series (22) appearing to be $\frac{1}{4} \pi$ which is $\tan ^{-1} 1$, then the series of partial sums $\sum_{n=1}^{N} \tan ^{-1}\left(\frac{1}{1+n+n^{2}}\right)$ must somehow 'collapse' to give a term which is $\frac{1}{4} \pi$ and another which tends to 0 as $N \rightarrow \infty$. For this to happen we would need to rewrite $\tan ^{-1}\left(\frac{1}{1+n+n^{2}}\right)$ as the difference $a_{n}-a_{n+1}$ between two terms in a sequence $a_{n}$, i.e. the result in (22). However Alice reaches this point, she will finish her journey with

$$
\begin{aligned}
& \sum_{n=1}^{N} \tan ^{-1}\left(\frac{1}{1+n+n^{2}}\right)=\sum_{n=1}^{N}\left(\tan ^{-1} \frac{1}{n}-\tan ^{-1} \frac{1}{1+n}\right) \\
= & \tan ^{-1} \frac{1}{1}-\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{2}-\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{3}-\ldots-\tan ^{-1} \frac{1}{1+N} \\
= & \tan ^{-1} 1-\tan ^{-1} \frac{1}{1+N} \rightarrow \tan ^{-1} 1=\frac{1}{4} \pi
\end{aligned}
$$

as $N \rightarrow \infty$, as expected.
I wonder what the Queen would have made of all this.

## References

1. A. Palfreyman, Inverse tan does it add up to anything?, Mathematics in School, 47(1) (2018) pp. 24-25.
2. F. F. Abeles, Charles L. Dodgson's geometric approach to arctangent relations for pi, Historia Mathematica, 20 (1993) pp. 151-159, also available at http://users.uoa.gr/~apgiannop/Sources/Dodgson-pi.pdf
3. Department for Education, GCE AS and A level subject content for mathematics (2014) also available at https://www.gov.uk/government/ publications/gce-as-and-a-level-mathematics
10.1017/mag. 2019.99

PAUL GLAISTER
Department of Mathematics, University of Reading, Reading
e-mail: p.glaister@reading.ac.uk
The answers to the Nemo page from July on paradoxes were:

1. Oscar Wilde A Portrait of Dorian Gray Chapter 17
2. Charlotte Brontë Villette Chapter 42
3. Shakespeare Hamlet

4 GB Shaw Back to Methuselah
5. Hermann Melville Mardi: and a Voyage Thither Chapter 30
6. James Joyce Ulysses Scylla and Charybdis

Congratulations to Martin Lukarevski on tracking all of these down.

