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Facioscapulohumeral muscular dystrophy (FSHD) is

caused by an unusual deletion with neomorphic activity.

This deletion derepresses genes in cis; however which

candidate gene causes the FSHD phenotype, and through

what mechanism, is unknown. We describe a novel gene-

tic tool, inducible cassette exchange, enabling rapid gene-

ration of isogenetically modified cells with conditional

and variable transgene expression. We compare the effects

of expressing variable levels of each FSHD candidate gene

on myoblasts. This screen identified only one gene with

overt toxicity: DUX4 (double homeobox, chromosome 4), a

protein with two homeodomains, each similar in sequence

to Pax3 and Pax7. DUX4 expression recapitulates key

features of the FSHD molecular phenotype, including

repression of MyoD and its target genes, diminished myo-

genic differentiation, repression of glutathione redox path-

way components, and sensitivity to oxidative stress. We

further demonstrate competition between DUX4 and

Pax3/Pax7: when either Pax3 or Pax7 is expressed at

high levels, DUX4 is no longer toxic. We propose a hypoth-

esis for FSHD in which DUX4 expression interferes with

Pax7 in satellite cells, and inappropriately regulates Pax

targets, including myogenic regulatory factors, during

regeneration.
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Introduction

Facioscapulohumeral muscular dystrophy (FSHD) is the third

most common inherited myopathy, affecting approximately

1/20 000 individuals. It is caused by a deletion within the

large tandem D4Z4 repeat sequence near the telomere of 4q.

The normal chromosome 4 carries approximately 150 tandem

copies of the 3.3 kb D4Z4 repeat, whereas FSHD-associated

chromosomes carry 10 or fewer (Wijmenga et al, 1992).

Although caused by a deletion, the disease is dominantly

inherited. This is not due to haploinsufficiency of 4qter as a

large deletion removing all D4Z4 repeats and extending

proximally into chromosome 4 does not cause FSHD, imply-

ing that at least one copy of D4Z4 or nearby sequence is

necessary for disease-related pathology (Gabellini et al,

2002). The D4Z4 repeat binds a YY-1-containing transcrip-

tional repressor complex and it has been proposed that a

repeat array of greater than 10 tandem units can silence

nearby genes, whereas a deleted array allows inappropriate

activation of nearby genes (Gabellini et al, 2002). Consistent

with this, 4q35 sequences are hypo-methylated on FSHD-

associated chromosome 4 variants compared with controls

(van Overveld et al, 2003).

The region immediately proximal to the D4Z4 repeats

harbours a number of candidate genes, including FRG1

(FSHD-related gene) (van Deutekom et al, 1996), which

encodes a nucleolar protein involved in RNA biogenesis

(van Koningsbruggen et al, 2004), TUBB4Q, a b-tubulin

family member, and FRG2, a predicted transcript of four

exons comprising an open reading frame (ORF) with no

significant homology to any known protein. The sequence

proximal to these three genes is gene poor, with no predicted

gene for the next 250 kb (van Geel et al, 1999). Past this

proximal region, the gene ANT1 (adenine nucleotide trans-

porter) has attracted attention due to its function in apoptosis

(Doerner et al, 1997; Gabellini et al, 2002). The D4Z4 repeat

itself was originally cloned in a low-stringency screen for

novel homeobox genes (Wijmenga et al, 1992). Remarkably,

each D4Z4 repeat contains two homeoboxes within a single

predicted ORF (Gabriels et al, 1999). This predicted gene is

referred to as DUX4 (double homeobox, chromosome 4). In

addition to copies within each unit of the tandem array, there

is one copy of DUX4 just proximal of FRG2, embedded within

a truncated, inverted D4Z4 repeat (Dellavalle et al, 2007).

This gene, referred to as DUX4c, is identical to DUX4 from the

N terminus through the homeodomains, but the last 82

amino acids have been substituted for an unrelated 32

amino-acid sequence. Thus, DUX4 and DUX4c are also

FSHD candidate genes.

As FSHD is a dominant disease resulting from a gain-of-

function mutation, modelling disease-related pathology in

animals or cells requires testing candidate genes in gain-of-

function genetic models. Three candidate genes, FRG1, FRG2,
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and ANT1, have been tested by overexpression in transgenic

mice using the muscle-specific human skeletal actin promo-

ter. Of these three, only FRG1 had a deleterious effect

(Gabellini et al, 2002); however, the relevance of this model

to FSHD is unclear as the pathology was only seen in mice

expressing exceptionally high, non-physiological levels of

FRG1. Furthermore, conventional transgenic studies suffer

from high variability due to integration site-specific back-

ground effects; therefore, it is difficult to conclude that FRG1

is truly more myotoxic when compared with FRG2 or ANT1:

expression patterns and absolute levels of expression in each

transgenic strain differ. For such comparative studies, the

ideal expression system would express each candidate gene

from precisely the same genetic locus, and would be condi-

tional and variable, so that low as well as high levels of

expression could be tested. With this application in mind, we

have therefore developed a novel, portable, cre-mediated

gene targeting system, referred to as inducible cassette ex-

change (ICE). We have used this system to derive a murine

myoblast ICE acceptor cell line, targeted this cell line with

each FSHD candidate gene, and directly compared the effect

of each on proliferating and differentiated myoblasts. We

identify disease-related pathological changes from only one

candidate, DUX4, and perform a detailed molecular analysis

of the downstream effects of its expression during myoblast

proliferation and differentiation.

Results

Generation of ICE myoblasts

We have described earlier an inducible gene expression

system for ES cells (Kyba et al, 2002) in which a circular

plasmid carrying a gene of interest is targeted to a doxycy-

cline (dox)-regulated locus. Cre-mediated recombination

places a promoter and initiation codon in frame upstream

of a G418 resistance gene, ensuring correct targeting

(Fukushige and Sauer, 1992) while simultaneously placing

the gene of interest under the control of the dox-regulated

promoter. To enable site-directed integration in any cell type,

we have modified this system to improve efficiency and

adapted it for lentiviral transduction. First, to improve re-

combination efficiency, we have inserted a mutant version of

loxP (lox2272 which self-recombines but does not recombine

with loxP (Canales et al, 2006), referred to as loxM in

Figure 1A) upstream of loxP, which now allows cassette

exchange recombination. As the DNA in between loxM and

loxP is replaced by the integrating plasmid, we have placed

cre recombinase followed by ires–GFP into this space

(Figure 1A). Finally, we have inserted the second-generation

tetracycline response element (sgTRE, mutated to eliminate

basal leakiness; Agha-Mohammadi et al, 2004) upstream of

the floxed cre and placed the entire construct onto a self-

inactivating lentiviral vector. A companion lentiviral vector

carrying the ubiquitin C promoter (Lois et al, 2002) was used

to express the reverse tetracycline transactivator (rtTA2(s)-

m2; Urlinger et al, 2000). In cells transduced with both

constructs, cre is induced with dox, and catalyses its own

removal through cassette exchange recombination, placing

the gene of interest under the control of dox (Figure 1A).

Derivative cell lines can be made in parallel, each with a

different gene inserted into the same locus. We refer to this

system as ICE.

As the principle virtue of an ICE cell line is that multiple

genes of interest can be compared directly at various levels of

expression, it is essential that such a cell line carry only a

single copy of the ICE locus. We transduced murine C2C12

myoblasts sequentially, first with rtTA at high titre, then with

the 2Lox.cre–ires–GFP construct over a titration series. After

these two transductions, a transient dose of dox allowed

cotransduced cells to be identified, enumerated, and sorted

through GFP fluorescence. To derive a single-copy integration

clone, we single cell sorted from a transduction in which

o1% of cells were GFPþ, expanded multiple clones, and

retested each for efficiency of GFP expression. We derived

several clones in which GFP was detectable in 100% of cells

after 24 h of dox, and undetectable by flow cytometry in the

absence of dox. Each clone was tested for ICE by dox

treatment to induce cre, followed by transfection of an

exchange plasmid carrying DsRed2 and selection in G418.

Single-copy integrants show dox-inducible green fluorescence

converting to dox-inducible red fluorescence (Figure 1B),

whereas multi-copy integrants acquire inducible red fluores-

cence but do not lose green fluorescence (not shown). We

selected one clone, referred to as iC2C12, and confirmed that

it has a single ICE site by Southern blot analysis. Using a GFP-

specific probe, we detected a single band in iC2C12 cells but

not in iC2C12-DUX4 where cre–ires–GFP was substituted

with DUX4 (Figure 1C). To evaluate dox sensitivity and

gene expression kinetics, we targeted iC2C12 with luciferase.

Luciferase expression could be titrated across a three-log

range by varying the dose of dox, and abundant gene

expression was observed within 2 h of dox addition

(Figure 1D). These kinetics and dynamic range are sufficient

in this context for both a comprehensive comparative analy-

sis of FSHD candidate genes at different levels of expression,

and for the molecular evaluation of cell physiological re-

sponses to the expression of particular genes of interest.

Head-to-head comparison of FSHD candidate genes

We targeted iC2C12 cells with each FSHD candidate gene:

FRG1, FRG2, TUBB4q, ANT1, DUX4, and DUX4c. The deriva-

tive cell lines were then exposed to various doses of dox and

effects on morphology and viability were evaluated. After

24 h of expression, viability, as measured by ATP content,

was reduced by over 80% at 100 ng/ml and over 90% at

500 ng/ml dox in the iC2C12-DUX4 cells, whereas no changes

in viability were observed for any other candidate gene

(Figure 2A). At this time point, iC2C12-DUX4 cells appeared

dead and began lifting from the plate (Figure 2B), whereas

cells expressing other candidate genes remained unchanged

(not shown). As antibodies are not available to the majority

of FSHD candidate genes, to show that these could also be

regulated by dox, we generated FLAG tag fusions of several

other candidates, and determined by western blotting that

they were expressed strictly in response to dox (Figure 2C).

As the amount of accumulated protein depends on factors in

addition to transcription (RNA and protein stability), abso-

lute protein levels are likely to vary between cell lines;

however, at the maximum level possible for each gene,

overt toxicity was seen only with DUX4.

DUX4 toxicity

The inducible system provides rapid and synchronous gene

expression (Figure 2E), which enabled us to visualize the

DUX4 in FSHD
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temporal phenotypic progression from normal to non-viable.

After varying periods of induction, cells were stained with a

monoclonal antibody to DUX4 and counterstained with lami-

nin to visualize morphology. Intranuclear localization of

DUX4 protein was apparent in virtually all cells within 2 h

after high-level (500 ng/ml) induction (Figure 2D). By 4 h

(500 ng/ml), morphological changes were detectable, as cells

began to stretch and nuclei acquired an ovoid shape, a

change that became more extreme with time. A dose-depen-

dent decrease of Ki67 was also observed (Supplementary

Figure S1A). Expression of p21 was markedly elevated as

soon as 2 h after induction, and cyclin E levels were reduced
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Figure 1 Generation of ICE-recipient cell lines. (A) Schematic representation of the lentiviral constructs carrying the components of the ICE
system, and the proviral ICE locus before and after recombination. (B) Flow cytometry of iC2C12 cells, which carry an inducible cre–ires–GFP
proviral locus before recombination, and derivative cell lines carrying DsRed2 or luciferase, after recombination. (C) Southern blot analyses
with GFP-specific probe DNA to detect copy number and recombination status of the ICE locus in iC2C12, iC2C12-DUX4 and i3T3 cell lines.
Note that a single band hybridized with the GFP probe in iC2C12 and i3T3 cells but was missing following recombination (in iC2C12-DUX4
cells, in which GFP was replaced with DUX4). DNA from a spermatogonial cell line carrying GFP was used as a positive control. (D) Dose–
response and time course (500 ng/ml) of luciferase gene expression in response to doxycycline.
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from 6 h (Figure 2G). Markers of apoptosis, including acti-

vated caspases 6, 8, and 9 were apparent by 6 h, and cleaved

caspase 3 and annexin V staining cells by 12 h, and increased

thereafter (Figure 2H and I; Supplementary Figure S1C). At

lower levels of expression, DUX4 reduced proliferation and

induced morphological changes, but did cause obvious cell

death (Figure 2J and K). At 30 ng/ml dox, the elongated

shape and ovoid nuclei were apparent, but cells were viable

for as long as 8 days (not shown). A 1-h pulse of DUX4

expression at 500 ng/ml followed by a 19 h chase resulted in a

morphology similar to that of cells induced with a low dose of

dox for 24 h (Supplementary Figure S2A). To analyse the

effect of DUX4 on myotubes, we differentiated myoblasts into

myotubes for 4–6 days using conventional differentiation

medium (switch to 2% horse serum). When induced at

high levels for 24 h in terminally differentiated myotubes,

loss of myotubes was evident; however, large numbers of

differentiated cells were still viable (Figure 2L), and by ATP

assay we did not detect severe cell death even at relatively

high levels of expression (Figure 2M). We confirmed that

DUX4 protein is expressed at relatively similar levels in

differentiated myotubes and proliferating myoblasts by wes-

tern blotting (Figure 2F).

To determine whether DUX4 is specifically toxic for myo-

blasts, we generated DUX4-inducible fibroblasts i3T3-DUX4

from ICE-modified 3T3 cells (manuscript in preparation) and

DUX4-inducible embryonic stem cells iES-DUX4 (manuscript

in preparation). In 3T3 fibroblasts, low-dose induction of

DUX4 resulted in similar cell morphological changes as

seen in C2C12 myoblasts, and at high levels DUX4 induced

rapid cell death (Supplementary Figure S3A). DUX4 impaired

cell viability in a dose-dependent manner, as confirmed by

the ATP assay (Supplementary Figure S3B and C). Similar

toxic effects were observed when DUX4 was induced in

mouse ES cells (Supplementary Figure S4B); however, cell

death was not as rapid as observed in C2C12 and 3T3 cells.

Interestingly, ES cells progressively lost their characteristic

morphology and colony structure and acquired a fibroblastic

cell shape on induction with DUX4 (Supplementary Figure

S4B). To determine whether DUX4 is toxic for all cell types,

we induced it in embryoid bodies (EBs, which contain cell

types representing all three germ layers) derived from these

ES cells. The toxic effect of DUX4 during EB differentiation

was distinguished by a decrease in EB size, increased cell

death and apoptosis seen by annexin V staining, and de-

creased outgrowth of the cells when plated in monolayer

(Supplementary Figure S4D–F). However, all cell types were

not equally sensitive to the DUX4 expression, as some cells

remained viable even after 5 days of induction (500 ng/ml)

(Supplementary Figure S4D–F). In support of the in vitro

assay, we measured teratoma formation in immunodeficient

mice and found that mice injected with iES-DUX4 cells and

treated with dox from the first day of transplantation did not

develop tumors; however, when dox was initiated at day 14

post-injection, tumors regressed but did not disappear

(Supplementary Figure S4G). We conclude that different cell

types have different sensitivities to DUX4.

Gene expression changes provoked by DUX4

Because DUX4 is a homeodomain protein and rapidly transits

to the nucleus after expression, we reasoned that its toxic

effects were mediated through changes in gene expression.

We therefore performed microarray transcriptional profiling

experiments comparing uninduced cells to those expressing

DUX4 for 4 or 12 h. We identified 156 genes differentially

expressed at 4 h (107 upregulated and 49 downregulated) and

1011 genes at 12 h (576 upregulated and 435 downregulated).

The majority of the genes (more than two-third) that were

altered at 4 h were also changed in the 12 h sample.

Representatives of a variety of functional gene ontology

classes were identified (Figure 3A). Moreover, these altera-

tions were consistent and reproducible across replicates, as

demonstrated by hierarchical clustering (Figure 3B). For both

time points, approximately one-third of the altered genes

were uncharacterized cDNAs or genes with unknown func-

tions (Supplementary Tables S1 and S2). Of the genes with

known or suspected functions, the greatest numbers of

genes at both 4 and 12 h were involved in cell cycle control

or regulation of growth/development. Signal transduction

and stress response were the next largest functional cate-

gories. Genes identified as differentially expressed at 12 h

exhibited a similar ontological profile, with the addition of

DNA packaging/processing, intracellular protein transport,

and energy production categories represented. The gene

lists in their entirety are shown in Supplementary Tables S1

and S2.

Previous microarray studies on FSHD patient biopsies have

identified two classes of genes uniquely altered in FSHD

when compared with other muscular dystrophies: MyoD

target genes and oxidative stress response genes (Winokur

et al, 2003b; Celegato et al, 2006). A proteomics study on

patient biopsies has confirmed that oxidative stress response

proteins, several proteins regulated by MyoD, and MyoD

itself, are present at much reduced levels in FSHD biopsies

when compared with unaffected controls (Celegato et al,

2006). We therefore evaluated the expression of these genes

in our data and observed numerous examples of oxidative

stress response gene downregulation. These changes were

significant only in the 12-h sample, suggesting that they may

be secondary targets of DUX4. The genes we identified,

similar to the studies on FSHD patient biopsies, are primarily

enzymes involved in glutathione redox metabolism. We con-

firmed these results independently by real-time PCR

(Figure 3C). In addition to oxidative stress/glutathione

redox genes, a number of heat-shock genes were downregu-

lated, including Hspb1, Hsp12a, Serpinin, confirmed by real-

time PCR (Figure 3D). We also noted repression of LaminA,

the protein product of which is altered in several other

muscular dystrophies (Figure 3E). Many upregulated genes

were also observed, for example p21 (Figure 3E). Although

MyoD was downregulated in one microarray, it was excluded

from the final data set as its signal was undetectable from the

other two replicates. Transcription factors are often expressed

at mRNA levels that are not detectable with microarrays

(Canales et al, 2006), so we performed real-time PCR to

evaluate MyoD expression. This clearly demonstrated that

MyoD was rapidly downregulated by DUX4 (Figure 3F). The

fact that the two unique classes of genes altered in FSHD are

downstream targets of DUX4 suggests a potential role for this

candidate gene in FSHD pathology.

DUX4 and oxidative stress

As genes involved in the glutathione redox cycle were re-

pressed, we assumed that DUX4-expressing cells would have

DUX4 in FSHD
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lower capacity to buffer oxidative stress. Additionally, a

previous study has found that myoblasts from FSHD patients

are more sensitive to oxidative stress than are control myo-

blasts from unaffected individuals (Winokur et al, 2003a).

We therefore tested the sensitivity of DUX4-expressing cells to

a variety of stress-inducing reagents at different concentra-
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tions. We found in all cases that DUX4 expression, even at

levels only weakly detectable by western blot (10 ng/ml dox),

enhanced the sensitivity of stress-inducing compounds

(Figure 4A). In the case of tBHP and Paraquat, compounds

that specifically induce oxidative stress, this enhancement

was highly synergistic. Concentrations of these compounds,

which have no effect or a weak effect on viability in the

absence of DUX4, have a significant effect on viability when

DUX4 is expressed (tBHP at 1mM or Paraquat at 1 mM, for

example). Concentrations that reduce but do not eliminate

viability, combined with DUX4 expression, completely abo-

lish viability with low levels of DUX4 expression. On the

other hand, the dose–response curves for staurosporine and

tunicamycin, non-oxidative stressors, although shifted, do

not show threshold changes when DUX4 is expressed.

As cells experience significant oxidative stress simply by

being cultured in vitro, the enhanced oxidative sensitivity of

DUX4-expressing myoblasts points to a possible reason for

cell death. We therefore tested whether antioxidants would

have any effect on viability of DUX4-expressing myoblasts.

Each compound tested (b-mercaptoethanol, monothiogly-

cerol, ascorbic acid, vitamin K2 and vitamin E) enabled

myoblasts to grow in the presence of toxic levels of DUX4

(Figure 4B–D). Antioxidants also inhibited DUX4 toxicity

in i3T3-DUX4 fibroblasts (Supplementary Figure S3D).

Quantificationrevealed that this rescue reached a plateau at

approximately 40%, meaning that other consequences of

DUX4 expression were preventing cells from growing at the

wild-type rate (Figure 4B). Indeed, antioxidants did not

prevent the characteristic morphological change caused by

DUX4 (Figure 4C) and had no effect on MyoD or Myf5

expression (Figure 4E); therefore, they rescue by buffering

DUX4 toxicity, rather than by inactivating DUX4 protein.

DUX4 and myogenesis

Because of the effect of DUX4 on MyoD expression, we tested

the expression of other myogenic regulatory factors (MRFs)

and myogenic genes. We observed reduced levels of Pax7,

myogenin, and desmin mRNA, together with moderately

increased levels of Myf5 (Figure 5A). This result was seen

at sublethal induction levels for all MRFs (62.5 ng/ml dox;

Figure 5A). These real-time PCR results were confirmed by

immunohistochemistry (Figure 5B and C).

To determine whether interference with MyoD and other

MRFs led to a myogenic differentiation defect, we evaluated

myogenic differentiation at low levels of DUX4 expression in

which there was no significant cell death. iC2C12-DUX4

myoblasts grown in the absence of dox were switched to

differentiation conditions containing 10, 25 or 50 ng/ml dox.

In contrast to the ubiquitous presence of multinucleated

myotubes when DUX4 was not induced, only sporadic differ-

entiation was present in the DUX4-induced samples, with less

seen at 25 than at 10 ng/ml dox (Figure 5D). This diminished

morphological differentiation was supported by decreased

levels of MyHC by immunohistochemistry (Figure 5E). The

effect of DUX4 on differentiation to myotubes was more

severe if DUX4 induction was started before the switch to

differentiation conditions, while cells were still proliferating

(not shown). To confirm that alteration of myogenic gene

expression and inhibition of differentiation in these cells were

due to DUX4 expression and not due to dox treatment alone,

we performed similar experiments on iC2C12 cells (the

parent cell line before targeting with DUX4) and observed

no changes (Figure 5F and G). As effects on differentiation

and MRF expression are seen at low doses of DUX4 expres-

sion and as early as 4 h after induction, they are unlikely to be

due to nonspecific apoptotic effects.

Pax3 and Pax7 compete with DUX4 and rescue toxicity

Homeodomain transcription factors can be grouped into

subclasses determined by the amino-acid sequence of their

respective homeodomains. A sequence dendrogram analysis

including the DUX4 homeodomains and representative mem-

bers of the major homeodomain subtypes is shown in

Figure 6A. The DUX4 homeodomains are most similar to

each other, and fall out of the tree nearest the Pax family, and

far from the canonical clustered Hox genes (HoxAn–HoxDn).

Within the Pax family, the DUX4 homeodomains are most

similar to those of Pax3 and Pax7. This is provocative, given

the important function that these factors have in myogeneic

development and regeneration. If the homeodomains were

similar enough to compete with Pax3 or Pax7 for binding to

common targets, then a simple hypothesis for the pathogenic

role of DUX4 in FSHD would be that it interferes with Pax3 or

Pax7 function in satellite cells, or inappropriately alters the

expression of Pax3 or Pax7 target genes such as MyoD during

regeneration. If DUX4 competes with Pax3 or Pax7 for anti-

podal regulation of the same target genes, then a corollary

prediction is that overexpression of Pax3 or Pax7 should

compete with DUX4 and reduce or eliminate DUX4 pheno-

types in our system. To test this, we transduced iC2C12-DUX4

cells with retroviral constructs expressing Pax3–ires–GFP,

Pax7–ires–GFP or ires–GFP alone, and sorted pure popula-

tions of GFPþ cells. These derivative cell lines constitutively

overexpress Pax genes, and express DUX4 conditionally. Pax3

and Pax7 were able to rescue viability and proliferation fully

when DUX4 expression was induced with 100 ng/ml of dox,

whereas GFP alone had no effect (Figure 6B). This rescue was

Figure 2 Identification of DUX4-specific cell pathological phenotypes. (A) Cell viability (ATP content), after 24 h in 100 or 500 ng/ml
doxycycline-treated cells. DUX4 has a unique dose-dependent effect on viability. (B) Morphology of iC2C12 myoblasts 24 h after DUX4
induction with 500 ng/ml dox. (C) Western blotting analysis of FLAG tag fusion protein expression in FLAG–DUX4, FLAG–ANT1, FLAG–
TUBB4q and FRG1-3xFLAG cell lines. Cells were induced with 125 and 500 ng/ml doxycycline for 14 h. (D) Immunofluorescence showing
DUX4 (red) accumulation in the nucleus and cell morphological changes (lamin, green) in iC2C12-DUX4 cells over a 16 h time course (500 ng/
ml). (E) Dose–response at 20 h (upper panels) and time course (in 500 ng/ml doxycycline, lower panels) of DUX4 expression in iC2C12-DUX4
cells. (F) Western blot analyses of DUX4 expression in differentiated and proliferating cells. iC2C12-DUX4 cells were differentiated into
myotubes for 4 days and DUX4 was induced for 14 h for comparison to proliferating cells. (G) Western blots for p21 and cyclin E during a time
course of DUX4 induction at 500 ng/ml dox. (H) FACS analyses of DUX4-induced apoptosis and cell death using annexin V (x axis) and 7AAD (y
axis) staining. Early apoptotic cells are annexin Vþ, dead cells are annexin Vþ/7AADþ . (I) Western blots for activated caspases 6, 8 and 9 in
DUX4-expressing myoblasts over a time course. (J) Morphology of cells expressing DUX4 at low levels while proliferating, and viability (K) of
these cells by ATP assay. (L) Morphology of DUX4-expressing myotubes and their viability (M).
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indeed competitive as evidenced by the phenotype at higher

levels of DUX4 expression. Although at 500 or 1000 ng/ml of

dox, Pax3 and Pax7 maintained significant numbers of viable

cells, these were fewer in number than at 100 ng/ml dox, and

by comparing the 24 h to the 48 h ATP assay it is evident that

at high levels of DUX4 expression, the viable, Pax3/Pax7-

rescued cells were not proliferating. In addition, at high doses

of dox, surviving cells show signs of morphological alteration

characterized by a stretched and elongated shape. (Figure 6C,

lower panels). This result was not due to reduced levels of

DUX4 with Pax3/Pax7 expression, indeed the reverse was

observed: high levels of DUX4 inhibited the accumulation of

Pax3/Pax7 (Figure 6D). Although some reduction in Pax3/

Pax7 transcription was evident, a large part of this reduction

is post-transcriptional (Supplementary Figure S6) and likely

due to decreased protein stability (Abu Hatoum et al, 1998;

Boutet et al, 2007). To demonstrate that rescue from DUX4

toxicity was specific to Pax3/Pax7, we conducted the same

experiment using an unrelated homeodomain-containing pro-

tein (HoxB4). We did not observe rescue with HoxB4

(Supplementary Figure S7).

We then evaluated the expression of MyoD and Myf5 in the

Pax3-, Pax7-, and control GFP-transduced iC2C12-DUX4 myo-

blasts. Without intervention, DUX4 rapidly reduces the levels

of MyoD message and protein (Figures 3F, 5A–C and 6E).

With Pax3 or Pax7 expression, this effect was significantly and

competitively inhibited (Figure 6E). Only at very high levels of

DUX4 expression (500 ng/ml dox) was MyoD effectively

repressed. In a similar manner, Pax3 and Pax7 eliminated

the ability of DUX4 to increase Myf5 expression. Therefore,

DUX4 competes with Pax3 and Pax7 to regulate both viability-

associated genes and the MRFs, MyoD and Myf5.
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Discussion

Many biological problems are amenable to comparative gain-

of-function experimental approaches. However, conventional

methods of performing such genetic manipulations are con-

founded by expression variation. Gene targeting by homo-

logous recombination, although efficient in ES cells, is not

feasible in most cell lines. By combining conditional Tet-on

regulation with selectable cre/Lox cassette exchange in a

single-copy integration vector, we show that it is possible to

generate cell lines with highly efficient ICE target loci, ideal

for comparative gain-of-function studies, such as comparing
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phenotypic effects of various genes or evaluating mutants of a

given gene. The conditional nature of the expression system

facilitates work with genes with toxic phenotypes that would

otherwise preclude the establishment of stable cell lines. The

main technical challenge is identifying the clonal integrant in

which the inducible locus is expressed robustly, not silenced,

ATP assay for cell survival
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and not leaky. As lentiviral vectors integrate randomly, such

integrants can always be recovered, provided a sufficient

number of independent clones can be screened. As the

targeting construct is generic, the utility of the system in-

creases exponentially with the number of compatible ICE

target cell lines available.

Because of the unusual genetics of FSHD, in which one or

more of a large number of potentially upregulated candidate

genes may cause the phenotype, dissecting the molecular

pathology of this disease is ideally suited to this experimental

approach. Expression profiling and proteomics have identi-

fied oxidative stress and myogenesis as the biological pro-

cesses principally affected in FSHD muscle (Winokur et al,

2003b; Celegato et al, 2006; Macaione et al, 2007). However,

there is no agreement on the underlying molecular mechan-

ism, nor which upregulated gene(s) is (are) responsible for

FSHD. By using the ICE system to compare each FSHD

candidate gene directly over a range of expression levels,

we have identified DUX4 as the only candidate to have

general toxic effects. Furthermore, we show that DUX4 also

has specific effects on the biological processes affected in

FSHD. Given that D4Z4 repeats from FSHD-associated dele-

tion chromosome 4 variants are hypomethylated (van

Overveld et al, 2003), and that FSHD-associated transcription

of the terminal repeat has been demonstrated (Dixit et al,

2007), and indeed DUX4 protein has been detected in FSHD

myoblasts (Dixit et al, 2007), it is reasonable to assume that

DUX4 may be specifically expressed in FSHD-affected muscle,

and that some of the consequences of its expression, de-

scribed in the current study, may be responsible for some of

the pathology seen in FSHD. However, caution must be

exercised, as these studies represent gain-of-function ana-

lyses, which address sufficiency but not necessity, and poten-

tially relevant effects of other candidate genes are not ruled

out by this study.

Although DUX4 is expressed at low levels in FSHD-affected

muscle (Dixit et al, 2007), induction of high levels of DUX4

expression was useful in identifying its target genes and

pathways. Among the notable rapidly induced changes

were MyoD downregulation and p21 upregulation, which

were seen within 2 h of DUX4 expression. At the protein

level, reduced levels of MyoD have been reported in FSHD

muscle biopsies (Celegato et al, 2006) and elevated levels of

p21 have been reported in FSHD myoblast cultures (Winokur

et al, 2003a). At the gene expression level, misregulation of

MyoD target genes has also been reported (Winokur et al,

2003b). We observed MyoD repression even with low-level,

non-toxic induction of DUX4, along with consequent pertur-

bation of MyoD downstream targets and impaired differentia-

tion. Interestingly, it has recently been reported that

myoblasts and mesoangioblasts from FSHD patients exhibit

morphological differentiation defects (Dellavalle et al, 2007;

Barro et al, 2008). Among the late response changes (12 h,

probably secondary responses), we observed downregulation

of a number of genes involved in buffering oxidative damage.

This has been reported in FSHD biopsy samples at the RNA

level (Winokur et al, 2003b; Celegato et al, 2006) and at the

protein level (Celegato et al, 2006; Macaione et al, 2007).

Consistent with this, FSHD myoblasts have been shown to be

more sensitive to compounds that induce oxidative damage

than control myoblasts (Winokur et al, 2003a). In our hands,

DUX4 expression rendered iC2C12-DUX4 myoblasts hyper-

sensitive to oxidative stress, even at barely detectable levels

of DUX4 induction that otherwise have no effect on viability.

We further found that addition of antioxidants to DUX4-

expressing cells provided significant rescue from cell death,

even at the highest levels of DUX4 expression, demonstrating

that inability to buffer oxidative damage is a key part of the

toxic phenotype of DUX4 expression. By inducing sensitivity

to oxidative damage, repressing MyoD, and upregulating p21,

DUX4 expression in the murine myoblast cell culture system

recapitulates many of the hallmark RNA and protein changes

observed in FSHD muscle. This is consistent with a role for

DUX4 in the pathology of FSHD.

High-level expression of DUX4 led to apoptosis, indicated

by the presence of activated forms of various caspases and

annexin V staining by fluorescence-activated cell sorter

(FACS). Consistent with this, it has recently been reported

that transient transfection of D4Z4 repeat units into C2C12

cells induces apoptosis (Kowaljow et al, 2007). Activation of

caspase 3 has been observed in affected but not unaffected

FSHD muscle (Laoudj-Chenivesse et al, 2005), as well as

upregulation of caspase 1, 2, 3, and 6 transcripts (Sandri et al,

2001; Winokur et al, 2003b); however, the importance of

apoptosis in the FSHD phenotype is controversial (Winokur

et al, 2003a). At low levels, DUX4 does not lead directly to

apoptosis; however, it may sensitize cells to other apoptotic

signals.

We observed that DUX4 was much more toxic to prolifer-

ating myoblasts than to their differentiated counterparts.

Both the sensitivity of DUX4-expressing myoblasts to oxida-

tive stress and the reduction in their ability to generate

terminally differentiated myotubes, if manifest in FSHD mus-

cle, would place greater demand on the resident muscle stem

and progenitor cell pool. More myoblasts would be required

to perform a given amount of repair if a fraction was lost to

oxidative stress and the surviving fraction was less efficient at

differentiating into functional muscle. Depending on the

severity, this would lead to the eventual exhaustion of muscle

regenerative potential. However, in addition to the greater

demand placed on the stem cell pool, our results suggest that

DUX4 expression may deplete or incapacitate the stem cell

pool directly. We have shown that DUX4 competes with both

Pax3 and Pax7 for the regulation of myogenic target genes.

This genetic interaction is intriguing, given that the nearest

phylogenetic neighbours of the DUX4 homeodomains are

those of Pax3 and Pax7. These two paired-box transcription

factors have important, and partially redundant, functions in

the development of skeletal muscle and dorsal neural tube

(for review, see Buckingham and Relaix, 2007). In adult

muscle, Pax7 is expressed in quiescent and activated satellite

cells as well as in proliferating myogenic progenitors, and is

downregulated prior to myoblast differentiation and fusion.

Expression of Pax3 in adult muscle is localized to a subset of

cells located in the interstitial space of the skeletal muscle

(Kuang et al, 2006), in a small percentage of satellite cells in

particular muscles, for example, diaphragm (Montarras et al,

2005; Cerletti et al, 2008) and transiently in activated myo-

blasts (Conboy and Rando, 2002; Cerletti et al, 2008). MyoD

is a well-known target of Pax3 activation during embryogen-

esis (Tajbakhsh et al, 1997) and it is transcriptionally

dependent on the expression of Pax7 in adult myogenesis

(Olguin and Olwin, 2004; Relaix et al, 2006). Divergent

induction/repression kinetics of MyoD is probably dependent
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on the level of Pax7 overexpression and on the cell type

(Olguin and Olwin, 2004; Relaix et al, 2006). In our system,

MyoD is rapidly downregulated by DUX4 and this down-

regulation is reversed by Pax3 or Pax7 overexpression. In the

adult, Pax7 is required for satellite cell self-renewal and is

thus essential for ongoing muscle regeneration—in Pax7

knockout mice, muscle develops, but satellite cell number

drops precipitously after birth and mice live only a few weeks

(Mansouri et al, 1996; Seale et al, 2000; Oustanina et al,

2004). Therefore, if DUX4 showed the same competitive

interaction with Pax7 in satellite cells, it would be expected

to phenocopy the Pax7 mutant, resulting in reduced self-

renewal of satellite cells. This hypothesis is consistent with

the relatively late onset of FSHD and with both the latency in

outgrowth of FSHD myoblast cultures from affected muscles

and the reduced proliferative potential of FSHD myoblast

cultures once established (Vilquin et al, 2005).

Although FSHD may be caused by the combinatorial action

of multiple overexpressed 4q35.2 candidate genes, we have

shown that DUX4 expression alone is sufficient to recapitu-

late key aspects of the FSHD molecular phenotype. Critically,

this phenotype is obtained even with very low levels of DUX4

expression, such as have been reported in FSHD myoblasts

(Dixit et al, 2007). The competitive interaction between DUX4

and Pax7 predicts satellite cell and regeneration defects, thus

we hypothesize that FSHD may be the first example of a

muscular dystrophy with a stem cell aetiology. To substanti-

ate this hypothesis, it will be critical to evaluate the expres-

sion of DUX4 in satellite cells of FSHD-affected muscle and to

evaluate the effect of knocking down DUX4 expression in

primary cultures derived from these satellite cells.

Materials and methods

Cloning of retro and lenti-virus plasmids
pLenti-rtTA was made as follows: The lenti vector FUGW (Lois et al,
2002) was cut with BamHI and EcoRI; rtTA2SM2 from pUHDrt-
TA2SM2 (Urlinger et al, 2000) (gift of H Bujard) was removed as an
EcoRI/HindIII fragment, which included an SV40 polyA; the EcoRI
site was destroyed and replaced with BglII, and a new EcoRI site was
added immediately downstream of the HindIII site, and the
resulting BglII/EcoRI fragment was inserted into the BamHI/EcoRI
digested FUGW, replacing GFP and destroying the upstream BamHI
site. The SV40 polyA was then removed by EcoRI/BamHI digestion,
blunting, and relegation. Pax3 cDNA from pSPORT-Pax3
(BC048699; Open Biosystems) and Pax7 cDNA from pBRIT-Pax7d
(Seale et al, 2004) were subcloned as EcoRI and XhoI fragments into
pMSCV-ires-GFP to generate pMSCV-Pax3-ires-GFP and pMSCV-
Pax7-ires-GFP, respectively. pMSCV-HOXB4-ires-GFP was described
earlier (Kyba et al, 2002).

Generating p2Lox plasmid with DsRed2 and luciferase
reporter genes
P2Lox plasmid was generated by inserting the Lox2272 sequence
immediately downstream of LoxP in the previously reported pLox
plasmid by Kyba et al (2002) and replacing the sequence from SalI
to NotI with a SalI/NotI fragment from pBS-GFP, in which GFP is
inserted at the EcoRV site. DsRed2 was subcloned from pIRES2-
DsRED2 (Clontech, Palo Alto, CA, USA) as a NcoI (blunt) and NotI
fragment and cloned into SmaI and NotI digested p2Lox. Luciferase
was subcloned directionaly as an XhoI/BamHI fragment from pGL3-
Basic Vector (Promega) was cloned directionally into P2Lox.

Cloning of FSHD candidate genes into p2Lox
DNA sequence from the terminal D4Z4 repeat (2.7 kb) containing
DUX4 was obtained from pClneo-DUX4 (Gabriels et al, 1999) and
subcloned into XhoI/NotI cloning sites of p2Lox, generating p2lox-
DUX4. DUX4c was subcloned from pCLneo-DUX4c as XbaI/EcoRI

fragment into pBS to acquire XhoI and NotI cloning sites, which
were then used for subcloning into p2lox to generate p2lox-DUX4c.
cDNAs for FRG1 and ANT1 were obtained from Open Biosystems.
Genes were excised by EcoRI/NotI digestion and cloned direction-
ally into p2lox to generate p2lox-FRG1 and p2lox-ANT1. To clone
FRG2 cDNA, total RNA was harvested from differentiated human
FSHD myoblasts (Rijkers et al, 2004) using Trizol (Invitrogen) and
cDNA was transcribed using the ThermoScript RT–PCR System
(Invitrogen) and random hexamer primers. FRG2 was amplified by
forward (atgggaaagggaaatgaagactcccga) and reverse (tcattccca-
gagctgcatctctgct)-specific primers using FastStart High Fidelity
PCR (Roche). Whole DNA sequence of TUBB4q was generated by
PCR using BAC as a template and forward (atgagggagcttgtgctcacgc)
and reverse (tcagactcctcctccctcggc) primers. Both PCR products
were subcloned into p2lox using SalI and NotI as these sites were
incorporated into the primers. DYKDDDDK peptide sequence was
fused at N-terminal to generate FLAG tag version of the FLAG–
DUX4, FLAG–ANT1 and FLAG–TUBB4q. 3� FLAG tag at C
terminus of FRG1 was generated by cloning FRG1 in frame with
p2Lox-3xFLAG. The integrity of all of the genes cloned into p2Lox
was confirmed by sequencing.

Generating the iC2C12 targeting cell line
C2C12 myoblasts were transduced with Lenti-rtTA virus at high titre
to generate C2C12-rtTA cells. Expanded C2C12-rtTA cells were
transduced with the serial dilutions of Lenti-i2lox-cre to obtain
single-copy integration. To test the titration and to purify the target
population, 2 days after the second infection, cre–ires–GFP was
induced with 500 ng/ml dox (Sigma) for 24 h and cells were
analysed for GFP on a FACS Aria (BD). GFPþ cells from the lowest
dilution (less than 1%) were sorted and expanded in the absence of
dox. After several passages, doubly transfected cells were induced
once again for cre–ires–GFP and single GFPþ cells were single cell-
sorted into 96-well plates. At 1 week after sorting, the colonies
obtained from single cells were split in two 96-well replica plates
and expanded for 2 days. One of the 96-well replica plates was
induced with dox once and GFP expression was evaluated by FACS.
Clones showing 100% GFPþ expression were expanded and further
tested. Each clone was tested for a non-silencing, single-copy
integration site by targeting the inducible locus with DsRed2 (p2lox-
DsRed2). At 24 h before targeting, the endogenous cre was induced
with 500 ng/ml dox, and 2 h before the transfection the medium
containing dox was replaced with fresh medium without dox.
p2lox-DsRed2 plasmid was transfected using FUGENE 6 and
selection with 800mg/ml G418 (Gibco) was started the following
day. G418-resistant cultures were established within 10 days, at
which point DsRed2 was induced by dox and cells were analysed by
FACS 24 h later. One non-silencing clone that was capable of
efficient replacement of GFP with DsRed2 was selected for these
studies and designated iC2C12.

Illumina microarray analysis
Microarray gene expression analyses were performed on iC2C12
cells induced with 500 ng/ml dox. Each culture was divided equally
into three arms, and each arm was harvested at the same time 24 h
later. One arm was not treated, the second was treated 4 h before
harvest, and the third was treated 12 h before harvest. Total RNA
(100 ng) isolated by Trizol (Invitrogen) was amplified using the
Illumina RNA Amplification kit and labelled by incorporation of
biotin-16-UTP. Samples were hybridized to llumina BeadChips,
which were scanning with an Illumina BeadArray Reader. Array
data processing and normalization were performed using Illumina
Bead-Studio software. Three arrays (0, 4 and 12 h) were repeated on
three different BeadChips in three independent experiments. Signal
values were normalized by global mean and log transformed using
GeneSifter software (VizX Labs, Seattle, WA, USA). Pairwise
comparisons and Student’s t-test were subsequently performed,
and a difference of at least two-fold with a P-value of less than 0.05
was considered as a statistically significant change in gene
expression. Spotfire DecisionSite 9.0 (Spotfire Inc., Somerville,
MA) and significance analysis of microarrays were also used to
perform pairwise comparisons, two-class paired comparisons, and
one-way analysis of variance to confirm statistical significance of
expression differences. Finally, individual comparisons among the
experimental groups (0 versus 4 and 0 versus 12) on each chip were
done independently, and only those differences that were consistent
(i.e. occurred for all three experiments) were retained.
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Quantitative real-time RT–PCR (qRT–PCR)
Total RNA was extracted with Trizol (Invitrogen) and cDNA was
generated using 1 mg DNase-treated RNA with oligo-dT primer and
ThermoScript (Invitrogen). PCR was performed by using TaqMan or
SYBR green real-time PCR premixture on 7500 real-time PCR System
(Applied Biosystems). For muscle-related genes (Pax3, Pax7, MyoD,
Myf5, myogenin, desmin and MCK), pre-made probes were
purchased from Applied Biosystems. For validation of microarray
data, the list of the primers used in the qPCR is shown in
Supplementary Methods. Actin or glyceraldehyde phosphate
dehydrogenase were used as internal standards. All reactions were
performed at least in triplicate and the data were normalized and
analysed by 7500 System Software (Applied Biosystems).

Statistical analyses
All experiments were done at least three times. Data shown for real-
time PCR are the mean±s.d. Difference between means was

compared by the two-tailed Student’s t-test (GraphPad Prism 5) and
was considered significantly different at Po0.05.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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