The International Multidisciplinary Scientific GeoConference and Expo - SGEM (Surveying Geology & mining Ecology Management) considers the questions concerned to the geology and mine producing, oil and gas, geophysics, geodesy and mine surveying, photogrammetry and remote sensing, cartography and GIS, informatics and geoinformatics, micro and nanotechnologies and innovations, hydrology and water resources, air and climate, water and forest ecosystems, soils resources, renewable energy, nuclear technologies, ecology and environmental protection, environmental economics and legislation in accordance with the principles of sustainability.

For 12 consecutive years the SGEM GeoConference brings together scientists, educators, engineers and specialists representing research and educational institutions, companies, ministries, government agencies and consulting organizations from all over the world to exchange ideas, to define the research priorities in the above fields and to propose potential solutions of problems related to the global changes.

SGEM GeoConference Scientific Advantages:
- 24 scientific themes unifying geo-sciences, geo-practices and geo-technologies and other topics related directly or indirectly the Eco-Future of our Planet;
- Three parallel scientific sessions grouped by sections in 5 conference days;
- Separated MSc/PhD sessions;
- Thematic workshops;
- Publishing and printing all papers in Conference proceedings (abstracts + full papers);
- Indexing the Conference proceedings into the biggest scientific databases: ISI Web of Knowledge, Web of Science, CrossRef, ProQuest and SCOPUS;
- Nominations for Best presentation and Certificate Awarding Ceremony.

SGEM GeoConference aims:
- To provide the best platform for knowledge and experience sharing in the field of geosciences;
- To incorporate and strengthen the capacity of geo-scientists for facing the challenges of our time;
- To give the opportunities for future co-operation;
- To emphasize the role of multidisciplinary approach in revealing and solving the environmental problems in local, regional and global scale;
- To outline research direction, identity, report, and disseminate issues and/or problems in geosciences applications;
- To discuss the latest findings and technologies in surveying geology and mining, ecology, and management, in order to ensure the sustainable use of natural resources;

Every year the scientific value of the SGEM papers is increasing more and more. That is why, we bravely could call SGEM GeoConference - Probably the best in EU' in its idea to gather all geosciences in one and make them collaborate.

We believe that the science is the most vital wheel in the big machine of human progress. Let's innovate and share our knowledge with each other!
DISCLAIMER

This book contains abstracts and complete papers approved by the Conference Review Committee. Authors are responsible for the content and accuracy.

Opinions expressed may not necessarily reflect the position of the International Scientific Council of SGEM.

Information in the SGEM 2012 Conference Proceedings is subject to change without notice. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of the International Scientific Council of SGEM.

ORGANIZERS

- MINISTRY OF ENVIRONMENT AND WATER, BULGARIA
- BULGARIAN ACADEMY OF SCIENCES
- ACADEMY OF SCIENCES OF THE CZECH REPUBLIC
- ACADEMY OF SCIENCES OF IRAN
- LATVIAN ACADEMY OF SCIENCES
- POLISH ACADEMY OF SCIENCES
- RUSSIAN ACADEMY OF SCIENCES
- SERBIAN ACADEMY OF SCIENCES AND ARTS
- SLOVAK ACADEMY OF SCIENCES
- NATIONAL ACADEMY OF SCIENCES OF UKRAINE
- BULGARIAN INDUSTRIAL ASSOCIATION

HONORED ORGANIZER

BULGARIAN ACADEMY OF SCIENCES

EXCLUSIVE ORGANIZATION PARTNER

SCIENTIFIC & REVIEW COMMITTEE

SCIENTIFIC CHAIRMAN

Acad. Nikola Sabotinov
President of the Bulgarian Academy of Sciences, BULGARIA

Prof. Miodrag Markovic
Professor at the University of Mining and Geology "St. Ivan Rilski", BULGARIA

Prof. Dr. Isik Yilmaz
Gumhurkuy University, TURKEY

Assoc. Prof. Dr. Marian Marschalko
VSB-Technical University Ostrava, CZECH REPUBLIC

* alphabetically ordered by country
REGIONAL MODELS OF THE GEOPHYSICAL FIELDS IN THE REPUBLIC OF MACEDONIA

Blagica Doneva 1
Krsti Blažev 2
Marijan Delipetrov 1
Todor Delipetrov 1
Gjorgi Dimov 2
1 Faculty of natural and technical sciences, University of Goce Delcev, Macedonia
2 Faculty of technology, University of Goce Delcev, Macedonia

ABSTRACT

This paper presents the models which are defined on the basis of different geophysical parameters. Each one from these models through the prism of appropriate geophysical parameter provides a clear insight on the basic composition in the region of the Republic of Macedonia.

Analysis of data from the presented models indicates a high degree of correlation. The accordance of the models created on the basis of surface observations (geological mapping) with the models made with geophysical methods is of particular importance.

Geophysical models are made on the basis of measurements of adequate fields. The data from geophysical measurements results mainly from inner structure of surveyed area.

Internal composition has its reflection on the surface structures.

Keywords: models, geophysical fields, neotectonic, structural, gravity, geomagnetic

INTRODUCTION

The territory of the Republic of Macedonia as a part of the Alpian orogen in the Balkan region is characterized with a very complex structure, where the massive structure segments are isolated - the zones which are characterized with different geological features, different relief and different thickness of the Earth’s crust. A lot of those elements have an impact at the geotectonic stage - the new geological history, because a number of structures are reactivated and there are also the new forms connected with the seismicity.

A lack of the synthesis in the relation to the structure elements from first order (zones), with the relief i.e. geophysical parameters, gives conditions for solving of this problem.

The basic geophysical models of the territory of the Republic of Macedonia are made for accomplishing of this aim. They are subject of analysis of this paper.

Here, the geological maps and the data from the geophysical and seismological investigations, which are obtained in the last thirty years are used during the solution of this problem. The modern methods of mathematical modelling with help of computer technology are applied for solution of the correlation between the parameters from different fields. The computer modelling of the data for the territory of the Republic of
Macedonia is made for the first time and the same procedure can be use in the analog investigations.

The analysis of the presented models should be defining the degree of correlation of the models made on the basis of geophysical fields. They are reflection of the internal structure and tectonic model which is made on the basis of the surface manifestations of the terrain.

Neotectonic model

Information offered by many authors [1] helped to compile Fig. 1 and give the regional tectonic setting of the Republic of Macedonia. The Republic of Macedonia belongs to the Dinarides and the Rhodope system. The part of Macedonia west of the Prespa-Zletovo-Strumica-Dojran line belongs to the Dinarides system and east of the line is part of the Macedonian massif which, with the Ograzden massif, joins the Rhodope system.

Fig. 1. Tectonic regionalization of the territory of the Republic of Macedonia

- **Dinarides**: A - Vardar zone, B - Pelagonian horst - anticlinal axis, C - Western Macedonian zone, D - Korabides, Karpatho-Balkanides: E - Eastern Macedonian zone, F - Kraštide zone

The Macedonian massif in this part of the Alpine orogeny is a geological anticline zone, or mid - position massif that separates the Dinarides from the Carpatho-Balkanides. In the area bordering Bulgaria east of the Berovo-Pelčevo line, elements of the Carpatho-Balkanides have been forced as a wedge into the old Rhodope massif, known as Strumica zone (Kraštide) separating the Rhodope and the Eastern Macedonian massif. The territory of Macedonia, west of the Prespa-Zletovo-Strumica-Dojran line belongs to the Dinaric system. Four zones have been distinguished: the Vardar zone, the Pelagonian horst - anticlinal axis, the Western Macedonian zone, and the Korabides.

These zones represent individual structural facies units with their own geological evolution. The structural zones are characterized by their own geological evolutions which can be seen from various lithological complexes that differ in composition, age, and dislocation. Different types of rocks (metamorphic, intermediate to igneous), from Precambrian to Cenozoic are present.

Recent tectonic processes divided the territory of the Republic of Macedonia into three zones based on the geological and geophysical characteristics in order to provide better modeling:
- Western Macedonia, which includes Korabides, Western Macedonian zone and Pelagonian horst - anticlinal axis
- Vardar zone
- Eastern Macedonia, which involve the Eastern Macedonian massif and Kraštides

In this manner the area is structurally modelled into two blocks of uplift (Western Macedonia and Eastern Macedonia) and one block of subsidence (The Vardar zone). The Vardar zone is a tectonic rift of very complex structural characteristics, only one part of this zone passes through Macedonia: In the territory of Macedonia the zone is 60 to 80 km wide. It is separated from the surrounding rocks by deep faults that cut the Earth's crust. The most common rocks, in terms of their age, are Precambrian, Paleozoic and Mesozoic complexes. The depressions are filled with paleogene and neogene sediments. The Vardar zone as a block of subsidence divides the Karpato-Balkanides in the east from the Dinarides in the west.

The Western Macedonian zone is mainly built of carbonaceous rocks which is specific lithological composition of the Dinarides. In terms of their age, the Paleozoic, Mesozoic and Neogene complexes are the most common rock types. The Pelagonian horst, which according to its composition is closer to the Eastern Macedonian zone, because of the recent tectonic processes is separated and becomes a part of Western Macedonia. The Eastern Macedonian zone is built of dislocated complexes of Precambrian and Riphean Cambrian rocks. The morphostructures of uplift in eastern Macedonia are present as mountainous masses 1600 – 1900 m high and the depressions are present as grabens oriented east - west.

Gravimetical model

The gravimetric field or the values of Bouguer anomaly in the territory of the Republic of Macedonia vary within $-80 \times 10^{-5} < \Delta g < 30 \times 10^{-5}$ m/s². As a magnetic anomalies, also the gravimetical field is result of the complex effect of the structures, theirs different rock mass, density and thickness. The observed analogy between these two fields in one region is a good parameter for the common ground origin [4].

Analysis of the gravimetric model (Fig. 2) indicate that the Western Macedonian zone generally have negative value of the Bouguer anomaly. If it is take in consideration that the value of Bouguer anomaly depends from the density of the rock mass:

$$\Delta g = 0 \quad \text{for} \quad p > 2.67 \text{ g/cm}^3$$
$$\Delta g = 0 \quad \text{for} \quad p = 2.67 \text{ g/cm}^3$$

The territory of Macedonia, west of the Prespa-Zletovo-Strumica-Dojran line belongs to the Dinaric system. Four zones have been distinguished: the Vardar zone, the Pelagonian horst - anticlinal axis, the Western Macedonian zone, and the Korabides.
The model clearly shows that the Western Macedonian zone is built mainly from the rocks with lower density of 2.67 g/cm³, which is correlated with the density of carbonate rocks. Those rocks are widely distributed on the surface and generally make the interiority of the same zones.

![Fig. 2 Geomagnetic field of the territory of the Republic of Macedonia](image)

Analysis of the Pelagon shows that this part is separated with average value of Bouguer anomaly Δg, which means the different deep structure in relation with the Western Macedonian zone. The positive value of the Bouguer anomaly is caused because of two reasons, the first is Mokh discontinuity and the second, the density of the rocks which are components of the Vardar zone mainly with the density of ρ=2,67 g/cm³.

Geomagnetic model

Regional magnetic anomalies presents multicomponent anomaly fields which are the reflection of different structures in the Earth's crust. The magnetic field should be understood like integral impact of the deep buried and surface magnetic sources [2]. The magnetic field in the Western Macedonian zone is fairly stable. The Z-component values of the magnetic field are mostly negative with a small number of positive local anomalies. This is consistent with the geological composition of the zone. The Z-component values are within -2·10⁷ nT < Z < -2·10⁶ nT. The areas of positive magnetic anomalies are connected with local intrusions of magmas through the thick carbonate complex of low negative field values (Fig. 3).

The magnetic field of the Vardar zone is characterized by rapid changes of positive and negative anomalies. However, the large numbers of negative local anomalies are also characteristic. The value of Z-component varies widely from -10·10⁷ nT < Z < 115·10⁷ nT. The magnetic field is in correlation with the geological structures comprising the Vardar zone. It is the best justification of the unstable nature of the zone intersected by deep faults along which various magma types penetrated and generate the magnetic field [3].

The magnetic field in Eastern Macedonia is characterized by pronounced maxima and minima. In the first zone the negative values were dominant, in the second the positive ones, whereas both positive and negative values are present in the zone.

terms of the magnetism, the eastern zone is equal to the Vardar zone indicating to its complex geological composition. The Z-component values vary within -10·10⁷ nT < Z < 115·10⁷ nT.

![Fig. 3 Geomagnetic field of the territory of the Republic of Macedonia](image)

Structural model

The correlation carried out for the depth of Mokh discontinuity (M) is made of deep structure of the territory of the Republic of Macedonia [1]. The activities include the analysis of:

* M=p+ar: p - Geophysical parameter
* M=α+b: α - Bouguer anomaly
* M=v: v - Velocity of the tectonic movements

Table 2 gives the correlation of the coefficients from those investigations. The analysis shows that the Western zone is a block of the highest numerical values and the most stable block in the model. With approval to those investigations, the internal structure of the Vardar zone indicates higher homogeneity and stability in relation to Eastern Macedonian Zone. The earlier investigations define the Eastern Macedonian Zone as a block with high degree of dynamics. However, the most pronounced young volcanism and present movements of the territory of Eastern Macedonia are the reasons for correlation coefficients M=α+b or M to be from inverse type. The analysis of the geophysical fields justifies the structural model suggested for the territory of the Republic of Macedonia. (Fig.4).

<table>
<thead>
<tr>
<th>Correlation coefficient of the linear dependence M (ρ)</th>
<th>Western Macedonian Zone</th>
<th>Vardar Zone</th>
<th>Eastern Macedonian Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height relief (R)</td>
<td>-0.44</td>
<td>-0.65</td>
<td>0.18</td>
</tr>
<tr>
<td>Bouguer anomaly</td>
<td>0.87</td>
<td>0.47</td>
<td>0.25</td>
</tr>
<tr>
<td>Velocity of tectonic movements (V)</td>
<td>-0.63</td>
<td>-0.46</td>
<td>-0.66</td>
</tr>
</tbody>
</table>
CONCLUSION

- Presented models have high degree of correlation;
- Above all the geophysical models are reflection of the region subsurface;
- The neotectonic model is compiled on the basis of the surface features of the investigation terrain;
- The Western Macedonian block is homogenous;
- The Vardar zone is complex structure, specially its internal parts;
- The Eastern Macedonian zone shows high degree of dynamics and this block isn't in topographical correlation with the Moho discontinuity;
- The territory of the Republic of Macedonia is structurally modelled into two blocks of uplift (Western Macedonia and Eastern Macedonia) and one block of subsidence (The Vardar zone);
- The correlation of all models indicates an connection of the internal with the surface structure of the investigation terrain.

REFERENCES

[2] Rasson J.L. and Delipetsov T., Geomagnetics for Aeronautical Safety: A Case Study in and around the Balkans. NATO ARW, Ohrid, 2005