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Abstract

We investigate several cryptographic properties in 8-bit S-
boxes obtained by quasigroups of order 4 and 16 with several
different algebraic constructions. Additionally, we offer a new
construction of N -bit S-boxes by using different number of two
layers – the layer of bijectional quasigroup string transformations,
and the layer of modular addition with N -bit constants. The
best produced 8-bit S-boxes so far are regular and have algebraic
degree 7, nonlinearity 98 (linearity 60), differential uniformity 8,
and autocorrelation 88. Additionally we obtained 8-bit S-boxes
with nonlinearity 100 (linearity 56), differential uniformity 10,
autocorrelation 88, and minimal algebraic degree 6. Relatively
small set of performed experiments compared with the extremly
large set of possible experiments suggests that these results can
be improved in the future.
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mity, autocorrelation.
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1 Introduction

The main building blocks for obtaining confusion in all modern block
ciphers are so called substitution boxes, or S-boxes. Usually, they work
with much less data (for example, 4 or 8 bits) than the block size, so
they need to be highly nonlinear. Two of the most successful attacks
against modern block ciphers are linear cryptanalysis (introduced by
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Matsui [21]), which exploits input-output correlation, and differential
cryptanalysis (introduced by Biham and Shamir [2]), which exploits
difference propagation.

Designers of block ciphers very often choose S-boxes with special
cryptographic properties, which means high nonlinearity (or low linear-
ity), low differential uniformity, high algebraic degree, low autocorre-
lation and regularity (balance). AES S-box is the example of the best
found 8x8 S-boxes, which is optimal with respect to most of these cryp-
tographic properties. It has nonlinearity 112 (or linearity 32), algebraic
degree 7, differential uniformity 4, and autocorrelation 32.

Mihajloska and Gligoroski [26] constructed optimal 4x4 S-boxes
from quasigroups of order 4, by using four e quasigroup string transfor-
mations. Motivated by their work, we offer two constructions of the 8x8
S-boxes from quasigroups of order 4 and 16, by using different number
of e quasigroup string transformations. Main contribution of this paper
is a new construction of N -bit S-boxes which uses different number of
two layers – the layer of bijectional quasigroup string transformations,
and the layer of modular addition with N -bit constants. Specifically,
we demonstrated this construction method with quasigroups of order
4 and 16 and modular addition with 8-bit constants. Quasigroups of
order 4 can be seen as 4x2 S-boxes, while quasigroups of order 16 can
be seen as 8x4 S-boxes, so, we offer an algebraic construction of 8x8
S-boxes from smaller ones. We investigate some of the cryptographic
properties of the obtained S-boxes, without looking at the cost of their
implementation in hardware.

This paper has the following structure: Section 2 is about math-
ematical preliminaries for quasigroup string transformations, basics
about n-ary Boolean functions and Boolean maps, and definition of
some cryptographic properties for them. Some existing methods for
the generation of 8-bit S-boxes, together with the best obtained val-
ues of the cryptographic properties of these S-boxes are presented in
Section 3. Section 4 presents the two constructions of 8-bit S-boxes
by using e quasigroup string transformations produced by quasigroups
of order 4 and 16, together with the experimental results. The new
construction of N -bit S-boxes and obtained experimental results are
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presented in the Section 5. Finally, concluding remarks are given in
Section 6.

2 Mathematical Preliminaries

2.1 Quasigroup String Transformations

A quasigroup (Q, ∗) is a groupoid, i.e., a pair of nonempty set Q and a
binary operation ∗, such that for all a, b ∈ Q there exist unique x, y ∈ Q
satisfying the equalities a ∗ x = b and y ∗ a = b [1]. In the case when Q
is finite, the multiplication table of (Q, ∗) is a Latin square of order |Q|,
where all rows and columns are permutations of Q. For the quasigroup
operation ∗ on the set Q, another operation, a right division \ can be
derived by:

x\y = z ⇐⇒ x ∗ z = y.

Given a finite quasigroup (Q, ∗), consider the set Q as an alphabet
with word set Q+ = {x1x2 . . . xt | xi ∈ Q, t ≥ 1}. For the fixed letter
l ∈ Q (called a leader), the transformations el, dl : Q+ → Q+ are
defined in [20], as follows:

el(x1 . . . xt) = (z1 . . . zt) ⇐⇒ zj =

{
l ∗ x1, j = 1
zj−1 ∗ xj, 2 ≤ j ≤ t

, (1)

dl(z1 . . . zt) = (x1 . . . xt) ⇐⇒ xj =

{
l\z1, j = 1
zj−1\zj , 2 ≤ j ≤ t

. (2)

Any combination of these elementary quasigroup string transfor-
mations is a permutation and dl is an inverse to el. Linear quasigroups
produce linear el and dl quasigroup string transformations [25]. Ad-
ditionally, some non-linear quasigroups always produce linear el and
dl transformations. For example, there is a set of 48 non-linear quasi-
groups of order 4 that always produce linear el and dl transforma-
tions [25]. In the rest of the paper we will use e and d instead el and
dl, respectively.
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Definition 1. [14] A finite quasigroup (Q, ∗) of order r is said to be
shapeless if and only if it is non-idempotent, non-commutative, non-
associative, it does not have neither left nor right unit, it does not con-
tain proper sub-quasigroups, and there is no k < 2r such that identities
of the kinds

x ∗ (x · · · ∗ (x
︸ ︷︷ ︸

k

∗y)) = y, y = ((y ∗ x) ∗ · · · x) ∗ x
︸ ︷︷ ︸

k

are satisfied in (Q, ∗).

2.2 Some Cryptographic Properties of n-ary Boolean

Functions and Boolean Maps

Let F2 denote the Galois field with two elements, and let F
n
2 denote

the vector space of binary n-tuples over F2 with respect to addition ⊕
(Boolean function XOR) and scalar multiplication (Boolean function
conjunction). There is a correspondence between F

n
2 and Z2n via

ϕ1 : F
n
2 → Z2n : x = (x1, . . . xn) → x =

n∑

i=1

xi2
i−1,

and there is a correspondence between F
n
2 and F2n via

ϕ2 : F
n
2 → F2n : x = (x1, . . . xn) → x =

n∑

i=1

xiβi,

where {β1, . . . , βn} is a basis of F2n over F2.

An n−ary Boolean function is a function f : Fn
2 → F2. A Boolean

map (or vector valued Boolean function or vectorial Boolean function)
is a map S : Fn

2 → F
m
2 , (m ≥ 1). Every Boolean map S can be repre-

sented by m n−ary Boolean functions fi : F2
n → F2, called coordinate

functions of S, as follows:

S(x1, . . . , xn) = (f1(x1, . . . , xn), f2(x1, . . . xn), . . . , fm(x1, . . . , xn)).
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Each n−ary Boolean function fi can be represented in Algebraic
Normal Form as

fi(x1, x2, . . . , xn) =
⊕

I⊆{1,2,...,n}

αI(
∏

i∈I

xi), (3)

where αI ∈ F2. The right-hand side of (3) can be interpreted as a
polynomial in the field (F2,⊕, ·) and the algebraic degree of fi, deg(fi),
is taken to be the degree of the polynomial.

Definition 2. The (minimal) algebraic degree of a Boolean map S
is defined as the minimum of the algebraic degrees of its non-trivial
coordinate functions (f1, f2, . . . , fm), and it can be expressed as:

deg(S) = min
u∈Fm

2
\{0}

deg(u1f1 ⊕ u2f2 ⊕ . . .⊕ umfm).

If deg(fi) ≤ 1,∀i ∈ {1, 2, . . . ,m}, S is an affine function. A linear
function is a non-constant affine function S for which S(0) = 0.

The (Hamming) weight of a vector x ∈ F
n
2 is equal to the number of

components equal to 1 and is denoted by wt(x). The (Hamming) dis-
tance between two vectors x,y ∈ F

n
2 , denoted by d(x,y) is the number

of positions in which they differ. The (Hamming) weight of a Boolean
function f , wt(f), is the number of function values equal to 1. A
Boolean function f is balanced if and only if wt(f) = 2n−1.

For two vectors x = (x1, . . . , xn),y = (y1, . . . , xy) ∈ F
n
2 , the inner

product or scalar product is defined as x · y =
⊕n

i=1 xiyi. A selection
vector a is a binary vector that selects all components i of a vector that
have ai = 1. By a·x (or aTx) the linear combination of the components
of a vector x selected by a, analogous to vector inner product, can be
represented. A linear Boolean function ϕa = a·x is completely specified
by its corresponding selection vector a.

A bias of an n−ary Boolean function f is defined as

ε(f) =
∑

x∈Fn

2

(−1)f(x) = 2n − 2wt(f).

So, balanced Boolean functions have ε(f) = 0.
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An n−ary Boolean function f on F
n
2 is uniquely determined by its

Walsh-Hadamard transform (WHT). The Walsh-Hadamard transform
Wf : Fn

2 → R of f is defined for all x ∈ F
n
2 as

Wf (x) =
∑

a∈Fn

2

(−1)f(a)⊕a·x(= ε(f ⊕ ϕa)), (4)

where Wf (x) ∈ [−2n, 2n] and is known as a spectral Walsh coefficient.
The real-valued vector of all spectral Walsh coefficients is known as a
WHT Spectrum. The WHT spectrum of f corresponds to the biases
of all approximations of f by a linear function.

The Walsh transform WS : Fn
2 × F

m
2 → R of a Boolean map S is

defined for all pairs (u,v) ∈ (Fn
2 ,F

m
2 ) as

WS(u,v) =
∑

a∈Fn

2

(−1)u·a⊕v·S(a). (5)

Definition 3. The nonlinearity of an n−ary Boolean function f (in-
troduced in [22]), denoted by NL(f), is defined as the distance to the
nearest affine function on F

n
2 . It can be expressed in terms of the spec-

tral Walsh coefficients by

NL(f) = 2n−1 −
1

2
max
x∈Fn

2

|Wf (x)|. (6)

NL(f) = 0 iff f is affine function.

Definition 4. The linearity of an n−ary Boolean function f , denoted
by L(f), is defined as

L(f) = max
x∈Fn

2

|Wf (x)|. (7)

Linearity and nonlinearity of a given n−ary Boolean function f are
connected by the following equation:

L(f) + 2NL(f) = 2n. (8)

For L(f), the inequality 2
n

2 ≤ L(f) ≤ 2n holds. L(f) = 2n iff f is
affine function. Boolean functions for which L(f) = 2

n

2 are called bent
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functions (introduced by Rothaus [31]), and they exist only for even
n. Because bent functions are highly biased (ε(f) = ±2

n

2 ), they are of
little use in cryptography.

Linear approximation table for Boolean map S is a 2n × 2m table
whose entries are defined for all pairs (u,v) ∈ (Fn

2 ,F
m
2 ) as

LATS(u,v) = WS(u,v).

Definition 5. The nonlinearity and linearity of a Boolean map S [29]
are defined as

NL(S) = min
v∈Fm

2
\{0}

NL(v · S) = 2n−1 −
1

2
max

a6=0,b∈Fm

2

|WS(a, b)|, (9)

L(S) = max
v∈Fm

2
\{0}

L(v · S), (10)

where v · S =
⊕n

i=1 vifi is the linear combination of the coordinate
functions of S.

L(S) ≥ 2
n

2 , and Nyberg [27] showed that equality can hold only

if n ≥ 2m and n is even. For n = m, L(S) ≥ 2
n+1

2 with equality for
odd n only (Chabaud-Vaudenay theorem [6]) . The functions achieving
this bound are called almost bent functions. Because for even n and

n = m, some n×n S-boxes with L(S) = 2
n+2

2 are known, Dobbertin [12]
conjectured that this value is the minimum.

From linear approximation table, one can easily calculate linear
probability bias εS(u,v), which is amount by which the probability of
a linear expression holding deviates from 1

2 . The formula is εS(u,v) =
LATS(u,v)/2

n − 1
2 .

Difference distribution table for Boolean map S is a 2n × 2m table
whose entries are defined for all pairs (u,v) ∈ (Fn

2 ,F
m
2 ) as

DDTS(u,v) = ♯{x ∈ F
n
2 |S(x)⊕ S(x⊕ u) = v}.

Definition 6. The differential uniformity of a Boolean map S [28],
denoted by ∆(S), is defined as

∆(S) = max
u∈Fn

2
\{0},v∈Fm

2

DDTS(u, v). (11)
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For differential uniformity, ∆(S) ≥ max{2, 2n−m} holds, and for
n ≥ m, ∆(S) takes only even values in [2n−m, 2n]. Nyberg [27] showed
that for n > m, ∆(S) = 2n−m if and only if n ≥ 2m and n is even. This
kind of functions are known as perfect nonlinear functions and they are
the same as the bent functions. For n ≤ m, ∆(S) = 2, and this kind
of functions are known as almost perfect nonlinear. So, bijective S-
boxes can have the smallest differential uniformity of 2, and there are
examples for odd n.

For the n-ary Boolean function f on F
n
2 one can define an Autocor-

relation transform (ACT) ACTf : Fn
2 → R for all x ∈ F

n
2 as

ACTf (x) =
∑

a∈Fn

2

(−1)f(a)⊕f(a⊕x), (12)

where ACTf (x) ∈ [−2n, 2n] is known as a spectral autocorrelation co-
efficient and ACTf (0) = 2n. The real-valued vector of all spectral
autocorrelation coefficients is known as an ACT Spectrum.

Definition 7. The Absolute indicator of an n-ary Boolean function
f , denoted by AC(f), is defined as the maximal non-trivial absolute
spectral autocorrelation coefficient, or

AC(f) = max
x∈Fn

2
\{0}

|ACTf (x)|. (13)

Definition 8. The Absolute indicator of a Boolean map S is defined
as

AC(S) = max
v∈Fm

2
\{0}

AC(v · S). (14)

Two n-ary Boolean functions f and g belong to the same equivalence
class (or are affine equivalent) if and only if there exist some non-
singular binary matrix D, vectors a,b ∈ F

n
2 and a scalar c ∈ F2, such

that g(x) = f(Dx ⊕ a) ⊕ b · x ⊕ c. (Two n-ary Boolean functions f
and g are affine equivalent if there exists an affine permutation A of Fn

2

such that g(x) = f(A(x).)
The algebraic degree, nonlinearity and absolute indicator are in-

variant under affine equivalence [22], [30]. Any Boolean map S and its
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inverse have same linearity and differential uniformity (Nyberg [29]).
In the same paper, Nyberg proved that differential uniformity is in-
variant under affine permutations onto the input space and the output
space. Two S-boxes S1 and S2 are affinely equivalent if there exist two
affine permutations A1 and A2, such that S2 = A2 ◦ S1 ◦ A1. So, the
affinely equivalent S-boxes have same differential uniformity (and same
algebraic degree, nonlinearity and absolute indicator).

Definition 9. A Boolean map S is regular if and only if all non-zero
its coordinate functions are balanced.

With other words, this means that when n ≥ m, for each output
y ∈ F

m
2 there are exactly 2n−m inputs that are mapped to y. The

well known fact is that the bijective S-boxes (permutations) are always
regular.

S-boxes need to be:

• with high minimal algebraic degree to resist low order approxi-
mation attacks and higher order differential attacks

• with high nonlinearity (low linearity) to resist linear attacks

• with low differential uniformity to resist differential attacks

• with low absolute indicator (autocorrelation) to improve the
avalanche effect of the cipher

• regular to resist trivial statistical attacks.

3 Some Existing Methods for Generation of 8-

bit S-Boxes

Existing methods for generation of S-boxes can be divided mainly in
three groups: algebraic constructions, pseudo-random generation and
heuristic generation.

The first group of S-boxes are constructed by applying some math-
ematical operations and transformations, like finite field inversion
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Table 1. A comparison between some of the cryptographic properties
of the bijective 8x8 S-boxes produced by different generation methods
(− stands for ”missing data”)

Method NL(S) L(S) ∆(S) AC(S) deg(S)

Finite Field Inversion [28] (AES S-
box)

112 32 4 32 7

3-round Feistel [5] 96 64 8 − −

4-uniform permutations method [33] 98 60 4 − −

Finite Field Multiplication [11]
106
108

44
40

6
56
64

7

Hill climbing method [24] 100 56 − − −

Tweaking method [13] 106 44 6 56 7

Simulated annealing method [7] 102 52 − 80 −

GaT [32] 104 48 − − −

Gradient descent method [18] 104 48 8 80 7

Hybrid heuristic method [17]
102
104

52
48

6 96 4

Spectral-linear and
spectral-difference methods [23]

104 48 6 − 7

GA1 [15]
106
108

44
40

6
56
48

6

GA2 [15]
110
112

36
32

6
40
32

7

SpImmAlg [16] 104 48 6 88 7

Quasigroup 4 method [this paper] 98 60 8 88 7

Quasigroup 16 method [this pa-
per]

100
98

56
60

10
8

88
6
7
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method (e.g., AES S-box), or using a smaller S-box as starting point
(e.g., finite field multiplication method [11]). In this group one can find
8-bit S-boxes with the best known cryptographic properties. The sec-
ond group of S-boxes are obtained by pseudo-random generation, and
usually they do not have very good cryptographic properties, because
of the large input space and very small number of strong S-boxes. The
third group of S-boxes are generated by iteratively improving given
S-box with respect to one or more cryptographic properties, with the
help of the heuristic algorithms (e.g., simulated annealing method [7]).
The main advantage of the last generation method is the large number
of S-boxes close to the best known.

Our constructions are algebraic constructions, and Table 1 presents
the comparisons of our results with the results of some existing methods
for generating bijective 8-bit S-boxes. However, our results are based
on the experiments made so far, and there is a big possibility these
results to be improved by more performed experiments. The set of
quasigroups of order 16 is extremly large, and here only one quasigroup
with specific features is used, so the number of performed experiments
is relatively small.

Mihajloska and Gligoroski [26] constructed optimal 4x4 S-boxes
from quasigroups of order 4, by using four e quasigroup string trans-
formations alternating in normal and reverse mode (in a sense that
they apply the string in reverse order), on 4 bits. They obtained 9216
optimal Q-S-boxes - with nonlinearity 4 (linearity 8), differential uni-
formity 4, autocorrelation of 16, maximal algebraic degree of 3 and
minimal algebraic degree of 2.

4 Constructions of 8-bit S-boxes with Quasi-

groups of order 4 and 16

We investigate several cryptographic properties of the 8x8 S-boxes ob-
tained by constructions similar to the one presented in [26], by using
quasigroup string transformations, produced by quasigroups of order 4
and 16. The reverse mode of e and d quasigroup string transformations
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we will denote here as oe and od, respectively (Figure 1). The argu-
ment of the quasigroup string transformations is the 8-bit string of 4
elements for quasigroups of order 4 and of 2 elements for quasigroups
of order 16.

Figure 1. Application of e and d transformations in normal and reverse
mode on 8-bit string of 4 elements

4.1 Construction with Quasigroups of order 4

For experiments with quasigroups of order 4, we use only 384 quasi-
groups out of the total 576. We excluded all linear quasigroups and 48
other non-linear quasigroups that always produce linear e and d trans-
formations. In the representation of the type of used quasigroup string
transformations, neoe type means that there are total of n e quasi-
group string transformations, used alternately in normal and reverse
mode, while ndod type means that there are total of n d quasigroup
string transformations, used alternately in normal and reverse mode.
For each used type and used n, we generated all 8-bit S-boxes and cal-
culated their cryptographic properties. The best obtained results are
written in the tables given below, and the best S-boxes are memorized
by the lexicographic order of the used quasigroup and the leaders.

Method 1 – In the first method we use different number of e
transformations generated by quasigroups of order 4, alternately in
normal and reverse mode, on the 8-bit string of 4 2-bit elements, as
follows (see Algorithm 1):
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Algorithm 1. Construction of 8-bit S-box by Method 1

Input: Q - quasigroup of order 4, neoe type and
vector of leaders L = (l1, l2, . . . ln)

Output: S

For all possible input blocks x1, x2, x3, x4 in lexicographic ordering
(p1, p2, p3, p4) = (x1, x2, x3, x4)
For i = 1 to n

If i is odd
(t1, t2, t3, t4) = eli(p1, p2, p3, p4)

else
(p4, p3, p2, p1) = eli(t4, t3, t2, t1)

Use all output blocks from the last round to generate S

Taking into account that block ciphers that use S-boxes, need their
inversions for decryption process, the construction of S−1 is given below
(see Algorithm 2):

Algorithm 2. Construction of S−1

Input: Q - quasigroup of order 4, neoe type and
vector of leaders L = (l1, l2, . . . ln)

Output: S−1

For all possible input blocks x1, x2, x3, x4 in lexicographic ordering
(p1, p2, p3, p4) = (x1, x2, x3, x4)
For i = n down to 1
If n is even
If i is even
(t4, t3, t2, t1) = dli(p4, p3, p2, p1)

else
(p1, p2, p3, p4) = dli(t1, t2, t3, t4)

else
If i is odd
(t1, t2, t3, t4) = dli(p1, p2, p3, p4)

else
(p4, p3, p2, p1) = dli(t4, t3, t2, t1)

Use all output blocks from the last round to generate S−1

The results for 8-bit S-boxes with best examined cryptographic
properties for each n = {1, . . . , 13} are given in Table 2, while the
graphical visualisation of 4eoe type is given on Figure 2.

The best produced 8x8 S-boxes are obtained by 13 e quasigroup
transformations, alternating in normal and reverse mode, and they have
differential uniformity 8, nonlinearity 98 (linearity 60), autocorrelation
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Figure 2. 4eoe type – four e transformations, alternating in normal
and reverse mode, on 8-bit string of 4 2-bit elements

Table 2. The best results for S-boxes obtained by Method 1

Type NL(S) L(S) ∆(S) AC(S) max{deg(fi)} deg(S) No. of S

1e 0 256 256 256 4 1 1152

2eoe 0 256 128 256 6 1 768

3eoe 64 128 64 256 6 3 9216

4eoe 64 128 24 256 7 4 192

5eoe 92 72 16 128 7 6 192

6eoe 96 64 10 104 7 6 96

7eoe 98 60 10 96 7 7 192

8eoe 98 60 10 88 7 6 288

9eoe 98 60 10 88 7 7 480

10eoe 98 60 10 88 7 7 8352

11eoe 98 60 8 112 7 6 96

12eoe 98 60 8
88
96

7
6
7

768
1632

13eoe 98 60 8 88 7 7 96
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88 and maximal and minimal algebraic degree 7. There are 96 such
S-boxes, obtained by 24 different quasigroups of order 4. One example
is the S-box S1 (Table 4) obtained from the quasigroup 34 of order 4,
with consecutive leaders (0, 3, 2, 3, 3, 3, 1, 1, 0, 2, 0, 0, 0).

4.2 Construction with quasigroups of order 16

All the experiments with quasigroups of order 16 are done with one,
specifically chosen quasigroup of order 16. The requirements for choos-
ing were quasigroup to be shapeless and with highest nonlinearity and
lowest differential uniformity if you represent it as 8×4 S-box in a ran-
domly generated set. From 1,000 different randomly tested quasigroups
of order 16, we have chosen the best obtained, such as the quasigroup,
presented in Figure 3, with differential uniformity 38, nonlinearity 100
(linearity 56), autocorrelation 64 and maximal and minimal algebraic
degree 6. The best S-boxes are memorized by the used leaders.

Figure 3. Shapeless quasigroup of order 16

Method 2 – The second method is like Method 1, but with the
randomly generated shapeless quasigroup of order 16 (Figure 3) and

360



Investigation of Some Cryptographic Properties of 8x8 S-boxes . . .

using 8-bit string of 2 4-bit elements, as follows (see Algorithm 3):

Algorithm 3. Construction of 8-bit S-box by Method 2

Input: Q - quasigroup of order 16, neoe type and
vector of leaders L = (l1, l2, . . . ln)

Output: S

For all possible input blocks x1, x2 in lexicographic ordering
(p1, p2) = (x1, x2)
For i = 1 to n

If i is odd
(t1, t2) = eli(p1, p2)

else
(p2, p1) = eli(t2, t1)

Use all output blocks from the last round to generate S

The construction of S−1 is given below (see Algorithm 4):

Algorithm 4. Construction of S−1

Input: Q - quasigroup of order 16, neoe type and
vector of leaders L = (l1, l2, . . . ln)

Output: S−1

For all possible input blocks x1, x2 in lexicographic ordering
(p1, p2) = (x1, x2)
For i = n down to 1
If n is even
If i is even
(t2, t1) = dli(p2, p1)

else
(p1, p2) = dli(t1, t2)

else
If i is odd
(t1, t2) = dli(p1, p2)

else
(p2, p1) = dli(t2, t1)

Use all output blocks from the last round to generate S−1

The results for 8-bit S-boxes with best examined cryptographic
properties for each n = {1, . . . , 7} are presented in Table 3, while one of
the best produced 8x8 S-boxes is S2 (Table 4), obtained by 5 e quasi-
group transformations, alternating in normal and reverse mode, with
consecutive leaders (3, 2, 0, 10, 9). This S-box is with differential uni-
formity 8, nonlinearity 98 (linearity 60), autocorrelation 88, maximal
and minimal algebraic degree 7, and without fixed points.
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Table 3. The best results for S-boxes obtained by Method 3

Type NL(S) L(S) ∆(S) AC(S) max{deg(fi)} deg(S) No. of S

1e 32 192 34 256 6
3
2

5
11

1oe 32 192 34 256 6
3
2

5
11

2eoe
96
94

64
68

10
96
88

7 6
2
1

3eoe
98
96

60
64

10
96
88

7 7 (6)
0 (2)
2 (12)

4eoe 98 60 10 88 7
7
6

1
5

5eoe 98 60 8 88 7 7 1

6eoe 98 60
8
10

96
80

7 7 (6)
1 (3)
2 (0)

7eoe 98 60 8 88 7
7
6

2
5

Table 4. Some best S-boxes obtained by Method 1 and Method 2

S-box S1 S-box S2

Q34, 13eoe,
L = (0, 3, 2, 3, 3, 3, 1, 1, 0, 2, 0, 0, 0)

NL (L) = 98 (60),
∆ = 8, AC = 88, deg = 7

5eoe,
L = (3, 2, 0, 10, 9)
NL (L) = 98 (60),

∆ = 8, AC = 88, deg = 7

362



Investigation of Some Cryptographic Properties of 8x8 S-boxes . . .

5 New Construction

Our new construction of N -bit S-boxes is a generalization of the con-
structions with e quasigroup string transformations (and d quasigroup
string transformations used for the inverse S-boxes) (see Algorithm
5). We mixed two different layers – the layer of bijectional quasigroup
string transformations, and the layer of modular addition with N -bit
constants. We choose a quasigroup of order q, such thatN = w·log2(q).
In any other case, we have q = N and w = 1. We choose a vector of n
bijectional quasigroup string transformations T = (qst1, qst2, . . . , qstn),
which has a corresponding vector of inverse quasigroup string transfor-
mations T−1 = (qst−1

1 , qst−1
2 , . . . , qst−1

n ).

Algorithm 5. New construction of N-bit S-box

Input: Q - quasigroup of order q, vector of n bijectional quasigroup
string transformations T = (qst1, qst2, . . . , qstn), vector of leaders
L = (l1, l2, . . . ln) and vector of n-bit constants C = (c0, c1, c2, . . . cn)

Output: S

For all possible input blocks x1, x2, . . . , xw in lexicographic ordering
(p1, p2, . . . , pw) = (x1, x2, . . . , xw) + c0(mod 2N )
For i = 1 to n

If i is odd
(t1, t2, . . . , tw) = (qsti)li(p1, p2, . . . , pw) + ci(mod 2N )

else
(pw, . . . , p2, p1) = (qsti)li(tw, . . . , t2, t1)
(p1, p2, . . . , pw) = (p1, p2, . . . , pw) + ci(mod 2N )

Use all output blocks from the last round to generate S

The construction of the S−1 is given below (Algorithm 6):
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Algorithm 6. Construction of S−1

Input: Q - quasigroup of order q, vector of n bijectional quasigroup
string transformations T = (qst1, qst2, . . . , qstn), vector of leaders
L = (l1, l2, . . . ln) and vector of n-bit constants C = (c0, c1, c2, . . . cn)

Output: S−1

For all possible input blocks x1, x2, . . . , xw in lexicographic ordering
(p1, p2, . . . , pw) = (x1, x2, . . . , xw)− cn(mod 2N )
For i = n down to 1
If n is even
If i is even
(tw, . . . , t2, t1) = (qst−1

i
)li(pw, . . . , p2, p1)− ci−1(mod 2N )

else
(p1, p2, . . . , pw) = (qst−1

i
)li(t1, t2, . . . , tw)− ci−1(mod 2N )

else
If i is odd
(t1, t2, . . . , tw) = (qst−1

i
)li(p1, p2, . . . , pw)− ci−1(mod 2N )

else
(pw, . . . , p2, p1) = (qst−1

i
)li(tw, . . . , t2, t1)− ci−1(mod 2N )

Use all output blocks from the last round to generate S−1

Method 3 – The third method generates 8-bit S-boxes by using our
new construction with parameters N = 8, q = 4, w = 4 and by using
only e quasigroup string transformations generated by quasigroups of
order 4. Method 1 can be seen as a special case of the Method 3, where
all used constants are zeros. The results for 8-bit S-boxes with best
examined crypographic properties for each n = {1, . . . , 4} and several
different constant vectors, are presented in Table 5.

Method 4 – The fourth method generates 8-bit S-boxes by using
our new construction with parameters N = 8, q = 16, w = 2 and
by using only e quasigroup string transformations generated by the
quasigroup of order 16 (Figure 2). Method 2 can be seen as a spe-
cial case of Method 4, where all used constants are zeros. The results
for 8-bit S-boxes with best examined crypographic properties for each
n = {1, . . . , 5} and several different constant vectors, are presented
in Table 6. The best produced 8x8 S-boxes are obtained by only 3 e
quasigroup transformations, alternating in normal and reverse mode.
There are two different best groups. One group has differential unifor-
mity 8, nonlinearity 98 (linearity 60), autocorrelation 88, and minimal
algebraic degree 7. One representative of this group is S3 (Table 7), ob-
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tained by using leaders (5, 1, 5) and constants (0, 1, 90, 9). The second
group has differential uniformity 10, nonlinearity 100 (linearity 56),
autocorrelation 88, minimal algebraic degree 6, and maximal algebraic
degree 7. One representative of this group is S4 (Table 7), obtained by
using leaders (13, 3, 7) and constants (0, 8, 136, 70).

6 Conclusion

The main contribution of this paper is a new generic construction of N -
bit S-boxes, presented with mixed layers of bijective quasigroup string
transformations and modular addition with N -bit constants. Special
case of 8-bit S-boxes are investigated, together with their main cryp-
tographic properties. The results are very promising, and further ex-
periments are needed to obtain 8-bit S-boxes with even better crypto-
graphic properties. This can be done, because only a very small subset
of S-boxes produced by only one specially selected quasigroup of order
16, and also, very small subset of S-boxes produced by quasigroups of
order 4 with several constant vectors are investigated.
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