(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛−𝑝𝑝+1(𝑥𝑥 − 𝑥𝑥2)𝑛𝑛+𝑞𝑞−1[𝐶𝐶1
+ 𝐶𝐶2 ∫(𝑥𝑥 − 𝑥𝑥1)−𝑛𝑛+𝑝𝑝−2(𝑥𝑥 − 𝑥𝑥2)−𝑛𝑛−𝑞𝑞𝑑𝑑𝑥𝑥]}(𝑛𝑛) 

where 𝑛𝑛 = 𝑎𝑎 + 𝑝𝑝 − 1 ∈ ℕ or 𝑛𝑛 = −(𝑎𝑎 + 𝑞𝑞) ∈ ℕ is the smaller root if both roots are natural 
numbers; 
 
 

30 𝑦𝑦 = (𝑥𝑥 − 𝑥𝑥1)1−𝑝𝑝{(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛+𝑝𝑝−1(𝑥𝑥 − 𝑥𝑥2)𝑛𝑛−𝑞𝑞+1[𝐶𝐶1
+ 𝐶𝐶2 ∫(𝑥𝑥 − 𝑥𝑥1)−𝑛𝑛−𝑝𝑝(𝑥𝑥 − 𝑥𝑥2)−𝑛𝑛+𝑞𝑞−2𝑑𝑑𝑥𝑥]}(𝑛𝑛) 

where 𝑛𝑛 = 𝑎𝑎 + 𝑞𝑞 − 1 ∈ ℕ or 𝑛𝑛 = −(𝑎𝑎 + 𝑝𝑝) ∈ ℕ is the smaller root if both roots are natural 
numbers; 
 

40 𝑦𝑦 = {(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛−𝑝𝑝+1(𝑥𝑥 − 𝑥𝑥2)𝑛𝑛−𝑞𝑞+1[𝐶𝐶1
+ 𝐶𝐶2 ∫(𝑥𝑥 − 𝑥𝑥1)−𝑛𝑛+𝑝𝑝−2(𝑥𝑥 − 𝑥𝑥2)−𝑛𝑛+𝑞𝑞−2𝑑𝑑𝑥𝑥]}(𝑛𝑛) 

where  𝑛𝑛 = 𝑎𝑎 + 𝑝𝑝 + 𝑞𝑞 − 2 ∈ ℕ or 𝑛𝑛 = −(𝑎𝑎 + 1) ∈ ℕ is the smaller root if both roots are 
natural numbers; 

ABOUT ONE B.S. POPOV’S RESULT
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for 𝐶𝐶1, 𝐶𝐶2 are arbitrary constants. 
      
     In case 10, the differential equation (1.4) has one polynomial solution which is given 
by Rodrigues' formula. From the formula (1.2), the general solution is obtained. 
     A special type of the equation (1.4) is the hypergeometric differential equation 
 
                            𝑥𝑥(𝑥𝑥 − 1)𝑦𝑦𝑛𝑛 + [(𝛼𝛼 + 𝛽𝛽 + 1)𝑥𝑥 − 𝛾𝛾]𝑦𝑦' + 𝛼𝛼𝛽𝛽𝑦𝑦 = 0                  (1.5) 
where 
𝑥𝑥1 = 1, 𝑥𝑥2 = 0, 𝑏𝑏1 = 𝛼𝛼 + 𝛽𝛽 + 1, 𝑏𝑏0 = −𝛾𝛾, 𝑐𝑐0 = 𝛼𝛼𝛽𝛽, 𝑝𝑝 = 𝛼𝛼 + 𝛽𝛽 + 1 − 𝛾𝛾, 𝑞𝑞 = 𝛾𝛾, 𝑟𝑟 = 𝛼𝛼𝛽𝛽. 
 
     In [7], B.S Popov examines the equation (1.5) and, by applying Mitrinovic's method 
with operator equations, he gets general conditions for its reductive according to 
Frobenius. 
 
Theorem 1.3.  The equation (1.5) is reducible according to Frobenius if and only if 
                                  𝛼𝛼 ∈ ℤ or 𝛽𝛽 ∈ ℤ or 𝛾𝛾 − 𝛼𝛼 ∈ ℤ or 𝛾𝛾 − 𝛽𝛽 ∈ ℤ                           (1.6) 
     Frobenius, Picard, and Goursat [8],[9],[10] have obtained the same result for the 
hypergeometric equation in another way. 
     In [7], operator equations are obtained. For these, there is no explicit formula for a 
particular solution. 
 

2. Main result 

Theorem 2.1. The equation (1.4) is reducible according to Frobenius if and only if the 
conditions of Theorem 1.1 are fulfilled. According to this, the following appropriate 
reductive systems of differential equations are obtained 

 
10{(𝑥𝑥 − 𝑥𝑥1)1−𝑝𝑝(𝑥𝑥 − 𝑥𝑥2)1−𝑞𝑞 ⋅ [(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛+𝑝𝑝−1 ⋅ (𝑥𝑥 − 𝑥𝑥2)𝑛𝑛+𝑞𝑞−1](𝑛𝑛)} ⋅ 𝑦𝑦' +
{(𝑥𝑥 − 𝑥𝑥1)1−𝑝𝑝(𝑥𝑥 − 𝑥𝑥2)1−𝑞𝑞 ⋅ [(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛+𝑝𝑝−1 ⋅ (𝑥𝑥 − 𝑥𝑥2)𝑛𝑛+𝑞𝑞−1](𝑛𝑛)}' ⋅ 𝑦𝑦 = 𝑧𝑧 

(𝑥𝑥 − 𝑥𝑥1)(𝑥𝑥 − 𝑥𝑥2)𝑧𝑧' + [(𝑝𝑝 + 𝑞𝑞)𝑥𝑥 − 𝑝𝑝𝑥𝑥2 − 𝑞𝑞𝑥𝑥1]𝑧𝑧 = 0 
 

20{(𝑥𝑥 − 𝑥𝑥2)1−𝑞𝑞 ⋅ [(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛−𝑝𝑝+1 ⋅ (𝑥𝑥 − 𝑥𝑥2)𝑛𝑛+𝑞𝑞−1](𝑛𝑛)} ⋅ 𝑦𝑦' +
{(𝑥𝑥 − 𝑥𝑥2)1−𝑞𝑞 ⋅ [(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛−𝑝𝑝+1 ⋅ (𝑥𝑥 − 𝑥𝑥2)𝑛𝑛+𝑞𝑞−1](𝑛𝑛)}' ⋅ 𝑦𝑦 = 𝑧𝑧 

(𝑥𝑥 − 𝑥𝑥1)(𝑥𝑥 − 𝑥𝑥2)𝑧𝑧' + [(𝑝𝑝 + 𝑞𝑞)𝑥𝑥 − 𝑝𝑝𝑥𝑥2 − 𝑞𝑞𝑥𝑥1]𝑧𝑧 = 0 
 

30{(𝑥𝑥 − 𝑥𝑥1)1−𝑝𝑝 ⋅ [(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛+𝑝𝑝−1 ⋅ (𝑥𝑥 − 𝑥𝑥2)𝑛𝑛−𝑞𝑞+1](𝑛𝑛)} ⋅ 𝑦𝑦' +
{(𝑥𝑥 − 𝑥𝑥1)1−𝑝𝑝 ⋅ [(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛+𝑝𝑝−1 ⋅ (𝑥𝑥 − 𝑥𝑥2)𝑛𝑛−𝑞𝑞+1](𝑛𝑛)}' ⋅ 𝑦𝑦 = 𝑧𝑧 

(𝑥𝑥 − 𝑥𝑥1)(𝑥𝑥 − 𝑥𝑥2)𝑧𝑧' + [(𝑝𝑝 + 𝑞𝑞)𝑥𝑥 − 𝑝𝑝𝑥𝑥2 − 𝑞𝑞𝑥𝑥1]𝑧𝑧 = 0 
 

40 {[(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛−𝑝𝑝+1 ⋅ (𝑥𝑥 − 𝑥𝑥2)𝑛𝑛−𝑞𝑞+1](𝑛𝑛)} ⋅ 𝑦𝑦' + {[(𝑥𝑥 − 𝑥𝑥1)𝑛𝑛−𝑝𝑝+1 ⋅ (𝑥𝑥
− 𝑥𝑥2)𝑛𝑛−𝑞𝑞+1](𝑛𝑛)}' ⋅ 𝑦𝑦 = 𝑧𝑧 

(𝑥𝑥 − 𝑥𝑥1)(𝑥𝑥 − 𝑥𝑥2)𝑧𝑧' + [(𝑝𝑝 + 𝑞𝑞)𝑥𝑥 − 𝑝𝑝𝑥𝑥2 − 𝑞𝑞𝑥𝑥1]𝑧𝑧 = 0. 
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Proof. According to Theorem 1.2., the formula for one particular solution is obtained and, 
in accordance with the system (1.3), the corresponding reductive systems differential 
equations are obtained. 
     Let the equation (1.5) be given. Next, we will show that the result obtained in [7] can 
be obtained in another way, different from the ways known in the literature. In addition, 
the formulas for the general solution are additionally obtained, as well as the 
corresponding reductive systems, first-order differential equations. 
 
Theorem 2.2. The hypergeometric equation (1.5) can be integrated into a closed form if 
the following conditions are satisfied: 
10   −𝛽𝛽 ∈ ℕor  −𝛼𝛼 ∈ ℕ  is the smaller root if both roots are natural numbers; 
20   𝛼𝛼 − 𝛾𝛾 ∈ ℕ or 𝛽𝛽 − 𝛾𝛾 ∈ ℕ is the smaller root if both roots are natural numbers; 
30   𝛾𝛾 − 𝛼𝛼 − 1 ∈ ℕ or 𝛾𝛾 − 𝛽𝛽 − 1 ∈ ℕ is the smaller root if both roots are natural numbers; 
40   𝛼𝛼 − 1 ∈ ℕ or 𝛽𝛽 − 1 ∈ ℕ is the smaller root if both roots are natural numbers. 
. 
 
Proof. If we put in Theorem 1.1. 

 
𝑥𝑥1 = 1, 𝑥𝑥2 = 0, 𝑏𝑏1 = 𝛼𝛼 + 𝛽𝛽 + 1, 𝑏𝑏0 = −𝛾𝛾, 𝑐𝑐0 = 𝛼𝛼𝛽𝛽, 𝑝𝑝 = 𝛼𝛼 + 𝛽𝛽 + 1 − 𝛾𝛾, 𝑞𝑞 = 𝛾𝛾, 𝑟𝑟 = 𝛼𝛼𝛽𝛽 

𝑡𝑡2 + (𝛼𝛼 + 𝛽𝛽)𝑡𝑡 + 𝛼𝛼𝛽𝛽 = 0, 𝑡𝑡1 = −𝛼𝛼, 𝑡𝑡2 = −𝛽𝛽 
 
then the theorem is proved. 
 
Consequence 2.1. The equation (1.5) can be integrated into a closed form if the conditions 
(1.6) are satisfied. 
 
     Really, Theorem 2.2. (properties 10 and 40) implies 𝛼𝛼, 𝛽𝛽 ∈ ℤ  and Theorem 2.2. 
(properties 20 and 30) implies 𝛾𝛾 − 𝛼𝛼, 𝛾𝛾 − 𝛽𝛽 ∈ ℤ . So, we get the condition (1.6) which is 
obtained in [7],[8],[9],[10] as a condition for reduction according to Frobenius. 
 
Theorem 2.3. Let the conditions from 10 to 40 of Theorem 2.2 for the Equation (1.5) be 
satisfied. Then the general solution is  
 
10 𝑦𝑦 = (𝑥𝑥 − 1)1−𝑝𝑝 ⋅ 𝑥𝑥1−𝑞𝑞 ⋅ {(𝑥𝑥 − 1)𝑛𝑛+𝑝𝑝−1 ⋅ 𝑥𝑥𝑛𝑛+𝑞𝑞−1 ⋅ [𝐶𝐶1 + 𝐶𝐶2 ∫(𝑥𝑥 − 1)−𝑛𝑛−𝑝𝑝 ⋅
𝑥𝑥−𝑛𝑛−𝑞𝑞𝑑𝑑𝑥𝑥]}(𝑛𝑛) 
where 𝑛𝑛 = −𝛽𝛽 ∈ ℕ or 𝑛𝑛 = −𝛼𝛼 ∈ ℕ is the smaller root if both roots are natural numbers; 
 
20  𝑦𝑦 = 𝑥𝑥1−𝑞𝑞 ⋅ {(𝑥𝑥 − 1)𝑛𝑛−𝑝𝑝+1 ⋅ 𝑥𝑥𝑛𝑛+𝑞𝑞−1 ⋅ [𝐶𝐶1 + 𝐶𝐶2 ∫(𝑥𝑥 − 1)−𝑛𝑛+𝑝𝑝−2 ⋅ 𝑥𝑥−𝑛𝑛−𝑞𝑞𝑑𝑑𝑥𝑥]}(𝑛𝑛) 
where 𝑛𝑛 = 𝛼𝛼 − 𝛾𝛾 ∈ ℕ  or 𝑛𝑛 = 𝛽𝛽 − 𝛾𝛾 ∈ ℕ  is the smaller root if both roots are natural 
numbers; 
 
30 𝑦𝑦 = (𝑥𝑥 − 1)1−𝑝𝑝 ⋅ {(𝑥𝑥 − 1)𝑛𝑛+𝑝𝑝−1 ⋅ 𝑥𝑥𝑛𝑛−𝑞𝑞+1 ⋅ [𝐶𝐶1 + 𝐶𝐶2 ∫(𝑥𝑥 − 1)−𝑛𝑛−𝑝𝑝 ⋅ 𝑥𝑥−𝑛𝑛+𝑞𝑞−2𝑑𝑑𝑥𝑥]}(𝑛𝑛) 
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where 𝑛𝑛 = 𝛾𝛾 − 𝛼𝛼 − 1 ∈ ℕ or 𝑛𝑛 = 𝛾𝛾 − 𝛽𝛽 − 1 ∈ ℕ  is the smaller root if both roots are natural 
numbers; 
 
40  𝑦𝑦 = {(𝑥𝑥 − 1)𝑛𝑛−𝑝𝑝+1 ⋅ 𝑥𝑥𝑛𝑛−𝑞𝑞+1 ⋅ [𝐶𝐶1 + 𝐶𝐶2 ∫(𝑥𝑥 − 1)−𝑛𝑛+𝑝𝑝−2 ⋅ 𝑥𝑥−𝑛𝑛+𝑞𝑞−2𝑑𝑑𝑥𝑥]}(𝑛𝑛)   
where 𝑛𝑛 = 𝛼𝛼 − 1 ∈ ℕ  or 𝑛𝑛 = 𝛽𝛽 − 1 ∈ ℕ  is the smaller root if both roots are natural 
numbers; 
 
for 𝑝𝑝 = 𝛼𝛼 + 𝛽𝛽 + 1 − 𝛾𝛾,  𝑞𝑞 = 𝛾𝛾 and  C1, C2 are arbitrary constants. 
 
Proof. If it is put in Theorem 1.2. 
 

𝑥𝑥1 = 1, 𝑥𝑥2 = 0, 𝑏𝑏1 = 𝛼𝛼 + 𝛽𝛽 + 1, 𝑏𝑏0 = −𝛾𝛾, 𝑐𝑐0 = 𝛼𝛼𝛽𝛽, 𝑝𝑝 = 𝛼𝛼 + 𝛽𝛽 + 1 − 𝛾𝛾, 𝑞𝑞 = 𝛾𝛾, 𝑟𝑟 = 𝛼𝛼𝛽𝛽 
 

then the claim is proved. 
 
Theorem 2.4. Let the conditions from 10 to 40 of Theorem 2.2. for the Equation (1.5) be 
satisfied. Then it is reducible according to Frobenius and comes down to the next system 
of differential equations 
10        

𝑃𝑃𝑛𝑛𝑦𝑦' − 𝑃𝑃𝑛𝑛
′𝑦𝑦 = 𝑧𝑧 

𝑥𝑥(𝑥𝑥 − 1)𝑧𝑧' + [(𝛼𝛼 + 𝛽𝛽 + 1)𝑥𝑥 − 𝛾𝛾]𝑧𝑧 = 0 
 
where 𝑃𝑃𝑛𝑛 = (𝑥𝑥 − 1)1−𝑝𝑝 ⋅ 𝑥𝑥1−𝑞𝑞 ⋅ [(𝑥𝑥 − 1)𝑛𝑛+𝑝𝑝−1 ⋅ 𝑥𝑥𝑛𝑛+𝑞𝑞−1](𝑛𝑛)  and 𝑛𝑛 = −𝛽𝛽 ∈ ℕ  or 𝑛𝑛 = −𝛼𝛼 ∈
ℕ  is the smaller root if both roots are natural numbers; 
  
20      

𝑄𝑄𝑛𝑛𝑦𝑦' − 𝑄𝑄𝑛𝑛
′ 𝑦𝑦 = 𝑧𝑧 

𝑥𝑥(𝑥𝑥 − 1)𝑧𝑧' + [(𝛼𝛼 + 𝛽𝛽 + 1)𝑥𝑥 − 𝛾𝛾]𝑧𝑧 = 0 
                                                          
where 𝑄𝑄𝑛𝑛 = 𝑥𝑥1−𝑞𝑞 ⋅ [(𝑥𝑥 − 1)𝑛𝑛−𝑝𝑝+1 ⋅ 𝑥𝑥𝑛𝑛+𝑞𝑞−1](𝑛𝑛) 𝑛𝑛 = 𝛼𝛼 − 𝛾𝛾 ∈ ℕ or 𝑛𝑛 = 𝛽𝛽 − 𝛾𝛾 ∈ ℕ is the smaller 
root if both roots are natural numbers; 
 
30   

𝑅𝑅𝑛𝑛𝑦𝑦' − 𝑅𝑅𝑛𝑛
′ 𝑦𝑦 = 𝑧𝑧 

𝑥𝑥(𝑥𝑥 − 1)𝑧𝑧' + [(𝛼𝛼 + 𝛽𝛽 + 1)𝑥𝑥 − 𝛾𝛾]𝑧𝑧 = 0                               
where 𝑅𝑅𝑛𝑛 = (𝑥𝑥 − 1)1−𝑝𝑝 ⋅ [(𝑥𝑥 − 1)𝑛𝑛+𝑝𝑝−1 ⋅ 𝑥𝑥𝑛𝑛−𝑞𝑞+1](𝑛𝑛)  and  𝑛𝑛 = 𝛾𝛾 − 𝛼𝛼 − 1 ∈ ℕ or 𝑛𝑛 = 𝛾𝛾 − 𝛽𝛽 −
1 ∈ ℕ is the smaller root if both roots are natural numbers; 
 
40           

𝑆𝑆𝑛𝑛𝑦𝑦' − 𝑆𝑆𝑛𝑛
′ 𝑦𝑦 = 𝑧𝑧 

𝑥𝑥(𝑥𝑥 − 1)𝑧𝑧' + [(𝛼𝛼 + 𝛽𝛽 + 1)𝑥𝑥 − 𝛾𝛾]𝑧𝑧 = 0 
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where 𝑆𝑆𝑛𝑛 = [(𝑥𝑥 − 1)𝑛𝑛−𝑝𝑝+1 ⋅ 𝑥𝑥𝑛𝑛−𝑞𝑞+1](𝑛𝑛)  and 𝑛𝑛 = 𝛼𝛼 − 1 ∈ ℕ or 𝑛𝑛 = 𝛽𝛽 − 1 ∈ ℕ is the smaller 
root if both roots are natural numbers; 
 
for  𝑝𝑝 = 𝛼𝛼 + 𝛽𝛽 + 1 − 𝛾𝛾, 𝑞𝑞 = 𝛾𝛾 . 
 
Proof. According to Theorem 2.3., the formula for one particular solution is obtained. In 
accordance with the system (1.3), the corresponding reductive systems differential 
equations are obtained. 
 
To illustrate equation (1.5), we will give the system obtained in [7] for 𝛼𝛼 = −𝑛𝑛  

𝑥𝑥 ⋅ 𝑦𝑦' − 𝑛𝑛
𝐹𝐹(1 − 𝑛𝑛, 1 − 𝛾𝛾 − 𝑛𝑛, 1 − 𝛽𝛽 − 𝑛𝑛, 1𝑥𝑥)

𝐹𝐹(−𝑛𝑛, 1 − 𝛾𝛾 − 𝑛𝑛, 1 − 𝛽𝛽 − 𝑛𝑛, 1𝑥𝑥)
⋅ 𝑦𝑦 = 𝑧𝑧 

 

(𝑥𝑥 − 1) ⋅ 𝑧𝑧' + [(𝑥𝑥 − 1) (𝑙𝑙𝑙𝑙 𝐹𝐹 (−𝑛𝑛, 1 − 𝛾𝛾 − 𝑛𝑛, 1 − 𝛽𝛽 − 𝑛𝑛, 1𝑥𝑥))
′
+ 𝑛𝑛(𝑥𝑥 − 1)

𝑥𝑥

+ 1 − 𝛾𝛾 − (𝑛𝑛 − 𝛽𝛽)𝑥𝑥
𝑥𝑥 ] 𝑧𝑧 = 0 

where 𝐹𝐹(𝛼𝛼, 𝛽𝛽, 𝛾𝛾, 𝑥𝑥) is the known hypergeometric function. 
 
Example 2.1. Let the differential equation be given in the form of 
 

𝑥𝑥(𝑥𝑥 − 1)𝑦𝑦'' − (6𝑥𝑥 + 1)𝑦𝑦' + 12𝑦𝑦 = 0 
 
where 𝛼𝛼 = −3, 𝛽𝛽 = −4, 𝛾𝛾 = 1, 𝑛𝑛1 = −𝛼𝛼 = 3, 𝑛𝑛2 = −𝛽𝛽 = 4, 𝑝𝑝 = −7, 𝑞𝑞 = 1. 
 
From the property 10 of Theorem 2.3, the general solution is  
 

𝑦𝑦 = 𝐶𝐶1(4𝑥𝑥3 + 18𝑥𝑥2 + 12𝑥𝑥 + 1) + 𝐶𝐶2(𝑥𝑥 − 1)8𝑥𝑥0{(𝑥𝑥 − 1)−5[∫(𝑥𝑥 − 1)4𝑥𝑥−4𝑑𝑑𝑥𝑥]}''' 
 
From Theorem 2.4. the system is  
 

(4𝑥𝑥3 + 18𝑥𝑥2 + 12𝑥𝑥 + 1)𝑦𝑦' − (12𝑥𝑥2 + 36𝑥𝑥 + 12)𝑦𝑦 = 𝑧𝑧 
𝑥𝑥(𝑥𝑥 − 1)𝑧𝑧' − (6𝑥𝑥 + 1)𝑧𝑧 = 0 

 
 
Example 2.2. Let the differential equation be given in the form of 
 

𝑥𝑥(𝑥𝑥 − 1)𝑦𝑦'' + (7𝑥𝑥 − 1)𝑦𝑦' + 8𝑦𝑦 = 0 
 
where 𝛼𝛼 = 2, 𝛽𝛽 = 4, 𝛾𝛾 = 1, 𝑛𝑛1 = 1, 𝑛𝑛2 = 3, 𝑝𝑝 = 6, 𝑞𝑞 = 1.  
From the property 20 or 40 of Theorem 2.3., the general solution is 
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𝑦𝑦 = 𝐶𝐶1

3𝑥𝑥+1
(𝑥𝑥−1)5 + 𝐶𝐶2

𝑥𝑥3−9𝑥𝑥2−18𝑥𝑥+14+18𝑥𝑥⋅𝑙𝑙𝑙𝑙 𝑥𝑥+6 𝑙𝑙𝑙𝑙𝑥𝑥
(𝑥𝑥−1)5 . 

 
From Theorem 2.4., the system is  

3𝑥𝑥 + 1
(𝑥𝑥 − 1)5 𝑦𝑦' − ( 3𝑥𝑥 + 1

(𝑥𝑥 − 1)5)
′
𝑦𝑦 = 𝑧𝑧 

𝑥𝑥(𝑥𝑥 − 1)𝑧𝑧' + (7𝑥𝑥 − 1)𝑧𝑧 = 0 
 
or 
 

3𝑥𝑥 + 1
(𝑥𝑥 − 1)5 𝑦𝑦' +

4(3𝑥𝑥 + 2)
(𝑥𝑥 − 1)6 𝑦𝑦 = 𝑧𝑧 

𝑥𝑥(𝑥𝑥 − 1)𝑧𝑧' + (7𝑥𝑥 − 1)𝑧𝑧 = 0. 
Example 2.3. Let the differential equation be given in the form of 
 

𝑥𝑥(𝑥𝑥 − 1)𝑦𝑦'' + (𝑥𝑥 − 3
2)𝑦𝑦' −

9
4𝑦𝑦 = 0 

 
where 𝛼𝛼 = −3

2 , 𝛽𝛽 = 3
2 , 𝛾𝛾 = 3

2 , 𝑛𝑛1 = 𝛾𝛾 − 𝛼𝛼 − 1 = 2, 𝑛𝑛2 = 𝛾𝛾 − 𝛽𝛽 − 1 = −1, 𝑝𝑝 =
−1

2 , 𝑞𝑞 = 3
2. 

From the property 30 of Theorem 2.3., the general solution is  
 

𝑦𝑦 = 𝐶𝐶1
8𝑥𝑥2 − 12𝑥𝑥 + 3

√𝑥𝑥
+ 𝐶𝐶2(𝑥𝑥 − 1)

3
2{(𝑥𝑥 − 1)

1
2 ⋅ 𝑥𝑥

3
2[∫(𝑥𝑥 − 1)−

3
2 ⋅ 𝑥𝑥−

5
2𝑑𝑑𝑥𝑥]}'' 

or 

𝑦𝑦 = 𝐶𝐶1
8𝑥𝑥2 − 12𝑥𝑥 + 3

√𝑥𝑥
+ 𝐶𝐶2(𝑥𝑥 − 1)

3
2 

From Theorem 2.4., the system is  
 

8𝑥𝑥2 − 12𝑥𝑥 + 3
√𝑥𝑥

𝑦𝑦' − (8𝑥𝑥
2 − 12𝑥𝑥 + 3

√𝑥𝑥
)
′

𝑦𝑦 = 𝑧𝑧 

𝑥𝑥(𝑥𝑥 − 1)𝑧𝑧' + (𝑥𝑥 − 3
2)𝑧𝑧 = 0 

 
or 
 

8𝑥𝑥2 − 12𝑥𝑥 + 3
√𝑥𝑥

𝑦𝑦' − 3(8𝑥𝑥2 − 4𝑥𝑥 − 1)
2𝑥𝑥√𝑥𝑥

𝑦𝑦 = 𝑧𝑧 

𝑥𝑥(𝑥𝑥 − 1)𝑧𝑧' + (𝑥𝑥 − 3
2)𝑧𝑧 = 0 
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